Skip to main content

Table 4 The MAEs of Example 3

From: Shifted Jacobi collocation method for solving multi-dimensional fractional Stokes’ first problem for a heated generalized second grade fluid

γ Our method at (N,M,K) with \(\alpha _{1}=\beta _{1}=\alpha _{2}=\beta _{2}=\frac{1}{2}\), \(\alpha _{3}=\beta _{3}=0\)
(4,4,12) (4,4,18) \((\frac{1}{6},\frac {1}{6},\frac{1}{24})\) \((\frac{1}{6},\frac{1}{6},\frac{1}{28})\)
0.55 2.871835 × 10−4 8.137372 × 10−5 1.9487123 × 10−5 1.059474 × 10−5
γ Compact finite difference scheme [44]
\((\frac{1}{8},\frac{1}{8},\frac {1}{10})\) \((\frac{1}{8},\frac{1}{8},\frac{1}{80})\) \((\frac {1}{8},\frac{1}{8},\frac{1}{320})\) \((\frac{1}{8},\frac{1}{8},\frac {1}{640})\)
0.55 1.2126 × 10−3 1.4427 × 10−4 3.5483 × 10−5 1.7808 × 10−5