Skip to main content

Theory and Modern Applications

Oscillation results for certain forced fractional difference equations with damping term

Abstract

In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form

$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$

with initial condition \(\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}\), where \(0<\alpha<1 \) is a constant, \(\Delta^{\alpha}x\) is the Riemann-Liouville fractional difference operator of order α of x, and \(\mathbb{N}_{0}=\{0,1,2,\ldots\}\).

1 Introduction

In the past few years, the theory of fractional differential equations and their applications have been investigated extensively. For example, see monographs [14]. In recent years, fractional difference equations, which are the discrete counterpart of the corresponding fractional differential equations, have comparably gained attention by some researchers. Many interesting results were established. For instance, see papers [520] and the references therein.

The oscillation theory as a part of the qualitative theory of differential equations and difference equations has been developed rapidly in the last decades, and there have been many results on the oscillatory behavior of integer-order differential equations and integer-order difference equations. In particular, we notice that the oscillation of fractional differential equations has been developed significantly in recent years. We refer the reader to [2133] and the references therein. However, to the best of author’s knowledge, up to now, very little is known regarding the oscillatory behavior of fractional difference equations [1820]. Unfortunately, the main results of paper [18] are incorrect. The main reason for the mistakes in [18] is an incorrect relation of \(t^{(\alpha-1)}\) and \(t^{(1-\alpha)}\). In fact, noting the definition of \(t^{(\alpha)}=\frac{\Gamma(t+1)}{\Gamma(t+1-\alpha)}\), it is easy to observe that \(t^{(\alpha-1)} t^{(1-\alpha)}\neq1\).

In this paper we investigate the oscillation of forced fractional difference equations with damping term of the form

$$ \bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$
(1)

with initial condition \(\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}\), where \(0<\alpha<1 \) is a constant, \(\Delta^{\alpha}x\) is the Riemann-Liouville difference operator of order α of x, and \(\mathbb{N}_{0}=\{0,1,2,\ldots\}\).

Throughout this paper, we assume that

  1. (A)

    \(p(t)\) and \(g(t)\) are real sequences, \(p(t)>-1\), \(f:\mathbb{N}_{0}\times\mathbb{R}\rightarrow\mathbb{R}\), and \(xf(t,x)>0\) for \(x\neq0\), \(t\in\mathbb{N}_{0}\).

A solution \(x(t)\) of the Eq. (1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory.

2 Preliminaries

In this section, we present some preliminary results of discrete fractional calculus.

Definition 2.1

([7])

Let \(\nu>0\). The νth fractional sum f is defined by

$$ \Delta^{-\nu}f(t)=\frac{1}{\Gamma(\nu)}\sum _{s=a}^{t-\nu }(t-s-1)^{(\nu-1)}f(s), $$
(2)

where f is defined for \(s=a\ \operatorname{mod}(1)\), \(\Delta^{-\nu}f\) is defined for \(t=(a+\nu)\ \operatorname{mod}(1)\), and \(t^{(\nu)}=\frac{\Gamma(t+1)}{\Gamma(t+1-\nu)}\). The fractional sum \(\Delta^{-\nu}f\) maps functions defined on \(\mathbb{N}_{a} =\{a,a+1,a+2,\ldots\}\) to functions defined on \(\mathbb{N}_{a+\nu}= \{a+\nu,a+\nu+1,a+\nu+2,\ldots\}\), where Γ is the gamma function.

Definition 2.2

([7])

Let \(\mu>0\) and \(m-1<\mu<m\), where m is a positive integer, \(m=\lceil\mu\rceil\). Set \(\nu=m-\mu\). The μth fractional difference is defined as

$$ \Delta^{\mu}f(t)=\Delta^{m-\nu}f(t)= \Delta^{m}\Delta^{-\nu}f(t), $$
(3)

where \(\lceil\mu\rceil\) is the ceiling function of μ.

Lemma 2.3

([7])

Let f be a real-valued function defined on \(\mathbb{N}_{a}\), and let \(\mu,\nu>0\). Then the following equalities hold:

$$\begin{aligned}& \Delta^{-\nu}\bigl[\Delta^{-\mu}f(t)\bigr]=\Delta^{-(\mu+\nu)}f(t)= \Delta^{-\mu }\bigl[\Delta^{-\nu}f(t)\bigr]; \end{aligned}$$
(4)
$$\begin{aligned}& \Delta^{-\nu}\Delta f(t)=\Delta\Delta^{-\nu}f(t)- \frac{(t-a)^{(\nu-1)}}{\Gamma(\nu)}f(a). \end{aligned}$$
(5)

Lemma 2.4

Let \(x(t)\) be a solution of Eq. (1), and let

$$ E(t)=\sum_{s=t_{0}}^{t-1+\alpha}(t-s-1)^{(-\alpha)}x(s), \quad t\in \mathbb{N}_{0}. $$
(6)

Then

$$ \Delta E(t)=\Gamma(1-\alpha)\Delta^{\alpha}x(t). $$
(7)

Proof

Using Definition 2.1, it follows from (6) that

$$\begin{aligned} \begin{aligned} E(t)&= \sum_{s=t_{0}}^{t-1+\alpha}(t-s-1)^{(-\alpha )}x(s)= \sum_{s=t_{0}}^{t-(1-\alpha)}(t-s-1)^{((1-\alpha)-1)}x(s) \\ &=\Gamma(1-\alpha)\Delta^{-(1-\alpha)}x(t). \end{aligned} \end{aligned}$$

Therefore,

$$\Delta E(t)=\Gamma(1-\alpha)\Delta\Delta^{-(1-\alpha)}x(t)=\Gamma(1-\alpha ) \Delta^{\alpha}x(t). $$

The proof of Lemma 2.4 is complete. □

Lemma 2.5

([6])

Let \(\mu\in\mathbb{R}\setminus\{\ldots ,-2,-1\}\). Then

$$ \Delta^{-\nu}t^{(\mu)}=\frac{\Gamma(\mu+1)}{\Gamma(\mu +\nu+1)}t^{(\mu+\nu)}. $$
(8)

3 Main results

In this section, we establish the oscillation results for Eq. (1).

Theorem 3.1

Suppose that, for \(t_{0}\in\mathbb{N}_{0}\),

$$ \liminf_{t\rightarrow\infty} \Biggl\{ \sum _{s=0}^{t-\alpha}\frac {(t-s-1)^{(\alpha-1)}}{V(s)} \Biggl[M+\sum _{\xi=t_{0}}^{s-1}g(\xi)V(\xi) \Biggr] \Biggr\} < 0 $$
(9)

and

$$ \limsup_{t\rightarrow\infty} \Biggl\{ \sum _{s=0}^{t-\alpha}\frac {(t-s-1)^{(\alpha-1)}}{V(s)} \Biggl[M+\sum _{\xi=t_{0}}^{s-1}g(\xi)V(\xi) \Biggr] \Biggr\} >0, $$
(10)

where M is a constant, and

$$ V(t)=\prod_{s=t_{0}}^{t-1} \bigl(1+p(s)\bigr). $$
(11)

Then every solution \(x(t)\) of Eq. (1) is oscillatory.

Proof

Suppose to the contrary that there is a nonoscillatory solution \(x(t)\) of Eq. (1) which has no zero in \(\mathbb{N}_{t_{0}}=\{ t_{0},t_{0}+1,t_{0}+2,\ldots\}\). Then \(x(t)>0\) or \(x(t)<0\) for \(t\in\mathbb {N}_{t_{0}}\).

Case 1. \(x(t)>0\), \(t\in\mathbb{N}_{t_{0}}\). Noting assumption (A), from Eq. (1) we have

$$ \bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha }x(t)=-f\bigl(t,x(t)\bigr)+g(t)< g(t). $$
(12)

Therefore, using the fundamental property of Δ and noting the definition of \(V(t)\), we get

$$\begin{aligned} \Delta\bigl(\bigl(\Delta^{\alpha}x(t)\bigr)V(t)\bigr) =& \Delta\bigl(\Delta^{\alpha}x(t)\bigr)V(t+1)+\Delta^{\alpha}x(t)\Delta V(t) \\ =&\Delta\bigl(\Delta^{\alpha}x(t)\bigr) \bigl(1+p(t)\bigr)V(t)+ \Delta^{\alpha}x(t)p(t)V(t) \\ < & g(t)V(t). \end{aligned}$$
(13)

Summing both sides of (13) from \(t_{0}\) to \(t-1\), we obtain

$$\bigl(\Delta^{\alpha}x(t)\bigr)V(t)< \bigl(\Delta^{\alpha}x(t_{0}) \bigr)V(t_{0})+\sum_{s=t_{0}}^{t-1}g(s)V(s)=M+ \sum_{s=t_{0}}^{t-1}g(s)V(s), $$

where \(M=(\Delta^{\alpha}x(t_{0}))V(t_{0})\), that is,

$$ \Delta^{\alpha}x(t)< \frac{M}{V(t)}+\frac{1}{V(t)}\sum _{s=t_{0}}^{t-1}g(s)V(s). $$
(14)

Applying the \(\Delta^{-\alpha}\) operator to inequality (14), we have

$$ \Delta^{-\alpha}\Delta^{\alpha}x(t)< \Delta^{-\alpha} \Biggl[\frac {M}{V(t)}+\frac{1}{V(t)}\sum _{s=t_{0}}^{t-1}g(s)V(s) \Biggr]. $$
(15)

On the one hand, applying Lemma 2.3 to the left-hand side of (15), we obtain

$$\begin{aligned} \Delta^{-\alpha}\Delta^{\alpha}x(t) =& \Delta^{-\alpha}\Delta\Delta ^{-(1-\alpha)}x(t) \\ =&\Delta\Delta^{-\alpha}\Delta^{-(1-\alpha)}x(t)- \frac {t^{(\alpha-1)}}{\Gamma(\alpha)}x_{0} \\ =&x(t)- \frac{x_{0}}{\Gamma(\alpha)}t^{(\alpha-1)}. \end{aligned}$$
(16)

On the other hand, using Definition 2.1, it follows from the right-hand side of (15) that

$$\begin{aligned}& \Delta^{-\alpha} \Biggl[\frac{M}{V(t)}+\frac{1}{V(t)} \sum_{s=t_{0}}^{t-1}g(s)V(s) \Biggr] \\& \quad = \frac{1}{\Gamma(\alpha)}\sum_{s=0}^{t-\alpha }(t-s-1)^{(\alpha-1)} \Biggl[\frac{M}{V(s)}+\frac{1}{V(s)}\sum_{\xi=t_{0}}^{s-1}g( \xi)V(\xi) \Biggr]. \end{aligned}$$
(17)

Combining (15)-(17), we get

$$ x(t)< \frac{x_{0}}{\Gamma(\alpha)}t^{(\alpha-1)}+\frac{1}{\Gamma(\alpha)}\sum _{s=0}^{t-\alpha}(t-s-1)^{(\alpha-1)} \Biggl[ \frac{M}{V(s)}+\frac{1}{V(s)}\sum_{\xi=t_{0}}^{s-1}g( \xi)V(\xi) \Biggr]. $$
(18)

It follows from (18) that

$$\begin{aligned} \Gamma(\alpha)t^{1-\alpha}x(t) < & x_{0}t^{(\alpha-1)}t^{1-\alpha} \\ &{} + t^{1-\alpha}\sum_{s=0}^{t-\alpha}(t-s-1)^{(\alpha-1)} \Biggl[\frac{M}{V(s)}+\frac{1}{V(s)}\sum_{\xi=t_{0}}^{s-1}g( \xi)V(\xi) \Biggr]. \end{aligned}$$
(19)

By using the Stirling formula [20]

$$\lim_{t\rightarrow\infty}\frac{\Gamma(t)t^{\varepsilon}}{\Gamma (t+\varepsilon)}=1,\quad \varepsilon>0, $$

we obtain

$$\begin{aligned} \lim_{t\rightarrow\infty}t^{1-\alpha}t^{(\alpha -1)} =& \lim_{t\rightarrow\infty}t^{1-\alpha} \frac{\Gamma(t+1)}{\Gamma(t+1-\alpha+1)} \\ =& \lim_{t\rightarrow\infty}t^{1-\alpha}\frac{t\Gamma (t)}{(t+1-\alpha)\Gamma(t+(1-\alpha))} \\ =& \lim_{t\rightarrow\infty}\frac{t}{t+1-\alpha}\frac {\Gamma(t)t^{1-\alpha}}{\Gamma(t+(1-\alpha))} \\ =&1. \end{aligned}$$
(20)

From (20), taking then limit as \(t\rightarrow\infty\) in (19), we have

$$\liminf_{t\rightarrow\infty} \bigl\{ t^{1-\alpha}x(t) \bigr\} \leq-\infty, $$

which contradicts with \(x(t)>0\).

Case 2. \(x(t)<0\), \(t\in\mathbb{N}_{t_{0}}\). By assumption (A), from Eq. (1) we have

$$ \bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha }x(t)=-f\bigl(t,x(t)\bigr)+g(t)>g(t). $$
(21)

Therefore,

$$ \Delta\bigl(\bigl(\Delta^{\alpha}x(t)\bigr)V(t) \bigr)>g(t)V(t). $$
(22)

Summing both sides of (22) from \(t_{0}\) to \(t-1\), we obtain

$$\bigl(\Delta^{\alpha}x(t)\bigr)V(t)>\bigl(\Delta^{\alpha}x(t_{0}) \bigr)V(t_{0})+\sum_{s=t_{0}}^{t-1}g(s)V(s)=M+ \sum_{s=t_{0}}^{t-1}g(s)V(s), $$

where \(M=(\Delta^{\alpha}x(t_{0}))V(t_{0})\), that is,

$$ \Delta^{\alpha}x(t)>\frac{M}{V(t)}+\frac{1}{V(t)}\sum _{s=t_{0}}^{t-1}g(s)V(s). $$
(23)

Using the procedure of the proof of Case 1, we conclude that

$$\begin{aligned} \Gamma(\alpha)t^{1-\alpha}x(t) >& x_{0}t^{(\alpha-1)}t^{1-\alpha} \\ &{} + t^{1-\alpha}\sum_{s=0}^{t-\alpha}(t-s-1)^{(\alpha-1)} \Biggl[\frac{M}{V(s)}+\frac{1}{V(s)}\sum_{\xi=t_{0}}^{s-1}g( \xi)V(\xi) \Biggr]. \end{aligned}$$
(24)

By (20), taking the limit as \(t\rightarrow\infty\) in (24), we have

$$\limsup_{t\rightarrow\infty} \bigl\{ t^{1-\alpha}x(t) \bigr\} \geq\infty, $$

which contradicts with \(x(t)<0\). The proof of Theorem 3.1 is complete. □

Theorem 3.2

Suppose that, for \(t_{0}\in\mathbb{N}_{0}\),

$$ \liminf_{t\rightarrow\infty}\sum_{s=t_{0}}^{t-1} \frac{1}{V(s)} \Biggl\{ M+\sum_{\xi=t_{0}}^{s-1}g( \xi)V(\xi) \Biggr\} =-\infty $$
(25)

and

$$ \limsup_{t\rightarrow\infty}\sum_{s=t_{0}}^{t-1} \frac{1}{V(s)} \Biggl\{ M+\sum_{\xi=t_{0}}^{s-1}g( \xi)V(\xi) \Biggr\} =\infty, $$
(26)

where M is a constant, and \(V(t)\) is defined by (11). Then every solution \(x(t)\) of Eq. (1) is oscillatory.

Proof

Suppose to the contrary that there is a nonoscillatory solution \(x(t)\) of Eq. (1) that has no zero in \(\mathbb{N}_{t_{0}}\). Then \(x(t)>0\) or \(x(t)<0\) for \(t\in\mathbb{N}_{t_{0}}\).

Case 1. \(x(t)>0\), \(t\in\mathbb{N}_{t_{0}}\). As in the proof of Case 1 in Theorem 3.1, we obtain (14). By Lemma 2.4 it follows from (14) that

$$ \Delta E(t)< \frac{\Gamma(1-\alpha)}{V(t)} \Biggl\{ M+\sum _{s=t_{0}}^{t-1}g(s)V(s) \Biggr\} . $$
(27)

Summing both sides of (27) from \(t_{0}\) to \(t-1\), we have

$$ E(t)< E(t_{0})+\Gamma(1-\alpha)\sum _{s=t_{0}}^{t-1}\frac{1}{V(s)} \Biggl\{ M+\sum _{\xi=t_{0}}^{s-1}g(\xi)V(\xi) \Biggr\} . $$
(28)

Letting \(t\rightarrow\infty\) in (28), we obtain a contradiction with \(E(t)>0\).

Case 2. \(x(t)<0\), \(t\in\mathbb{N}_{t_{0}}\). As in the proof of Case 2 in Theorem 3.1, we obtain (23). By Lemma 2.4 it follows from (23) that

$$ \Delta E(t)>\frac{\Gamma(1-\alpha)}{V(t)} \Biggl\{ M+\sum _{s=t_{0}}^{t-1}g(s)V(s) \Biggr\} . $$
(29)

Summing both sides of (29) from \(t_{0}\) to \(t-1\), we have

$$ E(t)>E(t_{0})+\Gamma(1-\alpha)\sum _{s=t_{0}}^{t-1}\frac{1}{V(s)} \Biggl\{ M+\sum _{\xi=t_{0}}^{s-1}g(\xi)V(\xi) \Biggr\} . $$
(30)

Letting \(t\rightarrow\infty\) in (30), we obtain a contradiction with \(E(t)<0\). This completes the proof of Theorem 3.2. □

4 Examples

In this section, we conclude from the following two examples that the assumptions of Theorem 3.1 and Theorem 3.2 cannot be dropped.

Example 4.1

Consider the following fractional difference equation:

$$ \frac{2}{3}\Delta\bigl(\Delta^{\frac{2}{3}}x(t)\bigr)+ \biggl(-\frac{1}{3}\biggr)\Delta ^{\frac{2}{3}}x(t)+\frac{\Gamma(t+\frac{1}{3})}{ 3t\Gamma(t)}x(t)= \frac{3-2\Gamma(\frac{2}{3})}{9}, \quad t\in\mathbb{N}_{0}, $$
(31)

with the initial condition \(\Delta^{-\frac{1}{3}}x(t)|_{t=0}=0\).

Here \(\alpha=\frac{2}{3}\), \(p(t)=-\frac{1}{3}\), \(f(t,x(t))=\frac{\Gamma(t+\frac{1}{3})}{ 3t\Gamma(t)}x(t)\), \(g(t)=\frac{3-2\Gamma(\frac{2}{3})}{9}\). It is easy to see that

$$V(t) =\prod_{s=1}^{t-1}\bigl(1+p(t)\bigr)= \prod_{s=1}^{t-1}\frac{2}{3}= \biggl( \frac{2}{3} \biggr)^{t-1}, \qquad g(t)=\frac{3-2\Gamma(\frac{2}{3})}{9}>0. $$

Therefore, we have

$$\begin{aligned}& \sum_{s=0}^{t-\frac{2}{3}} \frac {(t-s-1)^{(-\frac{1}{3})}}{V(s)} \Biggl[M+\sum_{\xi=1}^{s-1}g( \xi)V(\xi) \Biggr] \\& \quad = \sum_{s=0}^{t-\frac{2}{3}}(t-s-1)^{(-\frac{1}{3})} \biggl(\frac{3}{2} \biggr)^{s-1} \Biggl[M+\sum _{\xi=1}^{s-1}\frac{3-2\Gamma(\frac{2}{3})}{9} \biggl( \frac{2}{3} \biggr)^{\xi-1} \Biggr] \\& \quad > 0, \end{aligned}$$
(32)

which shows that condition (9) of Theorem 3.1 does not hold. It is not difficult to see that \(x(t)=t^{(\frac{2}{3})}\) is a nonoscillatory solution of Eq. (31).

Indeed, on the one hand, using Lemma 2.5, we obtain

$$\begin{aligned} \Delta^{\frac{2}{3}}x(t) =& \Delta^{\frac{2}{3}}t^{(\frac{2}{3})}= \Delta\bigl(\Delta^{-\frac{1}{3}}t^{(\frac{2}{3})}\bigr) \\ =&\Delta \biggl( \frac{\Gamma(\frac{2}{3}+1)}{\Gamma(\frac{2}{3}+\frac{1}{3}+1)} t^{(\frac{1}{3}+\frac{2}{3})} \biggr) \\ =& \Delta \biggl(\frac{2}{3}\Gamma \biggl(\frac{2}{3} \biggr)t^{(1)} \biggr) \\ =&\Delta \biggl(\frac{2}{3}\Gamma \biggl( \frac{2}{3} \biggr)t \biggr) \\ =&\frac{2}{3}\Gamma \biggl( \frac{2}{3} \biggr) \end{aligned}$$
(33)

and

$$ \Delta\bigl(\Delta^{\frac{2}{3}}x(t)\bigr)=\Delta\bigl( \Delta^{\frac{2}{3}}t^{(\frac{2}{3})}\bigr)=0. $$
(34)

On the other hand, we have

$$ x(t)=t^{(\frac{2}{3})}=\frac{\Gamma(t+1)}{\Gamma(t+1-\frac{2}{3})}=\frac{t\Gamma(t)}{\Gamma(t+\frac{1}{3})}. $$
(35)

Combining (33)-(35), we conclude that \(x(t)=t^{(\frac{2}{3})}\) is a solution of Eq. (31).

Example 4.2

Consider the following fractional difference equation:

$$ \frac{1}{2}\Delta\bigl(\Delta^{\frac{1}{3}}x(t)\bigr)+ \biggl(-\frac{1}{2}\biggr)\Delta ^{\frac{1}{3}}x(t)+\frac{\Gamma(t+\frac{2}{3})}{ 2t\Gamma(t)}x(t)= \frac{3-\Gamma(\frac{1}{3})}{6},\quad t\in\mathbb{N}_{0}, $$
(36)

with the initial condition \(\Delta^{-\frac{2}{3}}x(t)|_{t=0}=0\).

Here \(\alpha=\frac{1}{3}\), \(p(t)=-\frac{1}{2}\), \(f(t,x(t))=\frac{\Gamma(t+\frac{2}{3})}{ 2t\Gamma(t)}x(t)\), \(g(t)=\frac{3-\Gamma(\frac{1}{3})}{6}\). Obviously,

$$V(t)=\prod_{s=1}^{t-1}\bigl(1+p(t)\bigr)= \prod_{s=1}^{t-1}\frac{1}{2}= \biggl( \frac{1}{2} \biggr)^{t-1}, \qquad g(t)=\frac{3-\Gamma(\frac{1}{3})}{6}>0. $$

Therefore, we have

$$\begin{aligned} \begin{aligned}[b] &\sum_{s=1}^{t-1} \frac{1}{V(s)} \Biggl[M+\sum_{\xi=1}^{s-1}g( \xi)V(\xi) \Biggr] \\ &\quad = \sum_{s=1}^{t-1}2^{s-1} \Biggl[M+\sum_{\xi=1}^{s-1}\frac {3-\Gamma(\frac{1}{3})}{6} \biggl(\frac{1}{2} \biggr)^{\xi-1} \Biggr] \\ &\quad > 0. \end{aligned} \end{aligned}$$
(37)

Thus, condition (25) of Theorem 3.2 does not hold. In fact, we can easily verify that \(x(t)=t^{(\frac{1}{3})}\) is a nonoscillatory solution of Eq. (36).

References

  1. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  3. Abbas, S, Benchohra, M, N’Guérékata, GM: Topics in Fractional Differential Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  4. Zhou, Y: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  5. Miller, KS, Ross, B: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, Japan, May 1988. Ellis Horwood Ser. Math. Appl., pp. 139-152. Horwood, Chichester (1989)

    Google Scholar 

  6. Atici, FM, Eloe, PW: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2(2), 165-176 (2007)

    MathSciNet  Google Scholar 

  7. Atici, FM, Eloe, PW: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981-989 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atici, FM, Eloe, PW: Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, 353-370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atici, FM, Wu, F: Existence of solutions for nonlinear fractional difference equations with initial conditions. Dyn. Syst. Appl. 23, 265-276 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Atici, FM, Şengül, S: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1-9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deekshitulu, GVSR, Mohan, JJ: Solutions of perturbed nonlinear nabla fractional difference equations of order \(0<\alpha<1\). Math. Æterna 3, 139-150 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Goodrich, CS: On a discrete fractional three-point boundary value problem. J. Differ. Equ. Appl. 18, 397-415 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodrich, CS: Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput. 217, 4740-4753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abdeljawad, T: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602-1611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, J, Chu, Y: Fractional difference equations with real variable. Abstr. Appl. Anal. 2012, Article ID 918529 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Chen, F, Liu, Z: Asymptotic stability results for nonlinear fractional difference equations. J. Appl. Math. 2012, Article ID 879657 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Cheng, J-F, Chu, Y-M: On the fractional difference equations of order \((2; q)\). Abstr. Appl. Anal. 2011, Article ID 497259 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Marian, SL, Sagayaraj, MR, Selvam, AGM, Loganathan, MP: Oscillation of fractional nonlinear difference equations. Math. Æterna 2, 805-813 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Sagayaraj, MR, Selvam, AGM, Loganathan, MP: On the oscillation of nonlinear fractional difference equations. Math. Æterna 4, 91-99 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Alzabut, JO, Abdeljawad, T: Sufficient conditions for the oscillation of nonlinear fractional difference equations. J. Fract. Calc. Appl. 5, 177-187 (2014)

    MathSciNet  Google Scholar 

  21. Chen, DX: Oscillation criteria of fractional differential equations. Adv. Differ. Equ. 2012, 33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, DX: Oscillatory behavior of a class of fractional differential equations with damping. Univ. Politeh. Bucur. Sci. Bull., Ser. A 75, 107-118 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Grace, SR, Agarwal, RP, Wong, PJY, Zafer, A: On the oscillation of fractional differential equations. Fract. Calc. Appl. Anal. 15, 222-231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zheng, B: Oscillation for a class of nonlinear fractional differential equations with damping term. J. Adv. Math. Stud. 6, 107-115 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Han, Z, Zhao, Y, Sun, Y, Zhang, C: Oscillation for a class of fractional differential equation. Discrete Dyn. Nat. Soc. 2013, Article ID 390282 (2013)

    Article  MathSciNet  Google Scholar 

  26. Qi, C, Cheng, J: Interval oscillation criteria for a class of fractional differential equations with damping term. Math. Probl. Eng. 2013, Article ID 301085 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Chen, D, Qu, P, Lan, Y: Forced oscillation of certain fractional differential equations. Adv. Differ. Equ. 2013, 125 (2013)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y, Han, Z, Sun, S: Comment on ‘On the oscillation of fractional-order delay differential equations with constant coefficients’ [Commun. Nonlinear Sci. 19(11) (2014) 3988-3993]. Commun. Nonlinear Sci. Numer. Simul. 26, 195-200 (2015)

    Article  MathSciNet  Google Scholar 

  29. Yang, J, Liu, A, Liu, T: Forced oscillation of nonlinear fractional differential equations with damping term. Adv. Differ. Equ. 2015, 1 (2015)

    Article  MathSciNet  Google Scholar 

  30. Öğrekçi, S: Interval oscillation criteria for functional differential equations of fractional order. Adv. Differ. Equ. 2015, 3 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Prakash, P, Harikrishnan, S, Benchohra, M: Oscillation of certain nonlinear fractional partial differential equation with damping term. Appl. Math. Lett. 43, 72-79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, WN: Forced oscillation criteria for a class of fractional partial differential equations with damping term. Math. Probl. Eng. 2015, Article ID 410904 (2015)

    MathSciNet  Google Scholar 

  33. Li, WN: On the forced oscillation of certain fractional partial differential equations. Appl. Math. Lett. 50, 5-9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (10971018). The author thanks the referees very much for their valuable comments and suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Nian Li.

Additional information

Competing interests

The author declares that there are no competing interests.

Author’s contributions

The author read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W.N. Oscillation results for certain forced fractional difference equations with damping term. Adv Differ Equ 2016, 70 (2016). https://doi.org/10.1186/s13662-016-0798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-016-0798-2

MSC

Keywords