Skip to main content

On Appell-type Changhee polynomials and numbers

Abstract

In this paper, we consider the Appell-type Changhee polynomials and derive some properties of these polynomials. Furthermore, we investigate certain identities for these polynomials.

Introduction

Let p be a fixed odd prime number. Throughout this paper, we denote by \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\), and \(\mathbb{C}_{p}\) the ring of p-adic integers, the field of p-adic numbers, and the completion of algebraic closure of \(\mathbb{Q}_{p}\). The p-adic norm \(|\cdot|_{p}\) is normalized as \(|p|_{p}=\frac{1}{p}\). Let \(C(\mathbb{Z}_{p})\) be the space of continuous functions on \(\mathbb{Z}_{p}\). For \(f \in C(\mathbb{Z}_{p})\), the fermionic p-adic integral on \(\mathbb{Z}_{p}\) is defined by Kim to be

$$ I_{-1}(f) = \int_{\mathbb{Z}_{p}} f(x)\, d \mu_{-1}(x) = \lim _{N \rightarrow\infty} \sum_{x=0}^{p^{N}-1} f(x) (-1)^{x} $$
(1)

(see [119]). For \(f_{1}(x) = f(x+1)\), we have

$$ I_{-1}(f_{1}) + I_{-1}(f) = 2f(0). $$
(2)

As is well known, the Changhee polynomials are defined by the generating function

$$ \int_{\mathbb{Z}_{p}} (1+t)^{x+y}\, d \mu_{-1}(y)= \frac{2}{2+t}(1+t)^{x} = \sum_{n=0}^{\infty}\operatorname{Ch}_{n}(x) \frac{t^{n}}{n!}. $$
(3)

When \(x=0\), \(\operatorname{Ch}_{n} = \operatorname{Ch}_{n}(0)\) are called the Changhee numbers (see [17, 18, 20]). The gamma and beta functions are defined by the following definite integrals: for \(\alpha>0 \), \(\beta>0\),

$$ \Gamma(\alpha) = \int_{0}^{\infty}e^{-t}t^{\alpha-1}\, dt $$
(4)

and

$$\begin{aligned} B(\alpha,\beta) &= \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \,dt \\ &= \int_{0}^{\infty}\frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}} \,dt \end{aligned}$$
(5)

(see[20, 21]). Thus, by (4) and (5) we have

$$ \Gamma(\alpha+1) = \alpha\Gamma(\alpha), \qquad B(\alpha,\beta) = \frac {\Gamma(\alpha)\Gamma(\beta) }{\Gamma(\alpha+\beta)}. $$
(6)

Stirling numbers of the first kind are defined by

$$ \bigl(\log(1+t)\bigr)^{n} = n! \sum _{m=n}^{\infty}S_{1} (m,n) {t^{m} \over m!}, $$
(7)

and the Stirling numbers of the second kind are defined by

$$ \bigl(e^{t}-1\bigr)^{n}= n! \sum _{l=n}^{\infty}S_{2} (n,l) \frac{t^{l}}{l!} \quad (n \ge0). $$
(8)

Recently, Lim and Qi [20] have derived integral identities for Appell-type λ-Changhee numbers from the fermionic integral equation. The degenerate Bernoulli polynomials, a degenerate version of the well-known family of polynomials, were introduced by Carlitz, and after that, many researchers have studied the degenerate special polynomials (see [13, 20, 2228]).

The goal of this paper is to consider the Appell-type Changhee polynomials, another version of the Changhee polynomials in (3), and derive some properties of these polynomials. Furthermore, we investigate certain identities for these polynomials.

Some identities for Appell-type Changhee polynomials

Now we define the Appell-type Changhee polynomials \(\operatorname{Ch}_{n}^{*}(x)\) by

$$ \frac{2}{2+t}e^{xt} = \sum _{n=0}^{\infty}\operatorname{Ch}_{n}^{*}(x) \frac{t^{n}}{n!}. $$
(9)

When \(x=0\), the Changhee numbers \(\operatorname{Ch}_{n}^{*}=\operatorname{Ch}_{n}^{*}(0)\) are equal to the Changhee numbers \(\operatorname{Ch}_{n}=\operatorname{Ch}_{n}(0)\). From (9) we have

$$\begin{aligned} \frac{2}{2+t}e^{xt} &= \Biggl( \sum _{m=0}^{\infty}\operatorname{Ch}_{m}^{*} \frac{t^{m}}{m!} \Biggr) \Biggl(\sum_{l=0}^{\infty}x^{l} \frac{t^{l}}{l!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} {n \choose m} \operatorname{Ch}_{m}^{*} x^{n-m} \Biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(10)

By (10) we have the following theorem.

Theorem 1

For \(n \in\mathbb{N}\), we have

$$ \operatorname{Ch}_{n}^{*}(x) = \sum _{m=0}^{n} {n \choose m} \operatorname{Ch}_{m}^{*} x^{n-m}. $$
(11)

By (9), replacing t by \(e^{t}-1\), we get

$$ \frac{2}{2+e^{t}-1} e^{x(e^{t}-1)} = \sum _{n=0}^{\infty}\operatorname{Ch}_{n}^{*}(x) \frac {(e^{t}-1)^{n}}{n!}. $$
(12)

Then we have

$$\begin{aligned} \mathrm{RHS}&= \sum_{n=0}^{\infty}\operatorname{Ch}_{n}^{*}(x)\frac{(e^{t}-1)^{n}}{n!} \\ &= \sum_{n=0}^{\infty}\operatorname{Ch}_{n}^{*}(x) \frac{1}{n!} n! \sum_{l=n}^{\infty}S_{2}(l,n) \frac{t^{l}}{l!} \\ &= \sum_{l=0}^{\infty}\sum _{n=0}^{l} \operatorname{Ch}_{n}^{*}(x) S_{2}(l,n) \frac{t^{l}}{l!}, \end{aligned}$$
(13)

where \(S_{2}(l,n)\) are the Stirling numbers of the second kind, and

$$\begin{aligned} \mathrm{LHS}&= \frac{2}{1+e^{t}} e^{x(e^{t}-1)} \\ &= \sum_{m=0}^{\infty}E_{m} \frac{t^{m}}{m!} \sum_{n=0}^{\infty}\operatorname{Bel}_{n} (x) \frac{t^{n}}{n!} \\ &= \sum_{l=0}^{\infty}\sum _{n=0}^{l}{l \choose n}E_{n} \operatorname{Bel}_{l-n}(x) \frac{t^{l}}{l!}. \end{aligned}$$
(14)

It is well known that the Bell polynomials are defined by the generating function

$$ e^{x(e^{t}-1)}= \sum_{n=0}^{\infty}\operatorname{Bel}_{n} (x) \frac{t^{n}}{n!} $$

(see [8]). By (13) and (14) we have the following theorem.

Theorem 2

For \(l \in\mathbb{N}\), we have

$$ \sum_{n=0}^{l} \operatorname{Ch}_{n}^{*}(x) S_{2}(l,n) = \sum _{n=0}^{l}{l \choose n}E_{n} \operatorname{Bel}_{l-n}(x). $$
(15)

By (11) we can derive the following equation:

$$\begin{aligned} \frac{d}{dx} \operatorname{Ch}_{n}^{*}(x)&= \sum _{m=0}^{n-1} {n \choose m} \operatorname{Ch}_{m}^{*} (n-m) x^{n-m-1} \\ &= n\operatorname{Ch}_{n-1}^{*}(x). \end{aligned}$$
(16)

From (16) we get

$$\begin{aligned} n \int_{0}^{x} \operatorname{Ch}_{n-1}^{*} (s) \,ds&= \int_{0}^{x} \frac{d}{ds}\operatorname{Ch}_{n}^{*} (s)\,ds \\ &= \operatorname{Ch}_{n}^{*}(s) |_{s=0}^{x} \\ &= \operatorname{Ch}_{n}^{*}(x) - \operatorname{Ch}_{n}^{*}. \end{aligned}$$
(17)

By (17) we can derive the following theorem.

Theorem 3

For \(n \in\mathbb{N}\), we have

$$ \frac{\operatorname{Ch}_{n+1}^{*}(x) - \operatorname{Ch}_{n+1}^{*}}{n+1} = \int_{0}^{x} \operatorname{Ch}_{n}^{*}(s) \,ds. $$
(18)

By (4) we note that

$$\begin{aligned} 2 &= \Biggl(\sum_{n=0}^{\infty}\operatorname{Ch}_{n}^{*} \frac{t^{n}}{n!} \Biggr) (2+t) \\ &= \Biggl( \sum_{n=0}^{\infty}2 \operatorname{Ch}_{n}^{*} \frac{t^{n}}{n!} \Biggr) + t\sum _{n=0}^{\infty}\operatorname{Ch}_{n}^{*} \frac{t^{n}}{n!} \\ &= \Biggl( \sum_{n=0}^{\infty}2 \operatorname{Ch}_{n}^{*} \frac{t^{n}}{n!} \Biggr) +\sum _{n=1}^{\infty}n\operatorname{Ch}_{n-1}^{*} \frac{t^{n}}{n!} \\ &= 2\operatorname{Ch}_{0}^{*} + \sum_{n=1}^{\infty}\bigl(2\operatorname{Ch}_{n}^{*} + n\operatorname{Ch}_{n-1}^{*} \bigr) \frac {t^{n}}{n!}. \end{aligned}$$
(19)

By (19) we have the following theorem.

Theorem 4

For \(n \in\mathbb{N}\), we have

$$ \operatorname{Ch}_{0}^{*}=1, \qquad 2 \operatorname{Ch}_{n}^{*}+n\operatorname{Ch}_{n-1}^{*}=0 \quad \textit{if } n\geq1. $$
(20)

Now we observe that

$$\begin{aligned} \sum_{n=0}^{\infty}\operatorname{Ch}_{n}^{*}(1-x) \frac{t^{n}}{n!} &= \frac{2}{2+t} e^{(1-x)t} \\ &= \frac{2}{2+t}e^{t} e^{-xt} \\ &= \Biggl( \sum_{l=0}^{\infty}\operatorname{Ch}_{l}^{*}(1) \frac{t^{l}}{l!} \Biggr) \Biggl( \sum _{m=0}^{\infty}(-x)^{m} \frac {t^{m}}{m!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} {n \choose m} \operatorname{Ch}_{n-m}^{*}(1) (-x)^{m} \Biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(21)

From (21) we obtain the following theorem.

Theorem 5

For \(n \in\mathbb{N}\), we have

$$ \operatorname{Ch}_{n}^{*}(1-x) = \sum _{m=0}^{n} {n \choose m} \operatorname{Ch}_{n-m}^{*}(1) (-x)^{m}. $$
(22)

By (22) we get

$$\begin{aligned} \int_{0}^{1} \operatorname{Ch}_{n}^{*}(1-x)x^{n} \,dx &= \sum_{m=0}^{n} {n \choose m} \operatorname{Ch}_{n-m}^{*}(1) (-1)^{m} \int_{0}^{1} x^{n+m} \,dx \\ &= \sum_{m=0}^{n} {n \choose m} (-1)^{m} \frac{\operatorname{Ch}_{n-m}^{*}(1)}{n+m+1}. \end{aligned}$$
(23)

From (16) we note that

$$\begin{aligned}& \int_{0}^{1} y^{n} \operatorname{Ch}_{n}^{*}(x+y) \,dy \\& \quad = \frac{y^{n+1}}{n+1} \operatorname{Ch}_{n}^{*}(x+y) \bigg|_{y=0}^{1} - \frac{1}{n+1} \int _{0}^{1} y^{n+1} \frac{d}{dy} \operatorname{Ch}_{n}^{*}(x+y)\,dy \\& \quad = \frac{\operatorname{Ch}_{n}^{*}(x+1)}{n+1}- \frac{n}{n+1} \int_{0}^{1} y^{n+1} \operatorname{Ch}_{n-1}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n}^{*}(x+1)}{n+1}- \frac{n}{n+1} \biggl( \frac {\operatorname{Ch}_{n-1}^{*}(x+y)}{n+2} y^{n+2} \bigg|_{y=0}^{1} \biggr) \\& \qquad {}+(-1)^{2} \frac{n}{n+1} \frac{1}{n+2} (n-1) \int_{0}^{1} y^{n+2}\operatorname{Ch}_{n-2}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n}^{*}(x+1)}{n+1}- \frac{n}{n+1} \frac{\operatorname{Ch}_{n-1}^{*}(x+1)}{n+2} + (-1)^{2}\frac{n}{n+1}\frac{n-1}{n+2} \int_{0}^{1} y^{n+2}\operatorname{Ch}_{n-2}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n}^{*}(x+1)}{n+1}- \frac{n}{n+1} \frac{\operatorname{Ch}_{n-1}^{*}(x+1)}{n+2} +(-1)^{2} \frac{n}{n+1}\frac{n-1}{n+2}\frac{\operatorname{Ch}_{n-2}^{*}(x+1)}{n+3} \\& \qquad {}+ (-1)^{3} \frac{n}{n+1}\frac{n-1}{n+2} \frac{n-2}{n+3} \int_{0}^{1} y^{n+3}\operatorname{Ch}_{n-3}^{*}(x+y) \,dy. \end{aligned}$$
(24)

Also, we get

$$ \int_{0}^{1} y^{2n-1} \operatorname{Ch}_{1}^{*}(x+y) \,dy = \frac{\operatorname{Ch}_{1}^{*} (x+y)}{2n} y^{2n} \bigg|_{y=0}^{1} - \frac{1}{2n} \int_{0}^{1} y^{2n} \operatorname{Ch}_{0}^{*}(x+y) \,dy. $$
(25)

From (11) we get

$$ \operatorname{Ch}_{0}^{*}(x) = 1, $$
(26)

and hence

$$\begin{aligned} \int_{0}^{1} y^{2n-1}\operatorname{Ch}_{1}^{*}(x+y) \,dy &= \frac{\operatorname{Ch}_{1}^{*}(x)}{2n} - \frac{1}{2n} \int_{0}^{1} y^{2n} \,dy \\ &= \frac{\operatorname{Ch}_{1}^{*}(x)}{2n} - \frac{1}{2n(2n+1)}. \end{aligned}$$
(27)

By (27), continuing the process in (24), we have

$$\begin{aligned}& \int_{0}^{1} y^{n} \operatorname{Ch}_{n}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n}^{*}(x+1)}{n+1}+\sum_{m=1}^{n} (-1)^{m} \operatorname{Ch}_{n-m}^{*}(x+1) \frac{n(n-1)\cdots(n-m+1)}{(n+1)(n+2)\cdots(n+m+1)}. \end{aligned}$$
(28)

We note that

$$\begin{aligned} \operatorname{Ch}_{n}^{*}(x+y)&= \operatorname{Ch}_{n}^{*} (x+1+y-1) \\ &= \sum_{l=1}^{n} {n \choose l} \operatorname{Ch}_{l}^{*}(x+1) (-1)^{n-l}(1-y)^{n-l}. \end{aligned}$$
(29)

By (29) we get

$$\begin{aligned}& \int_{0}^{1} y^{n} \operatorname{Ch}_{n}^{*}(x+y) \,dy \\& \quad = \sum_{l=1}^{n} {n \choose l} \operatorname{Ch}_{l}^{*}(x+1) (-1)^{n-l} \int_{0}^{1} y^{n} (1-y)^{n-l} \,dy \\& \quad = \sum_{l=1}^{n} {n \choose l} \operatorname{Ch}_{l}^{*}(x+1) (-1)^{n-l}B(n+1, n-l+1) \\& \quad = \sum_{l=0}^{n} {n\choose l} \operatorname{Ch}_{l}^{*} (x+1) (-1)^{n-l} \frac{\Gamma (n+1)\Gamma(n-l+1)}{\Gamma(2n-l+2)} \\& \quad = \sum_{l=0}^{n} (-1)^{n-l}{n \choose l} \frac {n!(n-l)!}{(2n-l+1)!}\operatorname{Ch}_{l}^{*}(x+1) \\& \quad = \sum_{l=0}^{n} (-1)^{n-l} \frac{n{n\choose l}}{(2n-l+1){{2n-l} \choose n}}\operatorname{Ch}_{l}^{*}(x+1). \end{aligned}$$
(30)

By (28) and (30) we have the following theorem.

Theorem 6

For \(n \in\mathbb{N}\), we have

$$\begin{aligned}& \sum_{l=0}^{n} (-1)^{n-l}\frac{n{n\choose l}}{(2n-l+1){{2n-l} \choose n}}\operatorname{Ch}_{l}^{*}(x+1) \\& \quad = \frac{\operatorname{Ch}_{n}^{*}(x+1)}{n+1}+\sum_{m=1}^{n} (-1)^{m} \operatorname{Ch}_{n-m}^{*}(x+1) \frac {n(n-1)\cdots(n-m+1)}{(n+1)(n+2)\cdots(n+m+1)}. \end{aligned}$$
(31)

From (16) we note that

$$\begin{aligned}& \int_{0}^{1} y^{n} \operatorname{Ch}_{n}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(x+y)}{n+1}y^{n} \bigg|_{y=0}^{1} - \frac{1}{n+1}n \int _{0}^{1} y^{n-1} \operatorname{Ch}_{n+1}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(x+1)}{n+1} - \frac{n}{n+1} \int_{0}^{1} y^{n-1}\operatorname{Ch}_{n+1}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(x+1)}{n+1} - \frac{n}{n+1} \frac {\operatorname{Ch}_{n+2}^{*}(x+1)}{n+2} + \frac{n(n-1)}{(n+1)(n+2)} \int_{0}^{1} y^{n-2}\operatorname{Ch}_{n+2}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(x+1)}{n+1} - \frac{n}{n+1} \frac {\operatorname{Ch}_{n+2}^{*}(x+1)}{n+2} + \frac{n(n-1)}{(n+1)(n+2)}\frac{\operatorname{Ch}_{n+3}^{*}(x+1)}{n+3} \\& \qquad {}-\frac{n(n-1)(n-2)}{(n+1)(n+2)(n+3)} \int_{0}^{1} y^{n-3}\operatorname{Ch}_{n+3}^{*}(x+y) \,dy. \end{aligned}$$
(32)

Also, we have

$$\begin{aligned}& \int_{0}^{1} y \operatorname{Ch}_{2n-1}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{2n}^{*}(x+y)}{2n}y \bigg|_{y=0}^{1} - \frac{1}{2n} \int_{0}^{1} 1 \cdot \operatorname{Ch}_{2n}^{*}(x+y) \,dy \\& \quad = \frac{\operatorname{Ch}_{2n}^{*}(x+1)}{2n}-\frac{1}{2n} \frac{1}{2n+1} \operatorname{Ch}_{2n+1}^{*}(x+y) \bigg|_{y=0}^{1} \\& \quad = \frac{\operatorname{Ch}_{2n}^{*}(x+1)}{2n}-\frac{\operatorname{Ch}_{2n+1}^{*}(x+1)-\operatorname{Ch}_{2n+1}^{*}(x)}{2n(2n+1)}. \end{aligned}$$
(33)

By (30), continuing the process in (28), we obtain the following theorem.

Theorem 7

For \(n \in\mathbb{N}\), we have

$$\begin{aligned}& \sum_{l=0}^{n} (-1)^{n-l}\frac{n{n\choose l}}{(2n-l+1){{2n-l} \choose n}}\operatorname{Ch}_{l}^{*}(x+1) \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(x+1)}{n+1}+\sum_{m=1}^{n-1} (-1)^{m} \operatorname{Ch}_{n+m+1}^{*}(x+1) \frac{n(n-1)\cdots(n-m+1)}{(n+1)(n+2)\cdots(n+m+1)} \\& \qquad {}+ (-1)^{n} \frac{n!}{(2n+1)_{n+1}} \bigl( \operatorname{Ch}_{2n+1}^{*}(x+1)- \operatorname{Ch}_{2n+1}^{*}(1) \bigr). \end{aligned}$$
(34)

Now, we have

$$\begin{aligned}& \int_{0}^{1} \operatorname{Ch}_{n}^{*}(x) \operatorname{Ch}_{m}^{*}(x) \,dx \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(x)\operatorname{Ch}_{m}^{*}(x)}{n+1} \bigg|_{0}^{1} - \frac{1}{n+1}m \int _{0}^{1} \operatorname{Ch}_{n+1}^{*}(x) \operatorname{Ch}_{m-1}^{*}(x) \,dx \\& \quad = \frac{1}{n+1} \bigl( \operatorname{Ch}_{n+1}^{*}(1) \operatorname{Ch}_{m}^{*}(1)-\operatorname{Ch}_{n+1}^{*}(0) \operatorname{Ch}_{m}^{*}(0) \bigr) \\& \qquad {} - \frac{m}{n+1} \int_{0}^{1} \operatorname{Ch}_{n+1}^{*}(x) \operatorname{Ch}_{m-1}^{*}(x) \,dx \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(1)\operatorname{Ch}_{m}^{*}(1)-\operatorname{Ch}_{n+1}^{*}\operatorname{Ch}_{m}^{*}}{n+1} - \frac {m}{n+1} \frac{\operatorname{Ch}_{n+2}^{*}(1)\operatorname{Ch}_{m-1}^{*}(1)-\operatorname{Ch}_{n+2}^{*}\operatorname{Ch}_{m-1}^{*}}{n+2} \\& \qquad {}+ (-1)^{2} \frac{m}{n+1}\frac{m-1}{n+2} \int_{0}^{1} \operatorname{Ch}_{n+2}^{*}(x) \operatorname{Ch}_{m-2}^{*}(x) \,dx \end{aligned}$$
(35)

and

$$\begin{aligned}& \int_{0}^{1} \operatorname{Ch}_{n+m-1}^{*}(x) \operatorname{Ch}_{1}^{*}(x) \,dx \\& \quad = \frac{\operatorname{Ch}_{n+m}^{*}(1) \operatorname{Ch}_{1}^{*}(1) - \operatorname{Ch}_{n+m}^{*} \operatorname{Ch}_{1}^{*}}{n+m} - \frac {1}{n+m} \int_{0}^{1} \operatorname{Ch}_{n+m}^{*}(x) \operatorname{Ch}_{0}^{*}(x)\,dx \\& \quad = \frac{\operatorname{Ch}_{n+m}^{*}(1) \operatorname{Ch}_{1}^{*}(1) - \operatorname{Ch}_{n+m}^{*} \operatorname{Ch}_{1}^{*}}{n+m} - \frac {1}{n+m} \frac{\operatorname{Ch}_{n+m+1}^{*}(1) - \operatorname{Ch}_{n+m+1}^{*}}{n+m+1}. \end{aligned}$$
(36)

By (30) with \(x=0\) we get

$$\begin{aligned}& \int_{0}^{1} \operatorname{Ch}_{n}^{*}(x) \operatorname{Ch}_{m}^{*}(x) \,dx \\& \quad = \sum_{j=0}^{m} {m \choose j} \operatorname{Ch}_{j}^{*} \int_{0}^{1} x^{m-j}\operatorname{Ch}_{m}^{*}(x) \,dx \\& \quad = \sum_{j=0}^{m} {m \choose j} \operatorname{Ch}_{j}^{*} \sum_{l=0}^{m-j} (-1)^{m-j-l}\frac {(m-j){m-j\choose l}}{(2(m-j)-l+1){2(m-j)-l\choose m-j}} \operatorname{Ch}_{l}^{*}(1) \\& \quad = \sum_{j=0}^{m} \sum _{l=0}^{m-j}{m \choose j} (-1)^{m-j-l} \frac {(m-j){m-j\choose l}}{(2(m-j)-l+1){2(m-j)-l\choose m-j}} \operatorname{Ch}_{j}^{*} \operatorname{Ch}_{l}^{*}(1). \end{aligned}$$
(37)

By (37), continuing the process in (35), we obtain the following theorem.

Theorem 8

For \(n \in\mathbb{N}\), we have

$$\begin{aligned}& \sum_{j=0}^{m} \sum _{l=0}^{m-j}{m \choose j} (-1)^{m-j-l} \frac {(m-j){m-j\choose l}}{(2(m-j)-l+1){2(m-j)-l\choose m-j}} \operatorname{Ch}_{j}^{*} \operatorname{Ch}_{l}^{*}(1) \\& \quad = \frac{\operatorname{Ch}_{n+1}^{*}(1)\operatorname{Ch}_{m}^{*}(1)-\operatorname{Ch}_{n+1}^{*}\operatorname{Ch}_{m}^{*}}{n+1} \\& \qquad {}+ \sum_{k=1}^{m-1} (-1)^{k} \frac{m(m-1)\cdots(m-k+1)}{(n+1)(n+2)\cdots(n+k+1)} \\& \qquad {}\times \bigl(\operatorname{Ch}_{n+k+1}^{*}(1)\operatorname{Ch}_{m-k}^{*}(1) - \operatorname{Ch}_{n+k+1}^{*}\operatorname{Ch}_{m-k}^{*} \bigr) \\& \qquad {}+ (-1)^{m} \frac{m!}{(n+m+1)_{m+1}} \bigl( \operatorname{Ch}_{n+m+1}^{*}(1) - \operatorname{Ch}_{n+m+1}^{*} \bigr). \end{aligned}$$
(38)

Remarks

In this section, by using the fermionic p-adic integral on \(\mathbb {Z}_{p}\), we derive some identities for Changhee polynomials, Stirling numbers of the first kind, and Euler numbers. By (2) we note that

$$\begin{aligned} \frac{2}{2+t}e^{xt} &= \int_{\mathbb{Z}_{p}} (1+t)^{y} e^{xt}\, d \mu_{-1}(y) \\ &= \int_{\mathbb{Z}_{p}} e^{y\log(1+t)+xt}\, d\mu_{-1}(y) \end{aligned}$$
(39)

and

$$\begin{aligned} e^{xt}e^{y\log(1+t)} &= \Biggl( \sum _{m=0}^{\infty}x^{m} \frac{t^{m}}{m!} \Biggr) \Biggl(\sum_{l=0}^{\infty}\frac{y^{l} (log(1+t))^{l}}{l!} \Biggr) \\ &= \Biggl( \sum_{m=0}^{\infty}x^{m} \frac{t^{m}}{m!} \Biggr) \Biggl( \sum_{l=0}^{\infty}y^{l} \sum_{k=l}^{\infty}S_{1}(k,l)\frac{t^{k}}{k!} \Biggr) \\ &= \Biggl( \sum_{m=0}^{\infty}x^{m} \frac{t^{m}}{m!} \Biggr) \Biggl( \sum_{k=0}^{\infty}\sum_{l=0}^{k} y^{l} S_{1}(k,l) \frac{t^{k}}{k!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{k=0}^{n} \sum_{l=0}^{k} {n \choose k} x^{n-k} y^{l} S_{1} (k,l) \Biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(40)

Thus, by (39) and (40) we have

$$\begin{aligned} \sum_{n=0}^{\infty}\operatorname{Ch}_{n}^{*}(x) \frac{t^{n}}{n!} &= \int_{\mathbb {Z}_{p}}e^{y\log(1+t)}e^{xt}\, d \mu_{-1}(y) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{k=0}^{n} \sum_{l=0}^{k} {n \choose k} x^{n-k} \int_{\mathbb{Z}_{p}} y^{l} \, d\mu_{-1}(y) S_{1} (k,l) \Biggr)\frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{k=0}^{n} \sum_{l=0}^{k} {n \choose k} x^{n-k} E_{l} S_{1} (k,l) \Biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(41)

From (41) we have the following theorem.

Theorem 9

For \(n \in\mathbb{N}\), we have

$$ \operatorname{Ch}_{n}^{*}(x) = \sum _{k=0}^{n} \sum_{l=0}^{k} {n \choose k} x^{n-k} E_{l} S_{1} (k,l). $$
(42)

References

  1. 1.

    Bayad, A, Kim, T: Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 20(2), 247-253 (2010)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 18(2), 133-143 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Carlitz, L: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51-88 (1979)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Kim, BM, Jang, LC: A note on the von Staudt-Clausen’s theorem for the weighted q-Genocchi numbers. Adv. Differ. Equ. 2015, 4 (2015)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Kim, DS, Kim, T: Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \(\mathbb{Z}_{p}\). Integral Transforms Spec. Funct. 26(4), 295-302 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Kim, DS, Kim, T: Some identities of degenerate special polynomials. Open Math. 13, 380-389 (2015)

    MathSciNet  Google Scholar 

  7. 7.

    Kim, DS, Kim, T, Dolgy, DV: Degenerate q-Euler polynomials. Adv. Differ. Equ. 2015, 246 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kim, DS, Kim, T: Some identities of Bell polynomials. Sci. China Math. 58(10), 1-10 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Kim, T: Note on the Euler numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 17(2), 131-136 (2008)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Kim, T: Some properties on the integral of the product of several Euler polynomials. Quaest. Math. 38(4), 553-562 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kim, T: Degenerate Euler zeta function. Russ. J. Math. Phys. 22(4), 469-472 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Kim, T: On the multiple q-Genocchi and Euler numbers. Russ. J. Math. Phys. 15(4), 481-486 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Kim, T, Mansour, T: Umbral calculus associated with Frobenius-type Eulerian polynomials. Russ. J. Math. Phys. 21(4), 484-493 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Kim, T: New approach to q-Euler, Genocchi numbers and their interpolation functions. Adv. Stud. Contemp. Math. (Kyungshang) 18(2), 105-112 (2009)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Kim, T: On Euler-Barnes multiple zeta functions. Russ. J. Math. Phys. 10(3), 261-267 (2003)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Kim, T: A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on \(\mathbb{Z}_{p}\). Adv. Stud. Contemp. Math. (Kyungshang) 23(1), 5-11 (2013)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Kim, T, Kim, DS: A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 23(1), 1-5 (2016)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wang, NL, Li, H: Some identities on the higher-order Daehee and Changhee numbers. Pure Appl. Math. J. 5, 33-37 (2015)

    Google Scholar 

  19. 19.

    Yilmaz Yasar, B, Özarslan, MA: Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations. New Trends Math. Sci. 3(2), 172-180 (2015)

    MathSciNet  Google Scholar 

  20. 20.

    Lim, D, Qi, F: On the Appell type λ-Changhee polynomials. J. Nonlinear Sci. Appl. 9, 1872-1876 (2016)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Kim, T, Park, JW, Seo, JJ: A note on λ-zeta function. Glob. J. Pure Appl. Math. 11(5), 3501-3506 (2015)

    Google Scholar 

  22. 22.

    Adelberg, A: A finite difference approach to degenerate Bernoulli and Stirling polynomials. Discrete Math. 140(1-3), 1-21 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Carlitz, L: A degenerate Staudt-Clausen theorem. Arch. Math. (Basel) 7, 28-33 (1956)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Gaboury, S, Tremblay, R, Fugère, B-J: Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 17(1), 115-123 (2014)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Howard, FT: Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162(1-3), 175-185 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Liu, GD: Degenerate Bernoulli numbers and polynomials of higher order. J. Math. (Wuhan) 25(3), 283-288 (2005) (in Chinese)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Mahmudov, NI, Akkeles, A, Öneren, A: On two dimensional q-Bernoulli and q-Genocchi polynomials: properties and location of zeros. J. Comput. Anal. Appl. 18(5), 834-843 (2015)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Kwon, JK: A note on weighted Boole polynomials. Glob. J. Pure Appl. Math. 11(4), 2055-2063 (2015)

    Google Scholar 

Download references

Acknowledgements

This paper was supported by Wonkwang University in 2015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lee-Chae Jang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J.G., Jang, LC., Seo, JJ. et al. On Appell-type Changhee polynomials and numbers. Adv Differ Equ 2016, 160 (2016). https://doi.org/10.1186/s13662-016-0866-7

Download citation

MSC

  • 05A10
  • 11B68
  • 11S80
  • 05A19

Keywords

  • Changhee polynomials
  • Appell-type Changhee polynomials
  • degenerate Bernoulli polynomials
  • beta functions
\