Skip to content

Advertisement

  • Research
  • Open Access

Permanence and global attractivity of a nonautonomous modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge

Advances in Difference Equations20162016:184

https://doi.org/10.1186/s13662-016-0892-5

  • Received: 5 May 2016
  • Accepted: 8 June 2016
  • Published:

Abstract

A nonautonomous modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge is studied in this paper. Persistent property and stability property of the system are investigated. Some findings about the influence of prey refuge are obtained.

Keywords

  • predator
  • prey
  • permanence
  • global stability

MSC

  • 34D23
  • 92D25
  • 34D20
  • 34D40

1 Introduction

Throughout this paper, for a bounded continuous function g defined on R, let \(g^{L}\) and \(g^{M}\) be defined as
$$g^{L}=\inf_{t\in R}g(t),\qquad g^{M}=\sup _{t\in R}g(t). $$
During the last two decades, the study of dynamic behaviors of predator-prey system incorporating a prey refuge become one of the most important research topic, see [145] and the references cited therein. In [1], Yue proposed and studied the following modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge:
$$\begin{aligned}& \begin{aligned} & \dot{x}(t)=x \biggl(r_{1}-b_{1}x- \frac{a_{1}(1-m)y}{(1-m)x+k_{1}} \biggr), \\ & \dot{y}(t)=y \biggl(r_{2}- \frac{a_{2} y}{(1-m)x+k_{2}} \biggr), \end{aligned} \end{aligned}$$
(1.1)
where \(x(t)\) and \(y(t)\) denote the densities of the predator and prey species at time t, respectively, and all the coefficients are all positive constants, \(0\leq m<1\). Such a topic as the global stability property of the positive equilibrium was investigated.
Many authors [2, 4, 5, 8, 9] argued that with the biological and environmental change of the circumstance, it is reasonable to propose and study the nonautonomous system, the success of [2, 4, 5, 8, 9] motivates us to propose the corresponding nonautonomous case of system (1.1), i.e., the following system:
$$\begin{aligned}& \begin{aligned} & \dot{x}(t)=x \biggl(r_{1}(t)-b_{1}(t)x- \frac {a_{1}(t)(1-m(t))y}{(1-m(t))x+k_{1}(t)} \biggr), \\ & \dot{y}(t)=y \biggl(r_{2}(t)- \frac{a_{2}(t) y}{(1-m(t))x+k_{2}(t)} \biggr), \end{aligned} \end{aligned}$$
(1.2)
where \(x(t)\) and \(y(t)\) denote the densities of the predator and prey species at time t, respectively; One could refer to [1] for the biological meaning of the coefficients. Throughout this paper, we assume that
(\(H_{1}\)): 
\(r_{i}(t)\), \(k_{i}(t)\), \(a_{i}(t)\), \(i=1,2\), \(m(t)\), \(b_{1}(t)\) are continuous and strictly positive functions, which satisfy
$$\begin{aligned}& \min \bigl\{ r_{i}^{L}, k_{i}^{L}, a_{i}^{L}, m^{L}, b_{1}^{L} \bigr\} >0, \\& \max \bigl\{ r_{i}^{M}, k_{i}^{M}, a_{i}^{M}, m^{M}, b_{1}^{M} \bigr\} < +\infty. \end{aligned}$$
We consider (1.2) together with the following initial conditions:
$$ x(0)> 0,\qquad y(0)> 0. $$
(1.3)
It is not difficult to see that solutions of (1.2)-(1.3) are well defined for all \(t\geq0\) and satisfy
$$ x(t)>0,\qquad y(t)>0 \quad \mbox{for all } t\geq0. $$
(1.4)

The paper is arranged as follows: In Section 2, we obtain sufficient conditions which guarantee the permanence of the system (1.2). In Section 3, we obtain sufficient conditions which ensure the global attractivity of the system (1.2). In Section 4, an example together with its numeric simulations illustrates the feasibility of the main results. We end this paper by a brief discussion.

2 Permanence

Lemma 2.1

Let \((x(t),y(t))^{T}\) be any solution of system (1.2) with the initial conditions (1.3), then
$$\begin{aligned}& \begin{aligned} &\limsup_{t\rightarrow+\infty} x(t)\leq \frac {r_{1}^{M}}{b_{1}^{L}} \stackrel{\mathrm{def}}{=}M_{1}, \\ &\limsup_{t\rightarrow+\infty} y(t)\leq \frac {r_{2}^{M} ((1-m^{L})M_{1}+k_{2}^{M} )}{a_{2}^{L}}\stackrel{ \mathrm{def}}{=}M_{2}. \end{aligned} \end{aligned}$$
(2.1)

Proof

Let \((x(t),y(t))^{T}\) be any solution of system (1.2) with the initial conditions (1.3). From the first equation of system (1.2), it follows that
$$\begin{aligned} \dot{x}(t) =&x \biggl(r_{1}(t)-b_{1}(t)x- \frac {a_{1}(t)(1-m(t))y}{(1-m(t))x+k_{1}(t)} \biggr) \\ \leq&x\bigl(r_{1}^{M}- b_{1}^{L}x \bigr). \end{aligned}$$
(2.2)
Applying Lemma 2.3 in [46] to (2.2), it immediately follows that
$$ \limsup_{t\rightarrow+\infty} x(t)\leq\frac {r_{1}^{M}}{b_{1}^{L}}\stackrel{\mathrm{def}}{=}M_{1}. $$
(2.3)
For any positive constant \(\varepsilon>0\) small enough, it follows from (2.3) that there exists a \(T_{1}>0\) such that
$$ x(t)< M_{1}+\varepsilon\quad \mbox{for all } t\geq T_{1}. $$
(2.4)
For \(t>T_{1}\), (2.4) together with the second equation of system (1.2) leads to
$$\begin{aligned} \dot{y}(t) =&y \biggl(r_{2}(t)- \frac{a_{2}(t) y}{(1-m(t))x+k_{2}(t)} \biggr) \\ \leq& y \biggl(r_{2}^{M}- \frac{a_{2}^{L} }{(1-m^{L})(M_{1}+\varepsilon)+k_{2}^{M}}y \biggr). \end{aligned}$$
(2.5)
Applying Lemma 2.3 in [46] to (2.5), it immediately follows that
$$ \limsup_{t\rightarrow+\infty} y(t)\leq \frac {r_{2}^{M}((1-m^{L})(M_{1}+\varepsilon)+k_{2}^{M})}{a_{2}^{L}}. $$
(2.6)
Setting \(\varepsilon\rightarrow0\), then
$$ \limsup_{t\rightarrow+\infty} y(t)\leq \frac{r_{2}^{M} ((1-m^{L})M_{1}+k_{2}^{M} )}{a_{2}^{L}}\stackrel{ \mathrm{def}}{=}M_{2}. $$
(2.7)
 □

Lemma 2.2

Let \((x(t),y(t))^{T}\) be any solution of system (1.2) with the initial conditions (1.3), assume that
$$ r_{1}^{L}> \frac{a_{1}^{M}(1-m^{L})M_{2}}{k_{1}^{L}} $$
(2.8)
holds, then
$$\begin{aligned}& \liminf_{t\rightarrow+\infty} x(t)\geq \frac {r_{1}^{L}k_{1}^{L}-a_{1}^{M}(1-m^{L})M_{2}}{k_{1}^{L}b_{1}^{M}}\stackrel{\mathrm {def}}{=}m_{1}, \end{aligned}$$
(2.9)
$$\begin{aligned}& \liminf_{t\rightarrow+\infty} y(t)\geq\frac{r_{2}^{L} ((1-m^{M})m_{1}+k_{2}^{L} )}{a_{2}^{M}}\stackrel{ \mathrm{def}}{=}m_{2}. \end{aligned}$$
(2.10)

Proof

Condition (2.8) implies that one could choose \(\varepsilon>0\) small enough such that
$$ r_{1}^{L}> \frac{a_{1}^{M}(1-m^{L})(M_{2}+\varepsilon)}{k_{1}^{L}} $$
(2.11)
holds. For this ε, it follows from (2.7) that there exists a \(T_{2}>T_{1}\) such that
$$ y(t)< M_{2}+\varepsilon \quad \mbox{for all } t\geq T_{2}. $$
(2.12)
Let \((x(t),y(t))^{T}\) be any solution of system (1.2) with the initial conditions (1.3). For \(t>T_{2}\), (2.12) together with the first equation of system (1.2) leads to
$$\begin{aligned} \dot{x}(t) =&x \biggl(r_{1}(t)-b_{1}(t)x- \frac {a_{1}(t)(1-m(t))y}{(1-m(t))x+k_{1}(t)} \biggr) \\ \geq& x \biggl(r_{1}^{L}- \frac{a_{1}^{M}(1-m^{L})(M_{2}-\varepsilon) }{ k_{1}^{L}}-b_{1}^{M}x \biggr). \end{aligned}$$
(2.13)
Applying Lemma 2.3 in [46] to (2.13), it immediately follows that
$$ \liminf_{t\rightarrow+\infty} x(t)\geq \frac{r_{1}^{L}- \frac{a_{1}^{M}(1-m^{L})(M_{2}-\varepsilon) }{ k_{1}^{L}}}{b_{1}^{M}}. $$
(2.14)
Setting \(\varepsilon\rightarrow0\), then
$$ \liminf_{t\rightarrow+\infty} x(t)\geq \frac {r_{1}^{L}k_{1}^{L}-a_{1}^{M}(1-m^{L})M_{2}}{k_{1}^{L}b_{1}^{M}}\stackrel{\mathrm {def}}{=}m_{1}. $$
(2.15)
Let \(\varepsilon>0\) be any positive constant small enough such that \(\varepsilon<\frac{1}{2}m_{1}\). It then follows from (2.15) that there exists a \(T_{3}>T_{2}\), such that
$$ x(t)>m_{1}-\varepsilon \quad \mbox{for all } t\geq T_{3}. $$
(2.16)
From the second equation of system (1.2), it follows that
$$\begin{aligned} \dot{y}(t) =&y \biggl(r_{2}(t)- \frac{a_{2}(t) y}{(1-m(t))x+k_{2}(t)} \biggr) \\ \geq&y(t) \biggl[r_{2}^{L}- \frac{a_{2}^{M}y(t)}{(1-m^{M})(m_{1}-\varepsilon)+k_{2}^{L}} \biggr]. \end{aligned}$$
(2.17)
Applying Lemma 2.3 in [46] to (2.17), it immediately follows that
$$ \liminf_{t\rightarrow+\infty} y(t)\geq\frac{r_{2}^{L} ((1-m^{M})(m_{1}-\varepsilon)+k_{2}^{L} )}{a_{2}^{M}}. $$
(2.18)
Setting \(\varepsilon\rightarrow0\), then
$$ \liminf_{t\rightarrow+\infty} y(t)\geq\frac{r_{2}^{L} ((1-m^{M})m_{1}+k_{2}^{L} )}{a_{2}^{M}}\stackrel{ \mathrm{def}}{=}m_{2}. $$
(2.19)
 □

As a direct corollary of Lemma 2.1 and 2.2, we have the following.

Theorem 2.1

Assume that (2.8) holds, then system (1.2)-(1.3) is permanent.

3 Global attractivity

Before we state the main result of this section, we introduce some notations. Set
$$\begin{aligned}& \Delta_{1}(m_{1})\stackrel{\mathrm{def}}{=}\bigl( \bigl(1-m(t)\bigr)m_{1}+k_{1}(t) \bigr)^{2}, \\& \Delta_{2}(m_{1})\stackrel{\mathrm{def}}{=} \bigl(\bigl(1-m(t)\bigr)m_{1} +k_{2}(t) \bigr)^{2}, \\& \Delta_{2}(M_{1})\stackrel{\mathrm{def}}{=}\bigl( \bigl(1-m(t)\bigr)M_{1} +k_{2}(t) \bigr)^{2}, \end{aligned}$$
(3.1)
and
$$\begin{aligned}& \Gamma_{1}(t)\stackrel{\mathrm{def}}{=}b_{1}(t)- \frac {a_{1}(t)(1-m(t))^{2}M_{2}}{\Delta_{1}(m_{1})} - \frac{a_{2}(t)(1-m(t))M_{2}}{\Delta_{2}(m_{1})}, \\& \Gamma_{2}(t)\stackrel{\mathrm{def}}{=} \frac{ a_{2}(t)k_{2}(t)}{\Delta_{2}(M_{1})}+ \frac{a_{2}(t)(1-m(t))m_{1}}{\Delta _{2}(M_{1})} \\& \hphantom{\Gamma_{2}(t)\stackrel{\mathrm{def}}{=}}{}- \frac{a_{1}(t)(1-m(t))k_{1}(t)}{\Delta_{1}(m_{1})}- \frac {a_{1}(t)(1-m(t))^{2}M_{1}}{\Delta_{1}(m_{1})}. \end{aligned}$$
(3.2)

Theorem 3.1

Assume that all the conditions of Theorem 2.1 hold, assume further that
$$ \liminf_{t\rightarrow+\infty} \bigl\{ \Gamma_{1}(t), \Gamma_{2}(t) \bigr\} >0, $$
(3.3)
then for any positive solutions \((x(t),y(t))^{T}\) and \((x_{1}(t),y_{1}(t))^{T} \) of system (1.2), one has
$$\lim_{t\rightarrow+\infty }\bigl(\bigl\vert x(t)-x_{1}(t)\bigr\vert +\bigl\vert y(t)-y_{1}(t)\bigr\vert \bigr)=0. $$

Proof

Condition (3.3) implies that there exists a small enough positive constant ε (without loss of generality, we may assume that \(\varepsilon<\frac{1}{2}\{m_{1}, m_{2}\}\)) such that
$$\begin{aligned}& \Gamma_{1}(\varepsilon,t)=b_{1}(t)- \frac {a_{1}(t)(1-m(t))^{2}(M_{2}+\varepsilon)}{\Delta_{1}(m_{1}^{\varepsilon})} \\& \hphantom{\Gamma_{1}(\varepsilon,t)=}{} - \frac{a_{2}(t)(1-m(t))(M_{2}+\varepsilon)}{\Delta _{2}(m_{1}^{\varepsilon})}\geq\varepsilon, \\ & \\ & \Gamma_{2}(\varepsilon,t)= \frac{ a_{2}(t)k_{2}(t)}{\Delta _{2}(M_{1}^{\varepsilon})}+ \frac{a_{2}(t)(1-m(t))(m_{1}-\varepsilon)}{\Delta_{2}(M_{1}^{\varepsilon})} \\& \hphantom{\Gamma_{2}(\varepsilon,t)=}{}- \frac{a_{1}(t)(1-m(t))k_{1}(t)}{\Delta_{1}(m_{1}^{\varepsilon})}- \frac{a_{1}(t)(1-m(t))^{2}(M_{1}+\varepsilon)}{\Delta_{1}(m_{1}^{\varepsilon})}\geq\varepsilon, \end{aligned}$$
(3.4)
where
$$\begin{aligned}& \Delta_{1}\bigl(m_{1}^{\varepsilon}\bigr)=\bigl( \bigl(1-m(t)\bigr) (m_{1}-\varepsilon) +k_{1}(t) \bigr)^{2}, \\& \Delta_{2}\bigl(m_{1}^{\varepsilon}\bigr)= \bigl(\bigl(1-m(t)\bigr) (m_{1}-\varepsilon) +k_{2}(t) \bigr)^{2}, \\& \Delta_{2}\bigl(M_{1}^{\varepsilon}\bigr)=\bigl( \bigl(1-m(t)\bigr) (M_{1}+\varepsilon) +k_{2}(t) \bigr)^{2}. \end{aligned}$$
(3.5)
For two arbitrary positive solutions \((x(t),y(t))^{T}\) and \((x_{1}(t),y_{1}(t))^{T}\) of system (1.2), for the above \(\varepsilon>0\), it then follows from (2.1), (2.15), and (2.19) that there exists a \(T>T_{3}\), such that for all \(t\geq T\),
$$\begin{aligned}& \begin{aligned} & x(t),x_{1}(t)< M_{1}+ \varepsilon, \qquad y(t), y_{1}(t)< M_{2}+\varepsilon, \\ & x(t), x_{1}(t)>m_{1}-\varepsilon, \qquad y(t), y_{1}(t)>m_{2}-\varepsilon. \end{aligned} \end{aligned}$$
(3.6)
Set
$$\begin{aligned}& \begin{aligned} &\Delta_{1}\bigl(x(t),x_{1}(t)\bigr)= \bigl(\bigl(1-m(t)\bigr)x_{1}(t)+k_{1}(t) \bigr) \bigl( \bigl(1-m(t)\bigr)x(t)+k_{1}(t) \bigr), \\ &\Delta_{2}\bigl(x(t),x_{1}(t)\bigr)= \bigl(\bigl(1-m(t) \bigr)x_{1}(t)+k_{2}(t) \bigr) \bigl(\bigl(1-m(t) \bigr)x(t)+k_{2}(t) \bigr). \end{aligned} \end{aligned}$$
(3.7)
Now we let
$$\begin{aligned}& V_{1}(t)= \bigl\vert \ln x(t)-\ln x_{1}(t) \bigr\vert , \end{aligned}$$
(3.8)
$$\begin{aligned}& V_{2}(t)= \bigl\vert \ln y(t)-\ln y_{1}(t) \bigr\vert . \end{aligned}$$
(3.9)
Then for \(t>T\), we have
$$\begin{aligned} &D^{+}V_{1}(t) \\ &\quad \leq \operatorname{sgn}\bigl(x(t)-x_{1}(t)\bigr) \biggl( -b_{1}(t)x(t)- \frac {a_{1}(t)(1-m(t))y(t)}{(1-m(t))x(t)+k_{1}(t)} \\ &\qquad {}+b_{1}(t)x_{1}(t)+ \frac {a_{1}(t)(1-m(t))y_{1}(t)}{(1-m(t))x_{1}(t)+k_{1}(t)} \biggr) \\ &\quad \leq -b_{1}(t)\bigl\vert x(t)-x_{1}(t)\bigr\vert \\ &\qquad {}+a_{1}(t) \bigl(1-m(t)\bigr) \biggl\vert \frac{y_{1}(t)}{(1-m(t))x_{1}(t)+k_{1}(t)}- \frac{y(t)}{(1-m(t))x(t)+k_{1}(t)} \biggr\vert \\ &\quad = -b_{1}(t)\bigl\vert x(t)-x_{1}(t)\bigr\vert + \frac{a_{1}(t)(1-m(t))}{\Delta _{1}(x(t),x_{1}(t))} \\ &\qquad {} \times\bigl\vert y_{1}(t) \bigl(\bigl(1-m(t) \bigr)x(t)+k_{1}(t)\bigr)-y(t) \bigl( \bigl(1-m(t)\bigr)x_{1}(t)+k_{1}(t) \bigr) \bigr\vert \\ &\quad = -b_{1}(t)\bigl\vert x(t)-x_{1}(t)\bigr\vert + \frac{a_{1}(t)(1-m(t))k_{1}(t)}{\Delta _{1}(x(t),x_{1}(t))}\bigl\vert y(t)-y_{1}(t)\bigr\vert \\ &\qquad {}+ \frac{a_{1}(t)(1-m(t))^{2}}{\Delta_{1}(x(t),x_{1}(t))} \bigl\vert y_{1}(t)x(t) -y(t) x_{1}(t) \bigr\vert \\ &\quad = -b_{1}(t)\bigl\vert x(t)-x_{1}(t)\bigr\vert + \frac{a_{1}(t)(1-m(t))k_{1}(t)}{\Delta _{1}(x(t),x_{1}(t))}\bigl\vert y(t)-y_{1}(t)\bigr\vert \\ &\qquad {}+ \frac{a_{1}(t)(1-m(t))^{2}}{\Delta_{1}(x(t),x_{1}(t))} \bigl\vert y_{1}(t) x(t)-y_{1}(t)x_{1}(t)+y_{1}(t)x_{1}(t) -y(t) x_{1}(t) \bigr\vert \\ &\quad = -b_{1}(t)\bigl\vert x(t)-x_{1}(t)\bigr\vert + \frac{a_{1}(t)(1-m(t))k_{1}(t)}{\Delta _{1}(x(t),x_{1}(t))}\bigl\vert y(t)-y_{1}(t)\bigr\vert \\ &\qquad {}+ \frac{a_{1}(t)(1-m(t))^{2}y_{1}(t)}{\Delta_{1}(x(t),x_{1}(t))} \bigl\vert x(t)- x_{1}(t) \bigr\vert \\ &\qquad {}+ \frac{a_{1}(t)(1-m(t))^{2}x_{1}(t)}{\Delta_{1}(x(t),x_{1}(t))} \bigl\vert y_{1}(t)- y(t) \bigr\vert \\ &\quad \leq -b_{1}(t)\bigl\vert x(t)-x_{1}(t)\bigr\vert + \frac{a_{1}(t)(1-m(t))k_{1}(t)}{\Delta _{1}(m_{1}^{\varepsilon})}\bigl\vert y(t)-y_{1}(t)\bigr\vert \\ &\qquad {}+ \frac{a_{1}(t)(1-m(t))^{2}(M_{2}+\varepsilon)}{\Delta _{1}(m_{1}^{\varepsilon})} \bigl\vert x(t)- x_{1}(t) \bigr\vert \\ &\qquad {}+ \frac{a_{1}(t)(1-m(t))^{2}(M_{1}+\varepsilon)}{\Delta _{1}(m_{1}^{\varepsilon})} \bigl\vert y_{1}(t)- y(t) \bigr\vert \end{aligned}$$
and
$$\begin{aligned} &D^{+}V_{2}(t) \\ &\quad =\operatorname{sgn}\bigl(y(t)-y_{1}(t)\bigr) \biggl( - \frac{a_{2}(t) y(t)}{(1-m(t))x(t)+k_{2}(t)}+ \frac{a_{2}(t) y_{1}(t)}{(1-m(t))x_{1}(t)+k_{2}(t)} \biggr) \\ &\quad = \frac{\operatorname{sgn}(y(t)-y_{1}(t))}{\Delta(x(t),x_{1}(t))} \bigl( - a_{2}(t) y(t) \bigl( \bigl(1-m(t)\bigr)x_{1}(t)+k_{2}(t) \bigr) \\ &\qquad {}+ a_{2}(t) y_{1}(t) \bigl(\bigl(1-m(t) \bigr)x(t)+k_{2}(t) \bigr) \bigr) \\ &\quad = \frac{\operatorname{sgn}(y(t)-y_{1}(t))}{\Delta_{2}(x(t),x_{1}(t))} \bigl( - a_{2}(t)k_{2}(t) \bigl(y(t)-y_{1}(t)\bigr) \bigr) \\ &\qquad {}+ \frac{\operatorname{sgn}(y(t)-y_{1}(t))}{\Delta_{2}(x(t),x_{1}(t))} \bigl(-a_{2}(t) \bigl(1-m(t)\bigr) \bigl(y(t)x_{1}(t)-y_{1}(t)x(t)\bigr) \bigr) \\ &\quad \leq \frac{- a_{2}(t)k_{2}(t)}{\Delta_{2}(M_{1}^{\varepsilon })}\bigl\vert y(t)-y_{1}(t)\bigr\vert + \frac{\operatorname{sgn}(y(t)-y_{1}(t))}{\Delta _{2}(x(t),x_{1}(t))} \\ &\qquad {}\times \bigl(-a_{2}(t) \bigl(1-m(t)\bigr) \bigl(y(t)x_{1}(t)-y_{1}(t)x_{1}(t)+y_{1}(t)x_{1}(t)-y_{1}(t)x(t) \bigr) \bigr) \\ &\quad \leq - \frac{ a_{2}(t)k_{2}(t)}{\Delta_{2}(M_{1}^{\varepsilon })}\bigl\vert y(t)-y_{1}(t)\bigr\vert - \frac{a_{2}(t)(1-m(t))(m_{1}-\varepsilon)}{\Delta _{2}(M_{1}^{\varepsilon})}\bigl\vert y(t)-y_{1}(t)\bigr\vert \\ &\qquad {} + \frac{a_{2}(t)(1-m(t))(M_{2}+\varepsilon)}{\Delta _{2}(m_{1}^{\varepsilon})}\bigl\vert x(t)-x_{1}(t)\bigr\vert . \end{aligned}$$
Now let us set
$$V(t)=V_{1}(t)+V_{2}(t). $$
Then
$$ D^{+}V(t)\leq -\Gamma_{1}(\varepsilon,t)\bigl\vert x(t)-x_{1}(t)\bigr\vert -\Gamma _{2}(\varepsilon,t)\bigl\vert y(t)-y_{1}(t)\bigr\vert . $$
(3.10)
Integrating both sides of (3.10) on the interval \([T,t)\),
$$ V(t)-V(T)\leq \int_{T}^{t} \bigl[- \Gamma_{1}( \varepsilon,s) \bigl\vert x(s)-x_{1}(s) \bigr\vert - \Gamma_{2}(\varepsilon,s) \bigl\vert y(s)-y_{1}(s) \bigr\vert \bigr]\,ds \quad \mbox{for } t\geq T. $$
(3.11)
It follows from (3.4) that
$$ V(t)+\varepsilon \int_{T}^{t} \bigl[ \bigl\vert x(s)-x_{1}(s) \bigr\vert + \bigl\vert y(s)-y_{1}(s) \bigr\vert \bigr]\,ds\leq V(T) \quad \mbox{for } t\geq T. $$
(3.12)
Therefore, \(V(t)\) is bounded on \([T,+\infty)\) and also
$$ \int_{T}^{t} \bigl[ \bigl\vert x(s)-x_{1}(s) \bigr\vert + \bigl\vert y(s)-y_{1}(s) \bigr\vert \bigr]\,ds< +\infty. $$
(3.13)
By Lemma 2.1, 2.2, and Theorem 2.1, \(\vert x(t)-x_{1}(t)\vert \), \(\vert y(t)-y_{1}(t)\vert \) are bounded on \([T,+\infty)\). On the other hand, it is easy to see that \(\dot{x}(t)\), \(\dot{y}(t)\), \(\dot{x}_{1}(t)\), and \(\dot{y}_{1}(t)\) are bounded for \(t\geq T\). Therefore, \(\vert x(t)-x_{1}(t)\vert \), \(\vert y(t)-y_{1}(t)\vert \) are uniformly continuous on \([T,+\infty)\). By the Barbălat lemma [47], one can conclude that
$$\lim_{t\rightarrow+\infty} \bigl[ \bigl\vert x(t)-x_{1}(t) \bigr\vert + \bigl\vert y(t)-y_{1}(t) \bigr\vert \bigr]=0. $$
This ends the proof of Theorem 3.1. □

4 Numeric example

Now let us consider the following example.

Example 4.1

$$\begin{aligned}& \begin{aligned} & \dot{x}(t)=x \biggl(11+\cos t -6x- \frac{(1.5+0.5\sin t)(1-0.1)y}{(1-0.1)x+1} \biggr), \\ & \dot{y}(t)=y \biggl(2- \frac{2 y}{(1-0.1)x+2} \biggr). \end{aligned} \end{aligned}$$
(4.1)
Corresponding to system (1.2), one has
$$\begin{aligned}& r_{1}(t)=11+\cos t,\qquad b_{1}(t)=6,\qquad a_{1}(t)=1.5+0.5 \sin t,\qquad m(t)=0.1, \\& k_{1}(t)=1,\qquad r_{2}(t)=2,\qquad a_{2}(t)=2, \qquad k_{2}(t)=2. \end{aligned}$$
And so,
$$\begin{aligned}& M_{1}= \frac{r_{1}^{M}}{b_{1}^{L}}=2,\qquad M_{2}= \frac{r_{2}^{M} ((1-m^{L})M_{1}+k_{2}^{M} )}{a_{2}^{L}}= \frac{2(0.9\times 2+2)}{2}=3.8. \end{aligned}$$
(4.2)
Consequently
$$ r_{1}^{L}- \frac{a_{1}^{M}(1-m^{L})M_{2}}{k_{1}^{L}}=10- \frac{2\times 0.9\times3.9}{1}=2.98>0. $$
(4.3)
Equation (4.3) shows that (2.8) holds, thus, it follows from Theorem 2.1 that system (4.1) is permanent, and numeric simulations (Figures 1, 2) also support these findings.
Figure 1
Figure 1

Dynamic behavior of the first component \(\pmb{x(t)}\) of the solution \(\pmb{(x(t),y(t))}\) of system ( 4.1 ) with the initial condition \(\pmb{(x(0), y(0))=(0.2,5), (0.4, 1), (0.6,3),\mbox{and } (4, 2)}\) , respectively.

Figure 2
Figure 2

Dynamic behavior of the second component \(\pmb{y(t)}\) of the solution \(\pmb{(x(t),y(t))}\) of system ( 4.1 ) with the initial condition \(\pmb{(x(0), y(0))=(0.2,5), (0.4, 1), (0.6,3),\mbox{and } (4, 2)}\) , respectively.

5 Discussion

In this paper, we propose and study a nonautonomous modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge. We first obtain a set of sufficient conditions which ensure the permanence of the system, after that, by constructing a suitable Lyapunov function, we also investigate the stability property of the system.

Condition (2.8) implies that the prey refuge has a positive effect on the persistence property of the system, indeed, with the increasing of prey refuge, the predators have difficulty in catching the prey species, this directly increasing the survival possibility of the prey species.

We mention here that in condition (\(H_{1}\)) we make the assumption that the intrinsic growth rate of the prey species is a positive function, however, in some cases, the growth rate may be negative (see [4850]) and the references therein), we leave this for future investigation.

Declarations

Acknowledgements

The authors are grateful to anonymous referees for their excellent suggestions, which greatly improved the presentation of the paper. The research was supported by the Natural Science Foundation of Fujian Province (2015J01012, 2015J01019, 2015J05006) and the Scientific Research Foundation of Fuzhou University (XRC-1438).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, Ningde Normal University, Ningde, Fujian, 352300, P.R. China
(2)
College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian, 350002, P.R. China
(3)
College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian, 350116, P.R. China

References

  1. Yue, Q: Dynamics of a modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge. SpringerPlus 5, Article ID 461 (2016) View ArticleGoogle Scholar
  2. Wu, Y, Chen, F, Chen, W, Lin, Y: Dynamic behaviors of a nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type II functional response. Discrete Dyn. Nat. Soc. 2012, Article ID 508962 (2012) MathSciNetMATHGoogle Scholar
  3. Chen, F, Wu, Y, Ma, Z: Stability property for the predator-free equilibrium point of predator-prey systems with a class of functional response and prey refuges. Discrete Dyn. Nat. Soc. 2012, Article ID 148942 (2012) MathSciNetMATHGoogle Scholar
  4. Chen, W, Gong, X, Zhao, L, Zhang, H: Dynamics of a non-autonomous discrete Leslie-Gower predator-prey system with prey refuge. J. Fuzhou Univ. 43(1), 6-10 (2015) MathSciNetGoogle Scholar
  5. Wu, Y, Chen, WL, Zhang, HY: On permanence and global attractivity of a nonautonomous modified Leslie-Gower predator-prey system incorporating a prey refuge. J. Minjiang Univ. 33(5), 13-16 (2012) Google Scholar
  6. Ma, ZZ, Chen, FD, Wu, CQ, Chen, WL: Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference. Appl. Math. Comput. 219(15), 7945-7953 (2013) MathSciNetView ArticleMATHGoogle Scholar
  7. Chen, FD, Ma, ZZ, Zhang, HY: Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges. Nonlinear Anal., Real World Appl. 13(6), 2790-2793 (2012) MathSciNetView ArticleMATHGoogle Scholar
  8. Yang, R, Zhang, C: The effect of prey refuge and time delay on a diffusive predator-prey system with hyperbolic mortality. Complexity 50(3), 105-113 (2016) Google Scholar
  9. Yang, R, Zhang, C: Dynamics in a diffusive predator-prey system with a constant prey refuge and delay. Nonlinear Anal., Real World Appl. 31, 1-22 (2016) MathSciNetView ArticleMATHGoogle Scholar
  10. Wu, Y, Chen, F, Ma, Z: Extinction of predator species in a non-autonomous predator-prey system incorporating prey refuge. Appl. Math.-J. Chinese Univ. Ser. A 27(3), 359-365 (2012) MathSciNetMATHGoogle Scholar
  11. Wu, Y, Chen, F, Ma, Z, Lin, Y: Permanence and extinction of a non-autonomous predator-prey system incorporating prey refuge and Rosenzweig functional response. J. Biomath. 29(4), 727-731 (2014) MathSciNetGoogle Scholar
  12. Kar, TK: Modelling and analysis of a harvested prey-predator system incorporating a prey refuge. J. Comput. Appl. Math. 185, 19-33 (2006) MathSciNetView ArticleMATHGoogle Scholar
  13. Wang, Y, Wang, JZ: Influence of prey refuge on predator-prey dynamics. Nonlinear Dyn. 67, 191-201 (2012) MathSciNetView ArticleGoogle Scholar
  14. Sih, A: Prey refuges and predator-prey stability. Theor. Popul. Biol. 31(1), 1-12 (1987) MathSciNetView ArticleGoogle Scholar
  15. González-Olivares, E, Ramos-Jiliberto, R: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135-146 (2003) View ArticleGoogle Scholar
  16. Kar, TK: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681-691 (2005) MathSciNetView ArticleMATHGoogle Scholar
  17. Chen, FD, Chen, LJ, Xie, XD: On a Leslie-Gower predator-prey model incorporating a prey refuge. Nonlinear Anal., Real World Appl. 10(5), 2905-2908 (2009) MathSciNetView ArticleMATHGoogle Scholar
  18. Sih, A, Petranka, JW, Kats, LB: The dynamics of prey refuge use: a model and tests with sunfish and salamander larvae. Am. Nat. 132(4), 464-483 (1988) View ArticleGoogle Scholar
  19. McNair, JN: The effects of refuges on predator-prey interactions: a reconsideration. Theor. Popul. Biol. 29(1), 38-63 (1986) MathSciNetView ArticleMATHGoogle Scholar
  20. McNair, JN: Stability effects of prey refuge with entry-exit dynamics. J. Theor. Biol. 125, 449-464 (1987) MathSciNetView ArticleGoogle Scholar
  21. Chen, LJ, Chen, FD, Chen, LJ: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11(1), 246-252 (2010) MathSciNetView ArticleMATHGoogle Scholar
  22. Chen, LJ, Chen, FD: Global analysis of a harvested predator-prey model incorporating a constant prey refuge. Int. J. Biomath. 3(2), 205-223 (2010) MathSciNetView ArticleGoogle Scholar
  23. Ji, LL, Wu, CQ: Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11(4), 2285-2295 (2010) MathSciNetView ArticleMATHGoogle Scholar
  24. Kar, TK, Misra, S: Influence of prey reserve in a prey-predator fishery. Nonlinear Anal. 65(9), 1725-1735 (2006) MathSciNetView ArticleMATHGoogle Scholar
  25. Tao, YD, Wang, X, Song, XY: Effect of prey refuge on a harvested predator-prey model with generalized functional response. Commun. Nonlinear Sci. Numer. Simul. 16(2), 1052-1059 (2011) MathSciNetView ArticleMATHGoogle Scholar
  26. Huang, YJ, Chen, FD, Li, Z: Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182, 672-683 (2006) MathSciNetView ArticleMATHGoogle Scholar
  27. Ko, W, Ryu, K: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534-550 (2006) MathSciNetView ArticleMATHGoogle Scholar
  28. Shuai, ZS, Miao, CM, Zhang, WP, et al.: Model of a three interacting prey-predator with refuges. J. Biomath. 19(1), 65-71 (2004) (in Chinese) MathSciNetGoogle Scholar
  29. Zhu, J, Liu, HM: Permanence of the two interacting prey-predator with refuges. J. Northwest Univ. National. (Nat. Sci.) 27(62), 1-3 (2006) (in Chinese) Google Scholar
  30. Xu, GM, Chen, XH: Persistence and periodic solution for three interacting predator-prey system with refuges. Yinshan Academic J. 23(1), 14-17 (2009) (in Chinese) Google Scholar
  31. Xu, GM, Jia, JW: Stability analysis of a predator-prey system with refuges. J. Shanxi Normal Univ. (Nat. Sci. Ed.) 21(4), 4-7 (2007) (in Chinese) MathSciNetGoogle Scholar
  32. Yu, SP, Xiong, WT, Qi, H: A ratio-dependent one predator-two competing prey model with delys and refuges. Math. Appl. 23(1), 198-203 (2010) MathSciNetMATHGoogle Scholar
  33. Zhang, YB, Wang, WX, Duan, YH: Analysis of prey-predator with Holling III functional response and prey refuge. Math. Pract. Theory 40(24), 149-154 (2010) (in Chinese) Google Scholar
  34. Zhuang, KJ, Wen, ZH: Dynamical behaviors in a discrete predator-prey model with a prey refuge. Int. J. Comput. Math. Sci. 5(4), 194-197 (2011) MathSciNetGoogle Scholar
  35. Krivan, V: On the Gause predator-prey model with a refuge: a fresh look at the history. J. Theor. Biol. 274(1), 67-73 (2011) MathSciNetView ArticleMATHGoogle Scholar
  36. Ma, ZH, Li, WL, Zhao, Y, et al.: Effects of prey refuges on a predator-prey model with a class of functional response: the role of refuges. Math. Biosci. 218, 73-79 (2009) MathSciNetView ArticleMATHGoogle Scholar
  37. Ma, ZH, Li, WD, Wang, SF: The effect of prey refuge in a simple predator-prey model. Ecol. Model. 222(18), 3453-3454 (2011) View ArticleGoogle Scholar
  38. Cressman, R, Garay, J: A predator-prey refuge system: evolutionary stability in ecological systems. Theor. Popul. Biol. 76(4), 248-257 (2009) View ArticleGoogle Scholar
  39. Yu, S: Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response. Adv. Differ. Equ. 2014, Article ID 84 (2014) MathSciNetView ArticleGoogle Scholar
  40. Yu, S: Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Discrete Dyn. Nat. Soc. 2012, Article ID 208167 (2012) MathSciNetMATHGoogle Scholar
  41. Chen, J, Yu, S: Permanence for a discrete ratio-dependent predator-prey system with Holling type III functional response and feedback controls. Discrete Dyn. Nat. Soc. 2013, Article ID 326848 (2013) MathSciNetGoogle Scholar
  42. Li, Z, Han, M, Chen, F: Global stability of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes. Int. J. Biomath. 5, Article ID 1250057 (2012) MathSciNetView ArticleMATHGoogle Scholar
  43. Zhang, N, Chen, F, Su, Q, et al.: Dynamic behaviors of a harvesting Leslie-Gower predator-prey model. Discrete Dyn. Nat. Soc. 2011, Article ID 473949 (2011) MathSciNetMATHGoogle Scholar
  44. Chen, LJ, Chen, FD: Global stability of a Leslie-Gower predator-prey model with feedback controls. Appl. Math. Lett. 22(9), 1330-1334 (2009) MathSciNetView ArticleMATHGoogle Scholar
  45. Wu, R, Lin, L: Permanence and global attractivity of the discrete predator-prey system with Hassell-Varley-Holling III type functional response. Discrete Dyn. Nat. Soc. 2009, Article ID 393729 (2009) MathSciNetMATHGoogle Scholar
  46. Chen, FD, Li, Z, Huang, YJ: Note on the permanence of a competitive system with infinite delay and feedback controls. Nonlinear Anal., Real World Appl. 8, 680-687 (2007) MathSciNetView ArticleMATHGoogle Scholar
  47. Barbălat, I: Systèmes d’équations differential d’oscillations nonlinéaires. Rev. Roum. Math. Pures Appl. 4(2), 267-270 (1959) MATHGoogle Scholar
  48. Chen, FD, You, MS: Permanence, extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey. Nonlinear Anal., Real World Appl. 9(2), 207-221 (2008) MathSciNetView ArticleMATHGoogle Scholar
  49. Chen, FD, Shi, JL: On a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response and diffusion. Appl. Math. Comput. 192(2), 358-369 (2007) MathSciNetView ArticleMATHGoogle Scholar
  50. Chen, FD, Huang, AM: On a nonautonomous predator-prey model with prey dispersal. Appl. Math. Comput. 184(2), 809-822 (2007) MathSciNetView ArticleMATHGoogle Scholar

Copyright

© Xie et al. 2016

Advertisement