Skip to main content

Table 3 The MAEs of Example  3

From: Shifted Jacobi collocation method for solving multi-dimensional fractional Stokes’ first problem for a heated generalized second grade fluid

γ Our method at (N,M,K) \(\alpha _{1}=\beta _{1}=\alpha _{2}=\beta _{2}=\frac {1}{2}\), \(\alpha _{3}=\beta _{3}=0\) Explicit numerical approximation scheme [43]
(4,4,6) (4,4,12) \((\frac{1}{4},\frac {1}{4},\frac{1}{900})\) \((\frac{1}{8},\frac{1}{8},\frac{1}{4900})\)
0.7 2.147706 × 10−3 1.351622 × 10−4 1.823187 × 10−3 4.963875 × 10−4
0.8 1.246139 × 10−3 8.543486 × 10−5 1.825094 × 10−3 4.959106 × 10−4
0.9 5.288470 × 10−4 6.502807 × 10−5 1.826525 × 10−3 4.968643 × 10−4
γ Our method at (N,M,K) \(\alpha _{1}=\beta _{1}=\alpha _{2}=\beta _{2}=\frac {1}{2}\), \(\alpha _{3}=\beta _{3}=0\) Implicit numerical approximation scheme [43]
(6,6,6) (6,6,24) \((\frac{1}{8},\frac {1}{8},\frac{1}{64})\) \((\frac{1}{32},\frac{1}{32},\frac {1}{1024})\)
0.7 1.351622 × 10−4 7.517080 × 10−6 1.350407 × 10−3 1.456738 × 10−4
0.8 6.878345 × 10−5 3.349460 × 10−6 1.451373 × 10−3 2.348423 × 10−4
0.9 2.558291 × 10−5 1.090555 × 10−6 1.657724 × 10−3 3.523827 × 10−4