Skip to content

Advertisement

  • Research
  • Open Access

Studies on a 2nth-order p-Laplacian differential equation with singularity

Advances in Difference Equations20162016:26

https://doi.org/10.1186/s13662-015-0706-1

  • Received: 18 September 2015
  • Accepted: 20 November 2015
  • Published:

Abstract

In this paper, we consider the 2nth-order p-Laplacian differential equation with singularity
$$ \bigl(\varphi_{p} \bigl(x(t) \bigr)^{(n)} \bigr)^{(n)}+f \bigl(x(t) \bigr)x'(t)+g \bigl(t,x(t-\sigma) \bigr)=e(t). $$
By applications of coincidence degree theory and some analysis techniques, sufficient conditions for the existence of positive periodic solutions are established.

Keywords

  • positive periodic solution
  • p-Laplacian
  • 2nth-order
  • singularity

MSC

  • 34C25
  • 34K13
  • 34K40

1 Introduction

Generally speaking, differential equations with singularities have been considered from the very beginning of the discipline. The main reason is that singular forces are ubiquitous in applications, gravitational and electromagnetic forces being the most obvious examples. In 1979, Taliaferro [1] discussed the model equation with singularity
$$ y''+\frac{q(t)}{y^{\alpha}}=0,\quad 0< t< 1, $$
(1.1)
subject to
$$ y(0)=0=y(1), $$
and obtained the existence of a solution for the problem. Here \(\alpha>0\), \(q\in C(0,1)\) with \(q>0\) on \((0,1)\) and \(\int_{0}^{1} t(1-t)q(t)\,dt<\infty\). We call it the equation with the strong force condition if \(\alpha\geq1\) and we call it the equation with the weak force condition if \(0<\alpha<1\).
Ding’s work has attracted the attention of many specialists in differential equations. More recently, topological degree theory [24], the Schauder fixed point theorem [5, 6], the Krasnoselskii fixed point theorem in a cone [79], the Poincaré-Birkhoff twist theorem [1012], and the Leray-Schauder alternative principle [1315] have been employed to investigate the existence of positive periodic solutions of singular second-order, third-order and fourth-order differential equations. In 1996, using coincidence degree theory, Zhang [2] considered the existence of T-periodic solutions for the scalar Liénard equation
$$ x''(t)+f \bigl(x(t) \bigr)x'(t)+g \bigl(t,x(t) \bigr)=0, $$
when g becomes unbounded as \(x\rightarrow0^{+}\). The main emphasis was on the repulsive case, i.e. when \(g(t,x)\rightarrow+\infty \), as \(x\rightarrow0^{+}\). In 2007, Torres [5] studied singular forced semilinear differential equation
$$ x''+a(t)x'=f(t,x)+e(t). $$
(1.2)
By the Schauder fixed point theorem, the author has shown that the additional assumption of a weak singularity enabled new criteria for the existence of periodic solutions. Afterwards, Wang [3] investigated the existence and multiplicity of positive periodic solutions of the singular systems (1.2) by the Krasnoselskii fixed point theorem. The conditions he presented to guarantee the existence of positive periodic solutions are beautiful. Recently, Cheng and Ren [14] discussed a kind of fourth-order singular differential equation,
$$ x^{(4)}(t)+ax'''(t)+bx''(t)+cx'(t)+dx(t)=f \bigl(t,x(t) \bigr)+e(t). $$
(1.3)
By application of Green’s function and some fixed point theorems, i.e., the Leray-Schauder alternative principle and Schauder’s fixed point theorem, the authors established two existence results of positive periodic solutions for nonlinear fourth-order singular differential equation.
Motivated by [2, 3, 5, 14], in this paper, we consider the high-order p-Laplacian differential equation with singularity
$$ \bigl(\varphi_{p} \bigl(x(t) \bigr)^{(n)} \bigr)^{(n)}+f \bigl(x(t) \bigr)x'(t)+g \bigl(t,x(t-\sigma) \bigr)=e(t), $$
(1.4)
where \(p\geq2\), \(\varphi_{p}(x)=|x|^{p-2}x\) for \(x\neq0\), and \(\varphi_{p}(0)=0\); g is continuous function defined on \(\mathbb{R}^{2}\) and periodic in t with \(g(t,\cdot)=g(t+T,\cdot)\), g has a singularity at \(x=0\); σ is a constant and \(0\leq \sigma< T\); \(e:\mathbb{R}\rightarrow\mathbb{R}\) are continuous periodic functions with \(e(t+T)\equiv e(t)\) and \(\int^{T}_{0}e(t)\,dt=0\). T is a positive constant; n is positive integer.

The paper is organized as follows. In Section 2, we introduce some technical tools and present all the auxiliary results; in Section 3, by applying coincidence degree theory and some new inequalities, we obtain sufficient conditions for the existence of positive periodic solutions for (1.4), an example is also given to illustrate our results. Our new results generalize in several aspects some recent results contained in [2, 3, 5].

2 Lemmas

For the sake of convenience, throughout this paper we will adopt the following notation:
$$\begin{aligned}& |u|_{\infty}=\max_{t\in[0,T]}\bigl|u(t)\bigr|,\qquad |u|_{0}=\min _{t\in[0,T]}\bigl|u(t)\bigr|,\\& |u|_{p}= \biggl( \int^{T}_{0}|u|^{p}\,dt \biggr)^{\frac{1}{p}}, \qquad\bar{h}=\frac{1}{T} \int^{T}_{0}h(t)\,dt. \end{aligned}$$

Let X and Y be real Banach spaces and \(L:D(L)\subset X\rightarrow Y\) be a Fredholm operator with index zero, here \(D(L)\) denotes the domain of L. This means that ImL is closed in Y and \(\dim \operatorname{Ker} L=\dim(Y/\operatorname{Im} L)<+\infty\). Consider supplementary subspaces \(X_{1}\), \(Y_{1}\) of X, Y, respectively, such that \(X=\operatorname{Ker} L \oplus X_{1}\), \(Y=\operatorname{Im} L\oplus Y_{1}\). Let \(P:X\rightarrow \operatorname{Ker} L\) and \(Q:Y\rightarrow Y_{1}\) denote the natural projections. Clearly, \(\operatorname{Ker} L\cap(D(L)\cap X_{1})=\{0\}\) and so the restriction \(L_{P}:=L|_{D(L)\cap X_{1}}\) is invertible. Let K denote the inverse of \(L_{P}\).

Let Ω be an open bounded subset of X with \(D(L)\cap\Omega\neq\emptyset\). A map \(N:\overline{\Omega}\rightarrow Y\) is said to be L-compact in Ω̅ if \(QN(\overline{\Omega})\) is bounded and the operator \(K(I-Q)N:\overline{\Omega}\rightarrow X\) is compact.

Lemma 2.1

(Gaines and Mawhin [16])

Suppose that X and Y are two Banach spaces, and \(L:D(L)\subset X\rightarrow Y\) is a Fredholm operator with index zero. Let \(\Omega\subset X\) be an open bounded set and \(N:\overline{\Omega}\rightarrow Y \) be L-compact on Ω̅. Assume that the following conditions hold:
  1. (1)

    \(Lx\neq\lambda Nx\), \(\forall x\in\partial\Omega\cap D(L)\), \(\lambda\in(0,1)\);

     
  2. (2)

    \(Nx\notin \operatorname{Im} L\), \(\forall x\in\partial\Omega\cap \operatorname{Ker} L\);

     
  3. (3)

    \(\deg\{JQN,\Omega\cap \operatorname{Ker} L,0\}\neq0\), where \(J:\operatorname{Im}\ Q\rightarrow \operatorname{Ker} L\) is an isomorphism.

     
Then the equation \(Lx=Nx\) has a solution in \(\overline{\Omega}\cap D(L)\).

Lemma 2.2

([17])

If \(\omega\in C^{1}(\mathbb{R},\mathbb{R})\) and \(\omega(0)=\omega(T)=0\), then
$$\int^{T}_{0}\bigl|\omega(t)\bigr|^{p}\,dt\leq \biggl(\frac{T}{\pi_{p}} \biggr)^{p} \int^{T}_{0}\bigl|\omega'(t)\bigr|^{p} \,dt, $$
where \(1\leq p<\infty\), \(\pi_{p}=2\int^{(p-1)/p}_{0}\frac{ds}{(1-\frac{s^{p}}{p-1})^{1/p}}=\frac {2\pi(p-1)^{1/p}}{p\sin(\pi/p)}\).

Lemma 2.3

If \(x(t)\in C^{n}(\mathbb{R},\mathbb{R})\) and \(x^{(j)}(t+T)=x^{(j)}(t)\), \(j=0,1,2,\ldots,n-1\), then
$$ \int^{T}_{0}\bigl|x^{(i)}(t)\bigr|^{p} \,dt\leq \biggl(\frac{T}{\pi_{p}} \biggr)^{p(n-i)} \int ^{T}_{0}\bigl|x^{(n)}(t)\bigr|^{p} \,dt, \quad i=1,2,\ldots,n-1, $$
where \(\frac{1}{p}+\frac{1}{q}=1\), \(p\geq2\).

Proof

From \(x^{(i-1)}(0)=x^{(i-1)}(T)\), there is a point \(t_{i}\in[0,T]\) such that \(x^{(i)}(t_{i})=0\). Let \(\omega_{i}(t)=x^{(i)}(t+t_{i})\), and then \(\omega_{i}(0)=\omega_{i}(T)=0\). From \(x^{(i)}(0)=x^{(i)}(T)\), there is a point \(t_{i+1}\in[0,T]\) such that \(x^{(i+1)}(t_{i+1})=0\). Let \(\omega_{i+1}(t)=x^{(i+1)}(t+t_{i+1})\), and then \(\omega_{i+1}(0)=\omega_{i+1}(T)=0\). Continuing this way we get from \(x^{(n-i)}(0)=x^{(n-i)}(T)\) a point \(t_{n-i+1}\in[0,T]\) such that \(x^{(n)}(t_{n-i+1})=0\). Let \(\omega_{n-i}(t)=x^{(n-i+1)}(t+t_{n-i+1})\), and then \(\omega_{n-i}(0)=\omega_{n-i}(T)=0\). From Lemma 2.2, we have
$$\begin{aligned} \int^{T}_{0}\bigl|x^{(i)}(t)\bigr|^{p} \,dt&= \int^{T}_{0}\bigl|\omega_{i}(t)\bigr|^{p} \,dt \\ &\leq \biggl(\frac{T}{\pi_{p}} \biggr)^{p} \int^{T}_{0}\bigl|\omega_{i}'(t)\bigr|^{p} \,dt \\ &= \biggl(\frac{T}{\pi_{p}} \biggr)^{p} \int^{T}_{0}\bigl|x^{(i+1)}(t)\bigr|^{p} \,dt \\ &= \biggl(\frac{T}{\pi_{p}} \biggr)^{p} \int^{T}_{0}\bigl|\omega _{i+1}(t)\bigr|^{p} \,dt \\ &\leq \biggl(\frac{T}{\pi_{p}} \biggr)^{2p} \int^{T}_{0}\bigl|\omega _{i+1}'(t)\bigr|^{p} \,dt \\ &\cdots \\ &\leq \biggl(\frac{T}{\pi_{p}} \biggr)^{p(n-i)} \int^{T}_{0}\bigl|\omega _{n-i-1}'(t)\bigr|^{p} \,dt \\ &= \biggl(\frac{T}{\pi_{p}} \biggr)^{p(n-i)} \int^{T}_{0}\bigl|x^{(n)}(t)\bigr|^{p} \,dt. \end{aligned}$$
(2.1)
 □
In order to apply coincidence degree theorem, we rewrite (1.4) in the form
$$ \textstyle\begin{cases} x_{1}^{(n)}(t)=\varphi_{q}(x_{2}(t)),\\ x_{2}^{(n)}(t)=-f(x_{1}(t))x_{1}'(t)-g(t,x_{1}(t-\sigma))+e(t), \end{cases} $$
(2.2)
where \(\frac{1}{p}+\frac{1}{q}=1\). Clearly, if \(x(t)=(x_{1}(t),x_{2}(t))^{\top}\) is a T-periodic solution to (2.2), then \(x_{1}(t)\) must be a T-periodic solution to (1.4). Thus, the problem of finding a T-periodic solution for (1.4) reduces to finding one for (2.2).
Now, set \(X=\{x=(x_{1}(t),x_{2}(t))\in C(\mathbb{R},\mathbb{R}^{2}): x(t+T)\equiv x(t)\}\) with the norm \(|x|_{\infty}=\max\{|x_{1}|_{\infty},|x_{2}|_{\infty}\}\); \(Y=\{x=(x_{1}(t),x_{2}(t))\in C^{1}(\mathbb{R},\mathbb{R}^{2}): x(t+T)\equiv x(t)\}\) with the norm \(\|x\|=\max\{|x|_{\infty},|x'|_{\infty}\}\). Clearly, X and Y are both Banach spaces. Meanwhile, define
$$L:D(L)= \bigl\{ x\in C^{2n} \bigl(\mathbb{R},\mathbb{R}^{2} \bigr): x(t+T) = x(t), t \in \mathbb{R} \bigr\} \subset X\rightarrow Y $$
by
$$ (Lx) (t)= \begin{pmatrix} x_{1}^{(n)}(t)\\ x_{2}^{(n)}(t) \end{pmatrix} $$
and \(N: X\rightarrow Y\) by
$$ (Nx) (t)= \begin{pmatrix} \varphi_{q}(x_{2}(t))\\ -f(x_{1})x_{1}'(t)-g(t,x_{1}(t-\sigma))+e(t) \end{pmatrix}. $$
(2.3)
Then (2.2) can be converted into the abstract equation \(Lx=Nx\). From the definition of L, one can easily see that
$$\operatorname{Ker} L \cong\mathbb {R}^{2}, \qquad\operatorname{Im} L= \biggl\{ y\in Y: \int_{0}^{T} \begin{pmatrix} y_{1}(s)\\ y_{2}(s) \end{pmatrix}\,ds= \begin{pmatrix} 0\\ 0 \end{pmatrix} \biggr\} . $$
So L is a Fredholm operator with index zero. Let \(P:X\rightarrow \operatorname{Ker} L\) and \(Q:Y\rightarrow \operatorname{Im} Q\subset\mathbb {R}^{2}\) be defined by
$$Px= \begin{pmatrix} x_{1}(0)\\ x_{2}(0) \end{pmatrix} ;\qquad Qy=\frac{1}{T} \int_{0}^{T} \begin{pmatrix} y_{1}(s)\\ y_{2}(s) \end{pmatrix}\,ds, $$
then \(\operatorname{Im} P=\operatorname{Ker} L\), \(\operatorname{Ker} Q=\operatorname{Im} L\). Setting \(L_{P}=L|_{D(L)\cap \operatorname{Ker} P}\) and \(L_{P}^{-1}\): \(\operatorname{Im} L\rightarrow D(L)\) denoting the inverse of \(L_{P}\), then
$$\begin{aligned} & \bigl[L_{P}^{-1}y \bigr](t)= \begin{pmatrix} (Gy_{1})(t)\\ (Gy_{2})(t) \end{pmatrix} , \\ &[Gy_{1}](t)=\sum_{i=1}^{n-1} \frac{1}{i!}x_{1}^{(i)}(0)t^{i}+ \frac {1}{(n-1)!} \int^{t}_{0}(t-s)^{n-1}y_{1}(s) \,ds, \\ &[Gy_{2}](t)=\sum_{i=1}^{n-1} \frac{1}{i!}x_{2}^{(i)}(0)t^{i}+ \frac {1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1}y_{2}(s) \,ds, \end{aligned}$$
(2.4)
where \(x_{j}^{(i)}(0)\), \(i=1,2,\ldots,n-1\) and \(j=1,2\), are defined by the following:
$$E_{1}Z=B, \quad\mbox{where } E_{1}= \left.\begin{pmatrix} 1 & 0 & 0 & \cdots& 0 & 0 \\ c_{1} & 1 & 0 & \cdots& 0 & 0 \\ c_{2} & c_{1} & 1 & \cdots& 0 & 0 \\ \cdots\\ c_{n-3} & c_{n-4} & c_{n-5} & \cdots& 1 & 0 \\ c_{n-2} & c_{n-3} & c_{n-4} & \cdots& c_{1} &0 \end{pmatrix} \right._{(n-1)\times(n-1)}. $$
\(Z=(x_{1}^{(n-1)}(0),\ldots,x_{1}''(0),x_{1}'(0))^{\top}\), \(B=(b_{1},b_{2},\ldots ,b_{n-1})^{\top}\), \(b_{i}=-\frac{1}{i!T}\int^{T}_{0}(T-s)^{i}y_{1}(s)\,ds\), and \(c_{k}=\frac{T^{k}}{(k+1)!}\), \(k=1,2,\ldots,n-2\).

From (2.3) and (2.4), it is clearly that QN and \(K(I-Q)N\) are continuous, \(QN(\overline{\Omega})\) is bounded and then \(K(I-Q)N(\overline{\Omega})\) is compact for any open bounded \(\Omega\subset X\), which means N is L-compact on Ω̄.

3 Existence of positive periodic solutions for (1.1)

Assume that
$$ \psi(t)=\lim_{x\rightarrow+\infty}\sup\frac{g(t,x)}{x^{p-1}}, $$
(3.1)
exists uniformly a.e. \(t\in[0,T]\), i.e., for any \(\varepsilon>0\) there is \(g_{\varepsilon}\in L^{2}(0,T)\) such that
$$ g(t,x)\leq \bigl(\psi(t)+\varepsilon \bigr)x^{p-1}+g_{\varepsilon}(t) $$
(3.2)
for all \(x>0\) and a.e. \(t\in[0,T]\). Moreover, \(\psi\in C(\mathbb{R},\mathbb{R})\) and \(\psi(t+T)=\psi(t)\).

For the sake of convenience, we list the following assumptions which will be used repeatedly in the sequel:

(H1) There exist constants \(0< D_{1}< D_{2}\) such that if x is a positive continuous T-periodic function satisfying
$$\int^{T}_{0}g \bigl(t,x(t) \bigr)\,dt=0, $$
then
$$D_{1}\leq x(\tau)\leq D_{2} $$
for some \(\tau\in[0,T]\).

(H2) \(\bar{g}(x)<0\) for all \(x \in(0,D_{1})\), and \(\bar{g}(x)>0\) for all \(x>D_{2}\).

(H3) \(g(t,x)=g_{0}(x)+g_{1}(t,x)\), where \(g_{0}\in C((0,\infty);\mathbb{R}) \) and \(g_{1}:[0,T]\times[0,\infty)\rightarrow\mathbb{R}\) is an \(L^{2}\)-Carathéodory function, i.e. it is measurable in the first variable and continuous in the second variable, and for any \(b>0\) there is \(h_{b}\in L^{2}(0,T;\mathbb{R}_{+})\) such that
$$\bigl|g_{1}(t,x)\bigr|\leq h_{b}(t),\quad \mbox{a.e. }t\in[0,T], \forall 0\leq x \leq b. $$

(H4) \(\int^{1}_{0}g_{0}(x)\,dx=-\infty\).

Theorem 3.1

Assume that conditions (H1)-(H4) hold. If \(|\psi|_{\infty}\frac{T^{\frac{p}{q}+1}}{2^{p-1}} (\frac{T}{\pi _{p}} )^{p(n-1)}<1\), then (1.4) has at least a positive T-periodic solution.

Proof

Consider the equation
$$Lx=\lambda Nx, \quad\lambda\in(0,1). $$
Set \(\Omega_{1}=\{x:Lx=\lambda Nx,\lambda\in (0,1)\}\). If \(x(t)=(x_{1}(t),x_{2}(t))^{\top}\in\Omega_{1}\), then
$$ \textstyle\begin{cases} x_{1}^{(n)}(t)=\lambda\varphi_{q}(x_{2}(t)),\\ x_{2}^{(n)}(t)=-\lambda f(x_{1}(t))x_{1}'(t)-\lambda g(t,x_{1}(t-\sigma))+\lambda e(t). \end{cases} $$
(3.3)
Substituting \(x_{2}(t)=\lambda^{1-p}\varphi_{p}[x_{1}^{(n)}(t)]\) into the second equation of (3.3)
$$ \bigl(\varphi_{p} \bigl(x_{1}^{(n)}(t) \bigr) \bigr)^{(n)}+\lambda^{p}f \bigl(x_{1}(t) \bigr)x_{1}'(t)+\lambda ^{p}g \bigl(t,x_{1}(t-\sigma) \bigr)=\lambda^{p}e(t). $$
(3.4)
Integrating both sides of (3.4) from 0 to T, we have
$$ \int^{T}_{0}g \bigl(t,x_{1}(t-\sigma) \bigr) \,dt=0. $$
(3.5)
In view of (H1), there exist positive constants \(D_{1}\), \(D_{2}\), and \(\xi\in[0,T]\) such that
$$D_{1} \leq \bigl|x_{1}(\xi) \bigr|\leq D_{2}. $$
Then we have
$$\bigl|x_{1}(t)\bigr|= \biggl\vert x_{1}(\xi)+ \int^{t}_{\xi}x_{1}'(s)\,ds \biggr\vert \leq D_{2}+ \int^{t}_{\xi}\bigl|x_{1}'(s)\bigr|\,ds, \quad t\in[\xi,\xi+T], $$
and
$$\bigl|x_{1}(t)\bigr|=\bigl|x_{1}(t-T)\bigr|= \biggl\vert x_{1}(\xi)- \int_{t-T}^{\xi}x_{1}'(s)\,ds \biggr\vert \leq D_{2} + \int_{t-T}^{\xi}\bigl|x_{1}'(s)\bigr| \,ds, \quad t\in[\xi,\xi+T]. $$
Combing the above two inequalities, we obtain
$$ \begin{aligned}[b] |x_{1}|_{\infty}&=\max _{t\in[0,T]}\bigl|x_{1}(t)\bigr|=\max_{t\in[\xi,\xi+T]}\bigl|x_{1}(t)\bigr| \\ &\leq\max_{t\in[\xi,\xi+T]} \biggl\{ D_{2}+\frac{1}{2} \biggl( \int^{t}_{\xi}\bigl|x_{1}'(s)\bigr| \,ds+ \int^{\xi}_{t-T}\bigl|x_{1}'(s)\bigr|\,ds \biggr) \biggr\} \\ &\leq D_{2}+\frac{1}{2} \int^{T}_{0}\bigl|x_{1}'(s)\bigr|\,ds. \end{aligned} $$
(3.6)
Multiplying both sides of (3.4) by \(x_{1}(t)\) and integrating over interval \([0,T]\), we get
$$\begin{aligned} & \int^{T}_{0} \bigl(\varphi_{p} \bigl(x_{1}^{(n)}(t) \bigr) \bigr)^{(n)}x_{1}(t) \,dt+\lambda^{p} \int ^{T}_{0}f \bigl(x_{1}(t) \bigr)x_{1}'(t)x_{1}(t)\,dt+ \lambda^{p} \int^{T}_{0}g \bigl(t,x_{1}(t-\sigma) \bigr)x_{1}(t)\,dt \\ &\quad=\lambda^{p} \int^{T}_{0}e(t)x_{1}(t)\,dt. \end{aligned}$$
(3.7)
Substituting \(\int^{T}_{0}(\varphi_{p}(x_{1}^{(n)}(t)))^{(n)}x_{1}(t)\,dt=(-1)^{n}\int ^{T}_{0}|x_{1}^{(n)}(t)|^{p}\,dt\), \(\int^{T}_{0}f(x_{1}(t))x_{1}'(t)x_{1}(t)\,dt=0\) into (3.7), we have
$$(-1)^{n} \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt=-\lambda^{p} \int^{T}_{0}g \bigl(t,x_{1}(t-\sigma ) \bigr)x_{1}(t)\,dt+\lambda^{p} \int^{T}_{0}e(t)x_{1}(t)\,dt. $$
Namely,
$$\begin{aligned} \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt&\leq \int^{T}_{0}\bigl|g \bigl(t,x_{1}(t-\sigma ) \bigr)\bigr|\bigl|x_{1}(t)\bigr|\,dt+ \int^{T}_{0}\bigl|e(t)\bigr|\bigl|x_{1}(t)\bigr|\,dt \\ &\leq|x_{1}|_{\infty}\int^{T}_{0}\bigl|g \bigl(t,x_{1}(t-\sigma) \bigr)\bigr|\,dt+|x_{1}|_{\infty}|e|_{\infty}T. \end{aligned}$$
(3.8)
Write
$$I_{+}= \bigl\{ t\in[0,T]:g \bigl(t,x_{1}(t-\sigma) \bigr)\geq0 \bigr\} ; \qquad I_{-}= \bigl\{ t\in [0,T]:g \bigl(t,x_{1}(t-\sigma) \bigr)\leq0 \bigr\} . $$
Then we get from (3.2) and (3.5)
$$\begin{aligned} \int^{T}_{0}\bigl|g \bigl(t,x_{1}(t-\sigma) \bigr)\bigr|\,dt&= \int_{I_{+}}g \bigl(t,x_{1}(t-\sigma) \bigr)\,dt- \int _{I_{-}}g \bigl(t,x_{1}(t-\sigma) \bigr)\,dt \\ &=2 \int_{I_{+}}g \bigl(t,x_{1}(t-\sigma) \bigr)\,dt \\ &\leq2 \int_{I_{+}} \bigl( \bigl(\psi(t)+\varepsilon \bigr)x_{1}^{p-1}(t- \sigma)+g_{\varepsilon}(t) \bigr)\,dt \\ &\leq2\bigl(|\psi|_{\infty}+\varepsilon\bigr) \int^{T}_{0}\bigl|x_{1}(t)\bigr|^{p-1} \,dt+2 \int ^{T}_{0}\bigl|g_{\varepsilon}(t)\bigr|\,dt. \end{aligned}$$
(3.9)
Substituting (3.9) into (3.8), we have
$$\begin{aligned} \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt\leq{}& 2|x_{1}|_{\infty}\bigl(|\psi|_{\infty}+\varepsilon\bigr) \int^{T}_{0}\bigl|x_{1}(t)\bigr|^{p-1}\,dt \\ &{}+ |x_{1}|_{\infty}\biggl(2 \int^{T}_{0}\bigl|g_{\varepsilon}(t)\bigr| \,dt+|e|_{\infty}T \biggr) \\ \leq{}&2\bigl(|\psi|_{\infty}+\varepsilon\bigr)T|x_{1}|^{p}_{\infty}+|x_{1}|_{\infty}\biggl(2T^{\frac{1}{2}} \biggl( \int^{T}_{0}\bigl|g_{\varepsilon}(t)\bigr|^{2}\,dt \biggr)^{\frac {1}{2}}+|e|_{\infty}T \biggr) \\ ={}&2\bigl(|\psi|_{\infty}+\varepsilon\bigr)T|x_{1}|^{p}_{\infty}+|x_{1}|_{\infty}\bigl(2T^{\frac{1}{2}}|g_{\varepsilon}|_{2}+|e|_{\infty}T \bigr). \end{aligned}$$
(3.10)
From (3.6) and Lemma 2.3, we have
$$\begin{aligned} |x_{1}|_{\infty}&\leq D_{2}+ \frac{1}{2} \int^{T}_{0}\bigl|x_{1}'(t)\bigr|\,dt \leq D_{2}+\frac{T^{\frac{1}{q}}}{2} \biggl( \int^{T}_{0}\bigl|x_{1}'(t)\bigr|^{p} \,dt \biggr)^{\frac {1}{p}} \\ &\leq D_{2}+\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(3.11)
Substituting (3.11) into (3.10), we have
$$\begin{aligned} &\int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt\\ &\quad\leq2\bigl(|\psi|_{\infty}+\varepsilon\bigr)T \biggl(D_{2}+ \frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt \biggr)^{\frac{1}{p}} \biggr)^{p} \\ &\qquad{}+ \biggl(D_{2}+\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt \biggr)^{\frac{1}{p}} \biggr) \bigl(2T^{\frac{1}{2}}|g_{\varepsilon}|_{2}+|e|_{\infty}T \bigr) \\ &\quad=2\bigl(|\psi|_{\infty}+\varepsilon\bigr)T \biggl(\frac{T^{\frac{p}{q}}}{2^{p}} \biggl( \frac{T}{\pi_{p}} \biggr)^{p(n-1)} \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt +pD_{2}\frac{T^{\frac{p-1}{q}}}{2^{p-1}} \biggl(\frac{T}{\pi_{p}} \biggr)^{(p-1)(n-1)} \\ &\qquad{}\cdot \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|\,dt \biggr)^{\frac{p-1}{p}}+\cdots +pD_{2}^{p-1}\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \biggl( \int^{T}_{0}\bigl|x_{1}'(t)\bigr|^{p} \,dt \biggr)^{\frac{1}{p}}+D_{2}^{p} \biggr) \\ &\qquad{}+ \biggl(D_{2}+\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt \biggr)^{\frac{1}{p}} \biggr) \bigl(2T^{\frac{1}{2}}|g_{\varepsilon}|_{2}+|e|_{\infty}T \bigr) \\ &\quad=\bigl(|\psi|_{\infty}+\varepsilon\bigr)\frac{T^{\frac{p}{q}+1}}{2^{p-1}} \biggl( \frac{T}{\pi_{p}} \biggr)^{p(n-1)} \int^{T}_{0}\bigl|x_{1}^{(n)}\bigr|^{p} \,dt \\ &\qquad+\bigl(|\psi|_{\infty}+\varepsilon\bigr)pD_{2}\frac{T^{\frac {p-1}{q}+1}}{2^{p-2}} \biggl( \frac{T}{\pi_{p}} \biggr)^{(p-1)(n-1)} \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt \biggr)^{\frac{p-1}{p}}+\cdots \\ &\qquad{}+ \bigl(2\bigl(|\psi|_{\infty}+ \varepsilon\bigr)TpD_{2}^{p-1}+2T^{\frac {1}{2}}|g_{\varepsilon}|_{2}+|e|_{\infty}T \bigr)\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \\ &\qquad{}\cdot \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt \biggr)^{\frac{1}{p}}+2\bigl(|\psi |_{\infty}+\varepsilon\bigr)TD_{2}^{p}+D_{2} \bigl(2T^{\frac{1}{2}}|g_{\varepsilon}|_{2}+|e|_{\infty}T \bigr). \end{aligned}$$
Since ε sufficiently small, we know that \(|\psi|_{\infty}\frac{T^{\frac{p}{q}+1}}{2^{p-1}} (\frac{T}{\pi _{p}} )^{p(n-1)}<1\). So, it is easy to see that there exists a positive constant \(M_{1}'\) such that
$$\int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt\leq M_{1}'. $$
From (3.11), we have
$$ \begin{aligned}[b] |x_{1}|_{\infty}&\leq D_{2}+ \frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}(t)\bigr|^{p} \,dt \biggr)^{\frac{1}{p}}\\ &\leq D_{2}+\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{n-1} \bigl(M_{1}' \bigr)^{\frac{1}{p}}:=M_{1}. \end{aligned} $$
(3.12)
Since \(x_{1}(0)=x_{1}(T)\), there exists a point \(\eta_{1}\in[0,T]\) such that \(x_{1}'(\eta_{1})=0\). From Lemma 2.3, we can easily get
$$\begin{aligned} \bigl|x_{1}'\bigr|_{\infty}&\leq \frac{1}{2} \int^{T}_{0}\bigl|x_{1}''(t)\bigr| \,dt \\ &\leq\frac{T^{\frac{1}{q}}}{2} \biggl( \int^{T}_{0}\bigl|x_{1}''(t)\bigr|^{p} \,dt \biggr)^{\frac {1}{p}} \\ &\leq\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{(n-2)} \biggl( \int^{T}_{0}\bigl|x_{1}^{(n)}\bigr|^{p} \biggr)^{\frac{1}{p}} \\ &\leq\frac{T^{\frac{1}{q}}}{2} \biggl(\frac{T}{\pi_{p}} \biggr)^{(n-2)} \bigl(M_{1}' \bigr)^{\frac{1}{p}}:=M_{2}. \end{aligned}$$
(3.13)
On the other hand, form \(x_{2}^{(n-2)}(0)=x_{2}^{(n-2)}(T)\), there exists a point \(\eta_{2}\in[0,T]\) such that \(x_{2}^{(n-1)}(\eta_{2})=0\), from the second equation of (3.3) and (3.9), we have
$$\begin{aligned} \bigl|x_{2}^{(n-1)}\bigr|_{\infty}&\leq\frac{1}{2}\max \biggl\vert \int ^{T}_{0}x_{2}^{(n)}(t)\,dt \biggr\vert \\ &\leq\frac{\lambda}{2} \int^{T}_{0}\bigl|-f \bigl(x_{1}(t) \bigr)x_{1}'(t)-g(t,x_{1} \bigl(t,x_{1}(t- \sigma ) \bigr)+e(t)\bigr|\,dt \\ &\leq\frac{\lambda}{2} \bigl(|f|_{M_{1}}TM_{2}+2\bigl(| \psi|_{\infty}+\varepsilon \bigr)TM_{1}^{p-1}+2 \sqrt{T}|g_{\varepsilon}|_{2}+T|e|_{\infty}\bigr):=\lambda M_{n-1}, \end{aligned}$$
where \(|f|_{M_{1}}=\max\limits_{0< x_{1}(t)\leq M_{1}}|f(x_{1}(t))|\). Since \(x_{2}(0)=x_{2}(T)\), there exists a point \(\eta_{3}\in[0,T]\) such that \(x_{2}'(\eta_{3})=0\). From the Wirtinger inequality (see [18], Lemma 2.4), we can easily get
$$\begin{aligned} \bigl|x_{2}'\bigr|_{\infty}&\leq \frac{1}{2} \int^{T}_{0}\bigl|x_{2}''(t)\bigr| \,dt\leq \frac{T^{\frac{1}{2}}}{2} \biggl( \int^{T}_{0}\bigl|x_{2}''(t)\bigr|^{2} \,dt \biggr)^{\frac{1}{2}} \\ &\leq\frac{T}{2} \biggl(\frac{T}{2\pi} \biggr)^{(n-3)}\bigl|x_{2}^{(n-1)}\bigr|_{\infty} \\ &\leq\frac{T}{2} \biggl(\frac{T}{2\pi} \biggr)^{(n-3)} ( \lambda M_{n-1}):=\lambda M_{3}. \end{aligned}$$
(3.14)
By the first equation of (3.3), we have
$$\int^{T}_{0} \bigl|x_{2}(t) \bigr|^{q-2}x_{2}(t) \,dt=0, $$
which implies that there is a constant \(\eta_{4}\in[0,T]\) such that \(x_{2}(\eta_{4})=0\), so
$$ |x_{2}|_{\infty}\leq\frac{1}{2} \int^{T}_{0}\bigl|x_{2}'(t)\bigr|\,dt \leq\frac {T}{2}\bigl|x_{2}'\bigr|_{\infty}\leq \frac{\lambda T}{2}M_{3}:=\lambda M_{4}. $$
(3.15)
Next, it follows from (3.4) that
$$ \bigl(\varphi_{p} \bigl(x_{1}^{(n)}(t+ \sigma) \bigr) \bigr)^{(n)}+\lambda^{p} \bigl(f \bigl(x_{1}(t+\sigma ) \bigr)x_{1}'(t+\sigma)+g \bigl(t+\sigma,x_{1}(t) \bigr) \bigr)=\lambda^{p} e(t+\sigma). $$
(3.16)
Namely,
$$\begin{aligned} &\bigl(\varphi_{p} \bigl(x_{1}^{(n)}(t+ \sigma) \bigr) \bigr)^{(n)}+\lambda^{p}f \bigl(x_{1}(t+ \sigma ) \bigr)x_{1}'(t+\sigma)+\lambda^{p}(g_{0} \bigl(x_{1}(t) \bigr)+g_{1} \bigl(t+\sigma,x_{1}(t) \bigr) \\ &\quad=\lambda^{p} e(t+\sigma). \end{aligned}$$
(3.17)
Multiplying both sides of (3.17) by \(x_{1}'(t)\), we get
$$\begin{aligned} &\bigl(\varphi_{p} \bigl(x_{1}^{(n)}(t+ \sigma) \bigr) \bigr)^{(n)}x_{1}'(t)+ \lambda^{p}f \bigl(x_{1}(t+\sigma ) \bigr)x_{1}'(t+ \sigma)x_{1}'(t) \\ &\qquad{}+\lambda^{p}g_{0} \bigl(x_{1}(t) \bigr)x_{1}'(t)+\lambda ^{p}g_{1} \bigl(t+\sigma,x_{1}(t) \bigr)x_{1}'(t) \\ &\quad=\lambda^{p} e(t+ \sigma)x_{1}'(t). \end{aligned}$$
(3.18)
Let \(\tau\in[0,T]\), for any \(\tau\leq t\leq T\), we integrate (3.18) on \([\tau, t]\) and get
$$\begin{aligned} &\lambda^{p} \int^{x_{1}(t)}_{x_{1}(\tau)}g_{0}(u)\,du \\ &\quad=\lambda^{p} \int^{t}_{\tau }g_{0} \bigl(x_{1}(s) \bigr)x_{1}'(s)\,ds \\ &\quad=- \int^{t}_{\tau} \bigl(\varphi_{p} \bigl(x_{1}^{(n)}(s+\sigma) \bigr) \bigr)^{(n)}x_{1}'(s) \,ds-\lambda ^{p} \int^{t}_{\tau}f \bigl(x_{1}(s+\sigma) \bigr)x_{1}'(s+\sigma)x_{1}'(s) \,ds \\ &\qquad{}-\lambda^{p} \int^{t}_{\tau}g_{1} \bigl(s+ \sigma,x_{1}(s) \bigr)x_{1}'(s)\,ds+ \lambda^{p} \int ^{t}_{\tau}e(s+\sigma)x_{1}'(s) \,ds. \end{aligned}$$
(3.19)
By (3.12), (3.13), and (3.16), we have
$$\begin{aligned} &\biggl\vert \int^{t}_{\tau} \bigl(\varphi_{p} \bigl(x_{1}^{(n)}(s+\sigma ) \bigr) \bigr)^{(n)}x_{1}'(s) \,ds \biggr\vert \\ &\quad\leq \int^{t}_{\tau}\bigl| \bigl(\varphi _{p} \bigl(x_{1}^{(n)}(s+\sigma) \bigr) \bigr)^{(n)}\bigr|\bigl|x_{1}'(s)\bigr| \,ds \\ &\quad\leq\bigl|x_{1}'\bigr|_{\infty}\int^{T}_{0}\bigl| \bigl(\varphi_{p} \bigl(x_{1}^{(n)}(t+\sigma) \bigr) \bigr)^{(n)}\bigr|\,dt \\ &\quad\leq\lambda^{p}\bigl|x_{1}'\bigr|_{\infty}\biggl( \int^{T}_{0}\bigl|f \bigl(x_{1}(t) \bigr)\bigr|\bigl|x_{1}'(t)\bigr|\,dt+ \int^{T}_{0}\bigl|g \bigl(t,x_{1}(t-\sigma ) \bigr)\bigr|\,dt+ \int^{T}_{0}\bigl|e(t)\bigr|\,dt \biggr) \\ &\quad\leq\lambda^{p} M_{2} \bigl(|f|_{M_{1}}M_{2} +2\bigl(|\psi|_{\infty}+\varepsilon\bigr)TM_{1}^{p-1}+2T^{\frac{1}{2}} \bigl|g_{\varepsilon}^{+}\bigr|_{2} +T|e|_{\infty}\bigr). \end{aligned}$$
Also we have
$$\begin{aligned} & \biggl\vert \int^{t}_{\tau}f \bigl(x_{1}(s+\sigma) \bigr)x_{1}'(s+\sigma)x_{1}'(s) \,ds \biggr\vert \leq |f|_{M_{1}}M_{2}^{2}T, \\ & \biggl\vert \int^{t}_{\tau}g \bigl(s+\sigma,x_{1}(s) \bigr)x_{1}'(s)\,ds \biggr\vert \leq\bigl|x_{1}'\bigr|_{\infty}\int^{T}_{0}\bigl|g(t,x(t-\sigma)\bigr|\,dt\leq M_{2}\sqrt{T}|g_{M_{1}}|_{2}, \end{aligned}$$
where \(g_{M_{1}}=\max\limits_{0\leq x\leq M_{1}}|g_{1}(t,x)|\in L^{2}(0,T)\) is as in (H3).
$$\biggl\vert \int^{t}_{\tau}e(t+\sigma)x_{1}'(t) \,dt \biggr\vert \leq M_{2}T|e|_{\infty}. $$
From these inequalities we can derive form (3.19) that
$$ { } \biggl\vert \int^{x_{1}(t)}_{x_{1}(\tau)}g_{0}(u)\,du \biggr\vert \leq M_{5}', $$
(3.20)
for some constant \(M_{5}'\) which is independent on λ, x, and t. In view of the strong force condition (H4), we know that there exists a constant \(M_{5}>0\) such that
$$ x_{1}(t)\geq M_{5},\quad \forall t\in[ \tau,T]. $$
(3.21)
The case \(t\in[0,\tau]\) can be treated similarly.
From (3.12), (3.13), (3.14), (3.15), and (3.21), we get
$$\begin{aligned} \Omega={}& \bigl\{ x=(x_{1},x_{2})^{\top}: E_{1}\leq|x_{1}|_{\infty}\leq E_{2}, \bigl|x_{1}'\bigr|_{\infty}\leq E_{3}, |x_{2}|_{\infty}\leq E_{4} \mbox{ and}\\ &{} \bigl|x_{2}'\bigr|_{\infty}\leq E_{5} , \forall t \in[0,T] \bigr\} , \end{aligned}$$
where \(0< E_{1}<\min(M_{5}, D_{1})\), \(E_{2}>\max(M_{1}, D_{2}) \), \(E_{3}>M_{2}\), \(E_{4}>M_{4}\), and \(E_{5}>M_{3}\). \(\Omega_{2}=\{x:x\in\partial\Omega\cap \operatorname{Ker} L\}\), then \(\forall x\in \partial\Omega\cap \operatorname{Ker} L\)
$$ QNx=\frac{1}{T} \int^{T}_{0} \begin{pmatrix} \varphi_{q}(x_{2}(t))\\ -f(x_{1}(t))x_{1}'(t)-g(t,x_{1}(t-\sigma))+e(t) \end{pmatrix}\,dt. $$
If \(QNx=0\), then \(x_{2}(t)=0\), \(x_{1}=E_{2}\) or \(-E_{2}\). But if \(x_{1}(t)=E_{2}\), we know
$$0= \int^{T}_{0} \bigl\{ g(t,E_{2})-e(t) \bigr\} \,dt. $$
From assumption (H2), we have \(x_{1}(t)\leq D_{2}\leq E_{2}\), which yields a contradiction. Similarly if \(x_{1}=-E_{2}\). We also have \(QNx\neq0\), i.e., \(\forall x\in\partial\Omega\cap \operatorname{Ker} L\), \(x\notin \operatorname{Im} L\), so conditions (1) and (2) of Lemma 2.1 are both satisfied. Define the isomorphism \(J:\operatorname{Im} Q\rightarrow \operatorname{Ker} L\) as follows:
$$J(x_{1},x_{2})^{\top}=(x_{2},-x_{1})^{\top}. $$
Let \(H(\mu,x)=-\mu x+(1-\mu)JQNx\), \((\mu,x)\in[0,1]\times\Omega\), then \(\forall (\mu,x)\in(0,1)\times(\partial\Omega\cap \operatorname{Ker} L)\),
$$ H(\mu,x)= \begin{pmatrix}-\mu x_{1}-\frac{1-\mu}{T}\int^{T}_{0}[g(t,x_{1})-e(t)]\,dt\\ -\mu x_{2}-(1-\mu)|x_{2}|^{q-2}x_{2} \end{pmatrix} . $$
We have \(\int^{T}_{0}e(t)\,dt=0\). So, we can get
$$\begin{aligned} H(\mu,x)= \begin{pmatrix}-\mu x_{1}-\frac{1-\mu}{T}\int^{T}_{0}g(t,x_{1})\,dt\\ -\mu x_{2}-(1-\mu)|x_{2}|^{q-2}x_{2} \end{pmatrix} , \quad\forall (\mu,x)\in(0,1)\times(\partial\Omega\cap \operatorname{Ker} L). \end{aligned}$$
From (H2), it is obvious that \(x^{\top}H(\mu,x)<0\), \(\forall (\mu,x)\in(0,1)\times(\partial\Omega\cap \operatorname{Ker} L)\). Hence
$$\begin{aligned}[b] \deg\{JQN,\Omega\cap \operatorname{Ker} L,0\}&=\deg \bigl\{ H(0,x),\Omega\cap \operatorname{Ker} L,0 \bigr\} \\ &=\deg \bigl\{ H(1,x),\Omega\cap \operatorname{Ker} L,0 \bigr\} \\ &=\deg\{I,\Omega\cap \operatorname{Ker} L,0\}\neq0. \end{aligned} $$
So condition (3) of Lemma 2.1 is satisfied. By applying Lemma 2.1, we conclude that the equation \(Lx=Nx\) has a solution \(x=(x_{1},x_{2})^{\top}\) on \(\bar{\Omega}\cap D(L)\), i.e., (1.4) has a positive T-periodic solution \(x_{1}(t)\). □

Example 3.1

Consider the high-order p-Laplacian differential equation with singularity
$$ \bigl(\varphi_{p} \bigl(x(t)''' \bigr)\bigr)''''+f \bigl(x(t) \bigr)x'(t)+\frac{1}{6}(\sin2t+3)x^{3}(t-\sigma )- \frac{1}{x^{\kappa}(t-\sigma)}=\cos 2t, $$
(3.22)
where \(\kappa\geq1\) and \(p=4\), f is continuous function, σ is a constant, and \(0\leq\sigma< T\).
It is clear that \(T=\pi\), \(n=3\), \(g(t,x)=\frac{1}{6}(\sin2t+3)x^{3}(t-\sigma)-\frac{1}{x^{\kappa}(t-\sigma)}\), \(\psi(t)=\frac{1}{6}(\sin2t+3)\), \(|\psi|_{\infty}=\frac{2}{3}\). It is obvious that (H1)-(H4) hold. Now we consider the assumption condition
$$\begin{aligned} &|\psi|_{\infty}\frac{T^{\frac{p}{q}+1}}{2^{p-1}} \biggl(\frac{T}{\pi _{p}} \biggr)^{p(n-1)} \\ &\quad=|\psi|_{\infty}\frac{T^{\frac{p}{q}+1}}{2^{p-1}} \biggl(\frac{T}{\frac {2\pi(p-1)^{1/p}}{p\sin(\pi/p)}} \biggr)^{p(n-1)} \\ &\quad=\frac{2}{3}\cdot\frac{\pi^{\frac{4}{3}}}{2^{3}} \biggl(\frac{\pi}{\frac {2\pi(4-1)^{1/4}}{4\sin{\pi/4}}} \biggr)^{8} \\ &\quad=\frac{4\pi^{\frac{4}{3}}}{27}< 1. \end{aligned}$$

So by Theorem 3.1, we know (3.22) has at least one positive π-periodic solution.

Declarations

Acknowledgements

YX and SZ would like to thank the referee for invaluable comments and insightful suggestions. This work was supported by Natural Science Foundation of China (No. 11326124) and the Fundamental Research Funds for the Universities of Henan Province (NSFRF140142).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454000, China

References

  1. Taliaferro, S: A nonlinear singular boundary value problem. Nonlinear Anal. TMA 3, 897-904 (1979) View ArticleMathSciNetMATHGoogle Scholar
  2. Zhang, MR: Periodic solutions of linear and quasilinear neutral functional differential equations. J. Math. Anal. Appl. 189, 378-392 (1995) View ArticleMathSciNetMATHGoogle Scholar
  3. Wang, ZH: Periodic solutions of Liénard equation with a singularity and a deviating argument. Nonlinear Anal., Real World Appl. 16, 227-234 (2014) View ArticleMathSciNetMATHGoogle Scholar
  4. Cheng, ZB: Existence of positive periodic solutions for third-order differential equation with strong singularity. Adv. Differ. Equ. 2014, 162 (2014) View ArticleGoogle Scholar
  5. Torres, P: Weak singularities may help periodic solutions to exist. J. Differ. Equ. 232, 277-284 (2007) View ArticleMATHGoogle Scholar
  6. Li, X, Zhang, ZH: Periodic solutions for damped differential equations with a weak repulsive singularity. Nonlinear Anal. TMA 70, 2395-2399 (2009) View ArticleMATHGoogle Scholar
  7. Chu, JF, Torres, P, Zhang, MR: Periodic solution of second order non-autonomous singular dynamical systems. J. Differ. Equ. 239, 196-212 (2007) View ArticleMathSciNetMATHGoogle Scholar
  8. Wang, HY: Positive periodic solutions of singular systems with a parameter. J. Differ. Equ. 249, 2986-3002 (2010) View ArticleMATHGoogle Scholar
  9. Chu, JF, Zhou, ZC: Positive solutions for singular non-linear third-order periodic boundary value problems. Nonlinear Anal. TMA 64, 1528-1542 (2006) View ArticleMathSciNetMATHGoogle Scholar
  10. Cheng, ZB, Ren, JL: Periodic and subharmonic solutions for Duffing equation with singularity. Discrete Contin. Dyn. Syst., Ser. A 32, 1557-1574 (2012) View ArticleMathSciNetMATHGoogle Scholar
  11. Fonda, A, Manásevich, R: Subharmonics solutions for some second order differential equations with singularities. SIAM J. Math. Anal. 24, 1294-1311 (1993) View ArticleMathSciNetMATHGoogle Scholar
  12. Xia, J, Wang, ZH: Existence and multiplicity of periodic solutions for the Duffing equation with singularity. Proc. R. Soc. Edinb., Sect. A 137, 625-645 (2007) View ArticleMathSciNetMATHGoogle Scholar
  13. Cheng, ZB, Ren, JL: Studies on a damped differential equation with repulsive singularity. Math. Methods Appl. Sci. 36, 983-992 (2013) View ArticleMathSciNetMATHGoogle Scholar
  14. Cheng, ZB, Ren, JL: Multiplicity results of positive solutions for four-order nonlinear differential equation with singularity. Math. Methods Appl. Sci. (2015). doi:10.1002/mma.3481 Google Scholar
  15. Ren, JL, Cheng, ZB, Chen, YL: Existence results of periodic solutions for third-order nonlinear singular differential equation. Math. Nachr. 286, 1022-1042 (2013) View ArticleMathSciNetMATHGoogle Scholar
  16. Gaines, RE, Mawhin, JL: Coincidence Degree and Nonlinear Differential Equation. Springer, Berlin (1977) Google Scholar
  17. Zhang, MR: Nonuniform nonresonance at the first eigenvalue of the p-Laplacian. Nonlinear Anal. TMA 29, 41-51 (1996) View ArticleGoogle Scholar
  18. Torres, P, Cheng, ZB, Ren, JL: Non-degeneracy and uniqueness of periodic solutions for 2n-order differential equations. Discrete Contin. Dyn. Syst. 33, 2155-2168 (2013) View ArticleMathSciNetMATHGoogle Scholar

Copyright

© Xin and Zhao 2016

Advertisement