Skip to main content

Theory and Modern Applications

Variational approach to impulsive differential system

Abstract

In this work, we consider a nonlinear Dirichlet problem with impulses and obtain the existence of solutions to an impulsive problem by means of variational methods.

1 Introduction

In this paper, we deal with the following impulsive differential system of the form

$$ \left \{ \textstyle\begin{array}{l} -u''(t)+g(t)u(t)=f_{u}(u,v), \quad \mbox{a.e. } t\in[0,T], \\ -v''(t)+h(t)v(t)=f_{v}(u,v),\quad \mbox{a.e. } t\in[0,T], \\ u(0)=u(T)=v(0)=v(T)=0, \\ \Delta u'(t_{k})=u'(t_{k}^{+})-u'(t_{k}^{-})=I_{k}(u(t_{k})), \\ \Delta v'(t_{k})=v'(t_{k}^{+})-v'(t_{k}^{-})=J_{k}(v(t_{k})),\quad k=1,2,\ldots,m, \end{array}\displaystyle \right . $$
(1.1)

where \(t_{0}=0< t_{1}< t_{2}<\cdots<t_{m}<t_{m+1}=T\), \(g,h\in L^{\infty}[0,T]\), \(f_{u},f_{v}:{\mathbb{R}}^{2}\rightarrow{\mathbb{R}}\) are continuous, and \(I_{k},J_{k}:{\mathbb{R}}\rightarrow{\mathbb{R}}\), \(k=1,2,\ldots,m\), are continuous.

We point out that many dynamical systems have an impulsive dynamical behavior due to abrupt changes at certain instants during the evolution process. The mathematical description of these phenomena leads to impulsive differential equations. Based on the significance, a lot of developments have been made in the theory and applications of impulsive differential systems by numerous mathematicians. We refer the reader to the classical monograph (see [1, 2]), the general works on the theory (see [3–10]) and applications of impulsive differential equations which occur in biology, control theory, optimization theory, population dynamics, medicine, mechanics, engineering and chaos theory, etc. (see [11–27]). These classical techniques contain fixed point theory, topological degree theory and comparison method (including monotone iterative method and upper and lower solutions methods).

For a second order differential equation \(u''=f(t,u,u')\), one usually considers, as impulsive, the position u and the velocity \(u'\). However, in the motion of spacecraft one has to deal with instantaneous impulses depending on the position that results in jump discontinuities in velocity, but no change in position (see [12, 28–30]). The impulses only on the velocity occur also in impulsive mechanics.

Many problems can be solved in terms of the minimization of a functional, usually related to the energy, in an appropriate space of functions. The purpose of this work is to investigate the variational structure under the impulsive differential system (1.1). Based on variational method, we introduce a different concept of solution, that is, a weak solution to problem (1.1). The critical points of the corresponding functional are indeed weak solutions of the impulsive problem (1.1). For the impulsive Dirichlet boundary value problems, the known results obtained by variational approach and critical point theory are as follows.

In [31], to the best of our knowledge, Tian and Ge firstly study the impulsive differential problem by variational method. They deal with the following problem:

$$ \left \{ \textstyle\begin{array}{l} (\rho(t)\phi_{p}(u'(t)))'+s(t)\phi_{p}(u(t))=f(t,u(t)), \quad \mbox{a.e. } t\in [a,b], \\ \Delta(\rho(t_{j})\phi_{p}(u'(t_{j})))=I_{j}(u(t_{j})),\quad j=1,2,\ldots,p, \\ \alpha u'(a)+\beta u(a)=A,\qquad \gamma u(b)+\sigma u'(b)=B, \end{array}\displaystyle \right . $$
(1.2)

and essentially prove that when f and \(I_{j}\) satisfy some conditions, problem (1.2) has at least two positive solutions via variational method.

Nieto and O’Regan [32] consider the impulsive linear problem

$$ \left \{ \textstyle\begin{array}{l} -u''(t)+\lambda u(t)=\sigma(t),\quad \mbox{a.e. } t\in[0,T], \\ u(0)=u(T)=0, \\ \Delta u'(t_{j})=u'(t_{j}^{+})-u'(t_{j}^{-})=d_{j},\quad j=1,2,\ldots,p, \end{array}\displaystyle \right . $$
(1.3)

and the impulsive nonlinear problem

$$ \left \{ \textstyle\begin{array}{l} -u''(t)+\lambda u(t)=f(t,u(t)), \quad \mbox{a.e. } t\in[0,T], \\ u(0)=u(T)=0, \\ \Delta u'(t_{j})=I_{j}(u(t_{j})),\quad j=1,2,\ldots,p, \end{array}\displaystyle \right . $$
(1.4)

where \(d_{j}\) are constants, \(I_{j}:{\mathbb{R}}\rightarrow{\mathbb{R}}\), \(j=1,2,\ldots,p\), are continuous, \(f:[0,T]\times{\mathbb{R}}\rightarrow{\mathbb{R}}\) is continuous. They exhibit the variational formulations for problems (1.3) and (1.4) and establish the existence and multiplicity of solutions using standard results of critical point theory. For more results, we refer the reader to [33–35].

In this paper we consider the impulsive nonlinear coupled differential system (1.1) motivated by the results [32–35]. Our main result extends the studies made in [32–35] in the sense that we are concerned with a class of problems that is not considered in the papers.

Throughout the paper, we need the following conditions.

(H1):

Assume that \(\alpha>-\lambda_{1}\), where \(\alpha=\min\{ \operatorname{ess}\inf_{t\in[0,T]}g(t), \operatorname{ess}\inf_{t\in[0,T]}h(t)\}\) and \(\lambda_{1}=\frac{\pi^{2}}{T^{2}}\) is the first eigenvalue of the problem

$$ \left \{ \textstyle\begin{array}{l} -u''(t)=\lambda u(t), \quad t\in[0,T], \\ u(0)=u(T)=0. \end{array}\displaystyle \right . $$
(H2):

There exist \(a,b>0\) and \(\gamma_{1},\gamma_{2} \in[0,1)\) such that

$$\bigl\vert f_{x}(x,y)\bigr\vert \leq a+b|x|^{\gamma_{1}}\quad \mbox{for every } (x,y)\in{\mathbb{R}}^{2} $$

and

$$\bigl\vert f_{y}(x,y)\bigr\vert \leq a+b|y|^{\gamma_{2}}\quad \mbox{for every } (x,y)\in{\mathbb{R}}^{2}. $$
(H3):

There exist \(a_{k},b_{k}>0\) and \(\beta_{k}\in[0,1)\) (\(k=1,2,\ldots,m\)) such that

$$\bigl\vert I_{k}(u)\bigr\vert \leq a_{k}+b_{k}|u|^{\beta_{k}} \quad \mbox{for every } u\in{\mathbb{R}} $$

and

$$\bigl\vert J_{k}(v)\bigr\vert \leq a_{k}+b_{k}|v|^{\beta_{k}} \quad \mbox{for every } v\in{\mathbb{R}}. $$

The main result of this paper is the following.

Theorem 1.1

Let assumptions (H1)-(H3) be satisfied. Then problem (1.1) has at least one nontrivial solution.

Obviously, Theorem 3.2 in [35] is a special case of Theorem 1.1 in this paper.

This paper is organized as follows. In Section 2, we introduce a Hilbert space \(X=H_{0}^{1}(0,T)\times H_{0}^{1}(0,T)\), on which the corresponding functional Φ of problem (1.1) is defined. Furthermore, we give some necessary notations and preliminaries. In Section 3, we prove the main result via variational approach.

2 Variational structure

Let \(L^{p}[0,T]\) be the space formed by functions which are p-times integrable on \([0,T]\) under the norm

$$\|u\|_{L^{p}}= \biggl(\int_{0}^{T}\bigl\vert u(t)\bigr\vert ^{p}\, dt \biggr)^{\frac{1}{p}} $$

and \(C[0,T]\) be the space of all continuous functions on \([0,T]\) with the norm

$$\|u\|_{\infty}=\max_{t\in[0,T]}\bigl\vert u(t)\bigr\vert . $$

In the Sobolev space \(H_{0}^{1}(0,T)\), we consider the inner conduct

$$(u,v)_{1}=\int_{0}^{T}u'(t)v'(t) \, dt $$

and

$$(u,v)_{2}=\int_{0}^{T}u(t)v(t)\, dt+ \int_{0}^{T}u'(t)v'(t)\, dt, $$

which induce the corresponding norms

$$\|u\|_{1}= \biggl(\int_{0}^{T}\bigl\vert u'(t)\bigr\vert ^{2}\, dt \biggr)^{\frac{1}{2}} $$

and

$$\|u\|_{2}= \biggl(\int_{0}^{T}\bigl\vert u(t)\bigr\vert ^{2}\, dt+\int_{0}^{T} \bigl\vert u'(t)\bigr\vert ^{2}\, dt \biggr)^{\frac{1}{2}}. $$

By Poincaré’s inequality,

$$\lambda_{1}\int_{0}^{T}u^{2}(t) \, dt\leq\int_{0}^{T}\bigl\vert u'(t)\bigr\vert ^{2}\, dt \quad \mbox{for any } u\in H_{0}^{1}(0,T), $$

we easily obtain that the norms \(\|\cdot\|_{1}\) and \(\|\cdot\|_{2}\) are equivalent. Set \(X=H_{0}^{1}(0,T)\times H_{0}^{1}(0,T)\). In the Hilbert space X, for any \((u,v)\in X\), we set the norm

$$\bigl\Vert (u,v)\bigr\Vert ^{2}=\|u\|_{1}^{2}+ \|v\|_{1}^{2}. $$

By (H1), we also introduce the norm

$$\bigl\Vert (u,v)\bigr\Vert _{X}= \biggl(\int_{0}^{T} \bigl(\bigl\vert u'(t)\bigr\vert ^{2}+g(t)u^{2}(t) \bigr)\, dt+\int_{0}^{T}\bigl(\bigl\vert v'(t)\bigr\vert ^{2}+h(t)v^{2}(t)\bigr)\, dt \biggr)^{\frac{1}{2}}. $$

We have the following results.

Lemma 2.1

Assume that assumption (H1) holds, then, for the Sobolev space X, the norm \(\|\cdot\|\) and the norm \(\|\cdot\|_{X}\) are equivalent.

Proof

Since \(\alpha>-\lambda_{1}\), there exists \(c_{1}\in(0,1)\) such that \(-\alpha\leq\lambda_{1}(1-c_{1})\). Using Poincaré’s inequality, we have

$$\begin{aligned} (1-c_{1})\int_{0}^{T}\bigl\vert u'(t)\bigr\vert ^{2}\,dt \geq& (1-c_{1}) \lambda_{1}\int_{0}^{T}\bigl\vert u(t) \bigr\vert ^{2}\,dt \\ \geq& -\alpha\int_{0}^{T}\bigl\vert u(t)\bigr\vert ^{2}\,dt \end{aligned}$$

for any \(u\in H_{0}^{1}(0,T)\). Thus, we get

$$\begin{aligned} \bigl\Vert (u,v)\bigr\Vert _{X}^{2} =& \int _{0}^{T}\bigl(\bigl\vert u'(t)\bigr\vert ^{2}+g(t)u^{2}(t)\bigr)\,dt+\int_{0}^{T} \bigl(\bigl|v'(t)\bigr|^{2}+h(t)v^{2}(t)\bigr)\,dt \\ \geq& c_{1}\bigl(\Vert u\Vert _{1}^{2}+ \Vert v\Vert _{1}^{2}\bigr)=c_{1}\bigl\Vert (u,v)\bigr\Vert ^{2}. \end{aligned}$$

Moreover, one has

$$\begin{aligned} \bigl\Vert (u,v)\bigr\Vert _{X}^{2} =& \int _{0}^{T}\bigl(\bigl\vert u'(t)\bigr\vert ^{2}+g(t)u^{2}(t)\bigr)\,dt+\int_{0}^{T} \bigl(\bigl\vert v'(t)\bigr\vert ^{2}+h(t)v^{2}(t) \bigr)\,dt \\ \leq& \Vert g\Vert _{\infty}\int_{0}^{T}u^{2}(t)\,dt+ \Vert h\Vert _{\infty}\int_{0}^{T}v^{2}(t)\,dt+ \int_{0}^{T}\bigl(\bigl\vert u'(t) \bigr\vert ^{2}+\bigl\vert v'(t)\bigr\vert ^{2}\bigr)\,dt \\ \leq& \biggl(\max\biggl\{ \frac{\Vert g\Vert _{\infty}}{\lambda_{1}},\frac{\Vert h\Vert _{\infty}}{\lambda _{1}}\biggr\} +1 \biggr) \bigl\Vert (u,v)^{2}\bigr\Vert . \end{aligned}$$

Thereby, the norm \(\|\cdot\|\) and the norm \(\|\cdot\|_{X}\) are equivalent. □

Lemma 2.2

For any \((u,v)\in X\), there exists \(c_{2}>0\) such that \(\|u\|_{\infty},\|v\|_{\infty}\leq c_{2} \|(u,v)\|_{X}\).

Proof

For any \((u,v)\in X\), by the mean value theorem, there exists a constant \(\tau\in[0,T]\) such that

$$u(\tau)=\frac{1}{T}\int_{0}^{T}u(s)\, ds. $$

Furthermore, using Hölder’s inequality and Poincaré’s inequality, we have

$$\begin{aligned} \bigl|u(t)\bigr| =& \biggl\vert u(\tau)+\int_{\tau}^{t}u'(s) \, ds\biggr\vert \\ \leq& \frac{1}{T}\int_{0}^{T}\bigl\vert u(s)\bigr\vert \, ds+\int_{0}^{T}\bigl\vert u'(s)\bigr\vert \, ds \\ \leq& T^{-\frac{1}{2}}\|u\|_{L^{2}}+T^{\frac{1}{2}}\bigl\Vert u'\bigr\Vert _{L^{2}} \\ \leq& \bigl((\lambda_{1}T)^{-\frac{1}{2}}+T^{\frac{1}{2}}\bigr)\bigl\Vert u'\bigr\Vert _{L^{2}} \\ \leq& \bigl((\lambda_{1}T)^{-\frac{1}{2}}+T^{\frac{1}{2}}\bigr)\bigl\Vert (u,v)\bigr\Vert . \end{aligned}$$
(2.1)

Combining Lemma 2.1 and (2.1), there exists \(c_{2}>0\) such that

$$\|u\|_{\infty}\leq c_{2} \bigl\Vert (u,v)\bigr\Vert _{X}. $$

Similarly, we can get

$$\|v\|_{\infty}\leq c_{2} \bigl\Vert (u,v)\bigr\Vert _{X}. $$

 □

In the following, we are concerned with problem (1.1) subject to impulses in the derivative at the prescribed instants \(t_{k}\), \(k=1,2,\ldots,m\). We are interested in the solution \((u,v)\) of problem (1.1) satisfying the impulse conditions

$$ \Delta u'(t_{k})=u' \bigl(t_{k}^{+}\bigr)-u'\bigl(t_{k}^{-} \bigr)=I_{k}\bigl(u(t_{k})\bigr) $$
(2.2)

and

$$ \Delta v'(t_{k})=v' \bigl(t_{k}^{+}\bigr)-v'\bigl(t_{k}^{-} \bigr)=J_{k}\bigl(v(t_{k})\bigr),\quad k=1,2,\ldots,m. $$
(2.3)

For \(u,v \in H^{2}(0,T)\), we have that u, v, \(u'\) and \(v'\) are both absolutely continuous. Meanwhile, \(u'',v''\in L^{2}(0,T)\). Hence, \(u'(t^{+})=u'(t^{-})\) and \(v'(t^{+})=v'(t^{-})\) for any \(t\in[0,T]\). If \(u,v\in H_{0}^{1}(0,T)\), then u, v are absolutely continuous and \(u',v'\in L^{2}(0,T)\). In this case, the one-sided derivatives \(u'(t^{+})\), \(u'(t^{-})\), \(v'(t^{+})\) and \(v'(t^{-})\) may not exist. Thus, we need to introduce a concept of solution which is different from a classical solution. We say that \((u,v)\) is a classical solution of problem (1.1) if it satisfies the corresponding equations a.e. on \([0,T]\), the limits \(u'(t_{k}^{+})\), \(u'(t_{k}^{-})\), \(v'(t_{k}^{+})\) and \(v'(t_{k}^{-})\), \(k=1,2,\ldots,m\), exist and (2.2), (2.3) hold.

Taking \((\varphi,\psi)\in X\) and multiplying the two sides of the equalities

$$-u''(t)+g(t)u(t)=f_{u}(u,v) $$

and

$$-v''(t)+h(t)v(t)=f_{v}(u,v) $$

by φ and ψ respectively, then integrating from 0 to T, we have

$$ -\int_{0}^{T} u''(t) \varphi \, dt +\int_{0}^{T} g(t)u(t)\varphi(t) \, dt=\int_{0}^{T} f_{u}\bigl(u(t),v(t) \bigr)\varphi(t) \, dt $$
(2.4)

and

$$ -\int_{0}^{T} v''(t) \psi \,dt +\int_{0}^{T} h(t)v(t)\psi(t) \,dt=\int _{0}^{T} f_{v}\bigl(u(t),v(t)\bigr) \psi(t) \,dt. $$
(2.5)

The first terms of (2.4) and (2.5) are now

$$\begin{aligned} -\int_{0}^{T} u''(t) \varphi \,dt&= -\sum_{k=0}^{m}\int _{t_{k}}^{t_{k+1}}u''(t)\varphi(t) \,dt \\ &= \sum_{k=1}^{m}I_{k} \bigl(u(t_{k})\bigr)\varphi(t_{k})+\int_{0}^{T}u'(t) \varphi'(t)\,dt \end{aligned}$$
(2.6)

and

$$\begin{aligned} -\int_{0}^{T} v''(t) \psi(t) \,dt&= -\sum_{k=0}^{m}\int _{t_{k}}^{t_{k+1}}v''(t)\psi(t) \,dt \\ &= \sum_{k=1}^{m}J_{k} \bigl(v(t_{k})\bigr)\psi(t_{k})+\int_{0}^{T}v'(t) \psi'(t)\,dt. \end{aligned}$$
(2.7)

In connection with (2.4), (2.5), (2.6) and (2.7), we have

$$\begin{aligned}& \int_{0}^{T} u'(t) \varphi'(t) \,dt+ \int_{0}^{T}v'(t) \psi'(t)\,dt+\int_{0}^{T}g(t)u(t) \varphi(t)\,dt \\& \qquad {}+ \int_{0}^{T}h(t)v(t)\psi(t)\,dt+\sum _{k=1}^{m}I_{k} \bigl(u(t_{k})\bigr)\varphi(t_{k})+\sum _{k=1}^{m}J_{k}\bigl(v(t_{k}) \bigr)\psi(t_{k}) \\& \quad = \int_{0}^{T}f_{u}(u,v) \varphi(t)\,dt+\int_{0}^{T}f_{v}(u,v) \psi(t)\,dt. \end{aligned}$$
(2.8)

Based on equality (2.8), we introduce the concept of weak solution for problem (1.1). We say that a pair of functions \((u,v) \in X\) is a weak solution for problem (1.1) if identity (2.8) holds for any \((\varphi,\psi)\in X\). The corresponding energy functional Φ to problem (1.1) is defined by

$$\begin{aligned} \begin{aligned}[b] \Phi(u,v)={}& \frac{1}{2}\int_{0}^{T} \bigl(\bigl\vert u'(t)\bigr\vert ^{2}+g(t)u^{2}(t) \bigr)\,dt+\frac{1}{2}\int_{0}^{T}\bigl(\bigl\vert v'(t)\bigr\vert ^{2}+h(t)v^{2}(t)\bigr) \,dt \\ &{}+ \sum_{k=1}^{m}\int _{0}^{u(t_{k})}I_{k}(t)\,dt+\sum _{k=1}^{m}\int_{0}^{v(t_{k})}J_{k}(t) \,dt-\int_{0}^{T}f(u,v)\,dt \\ ={}& \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{X}^{2}+ \sum_{k=1}^{m}\int_{0}^{u(t_{k})}I_{k}(t) \,dt+\sum_{k=1}^{m}\int_{0}^{v(t_{k})}J_{k}(t) \,dt-\int_{0}^{T}f(u,v)\,dt. \end{aligned} \end{aligned}$$
(2.9)

Combining the continuity of \(f_{u}\), \(f_{v}\), \(I_{k}\) and \(J_{k}\), \(k=1,2,\ldots,m\), by standard arguments [30], we can show that the functional \(\Phi \in C^{1}(X,{\mathbb{R}})\). Furthermore, we have

$$\begin{aligned} \Phi'(u,v) (\varphi,\psi) =& \int _{0}^{T}u'(t)\varphi'(t) \,dt+\int_{0}^{T}g(t)u(t)\varphi(t)\,dt \\ &{}+ \int_{0}^{T}v'(t) \psi'(t)\,dt+\int_{0}^{T}h(t)v(t) \psi(t)\,dt+\sum_{k=1}^{m}I_{k} \bigl(u(t_{k})\bigr)\psi(t_{k}) \\ &{}+ \sum_{k=1}^{m}J_{k} \bigl(v(t_{k})\bigr)\psi(t_{k})-\int_{0}^{T}f_{u}(u,v) \varphi(t)\,dt-\int_{0}^{T}f_{v}(u,v) \psi(t)\,dt. \end{aligned}$$
(2.10)

Indeed, we reduce the problem of finding weak solutions of (1.1) to the one of seeking the critical points of the corresponding functional Φ. To this end, we recall some known results from variational method. We say that a minimizing sequence for a functional \(F:X\rightarrow{\mathbb{R}}\) is a sequence \(\{(u_{i},v_{i})\}\) such that

$$F(u_{i},v_{i})\rightarrow\inf F \quad \mbox{whenever } i \rightarrow \infty. $$

Lemma 2.3

[36]

Let X be a reflexive Banach space and \(F:X\rightarrow{\mathbb{R}}\) be continuously Fréchet-differentiable. If F is weakly lower semi-continuous and has a bounded minimizing sequence, then F has a minimum on X.

3 Main result

Lemma 3.1

Assume that conditions (H1)-(H3) are satisfied. Then the functional Φ defined by (2.9) is continuously Fréchet-differentiable and weakly lower semi-continuous.

Proof

First, using the continuity of \(f_{u}\), \(f_{v}\), \(I_{k}\) and \(J_{k}\), \(k=1,2,\ldots,m\), we easily obtain the continuity and differentiability of Φ and \(\Phi':X=H_{0}^{1}(0,T)\times H_{0}^{1}(0,T)\rightarrow{\mathbb{R}}\) defined by (2.10).

In the following, we prove that Φ is weakly lower semi-continuous. If \(\{(u_{i},v_{i})\}\subset X\) with \((u_{i},v_{i})\rightharpoonup(u,v)\), then, by Lemma 2.2, we get that \(\{u_{i}\}\) and \(\{v_{i}\}\) converge uniformly to u and v on \([0,T]\) respectively. In connection with the fact that \(\liminf_{i\rightarrow\infty}\|(u_{i},v_{i})\|_{X} \geq\|(u,v)\|_{X}\), one has

$$\begin{aligned} \liminf_{i\rightarrow\infty}\Phi(u_{i},v_{i}) = & \liminf_{i\rightarrow \infty}\Biggl\{ \frac{1}{2}\bigl\Vert (u_{i},v_{i})\bigr\Vert _{X}^{2}+ \sum_{k=1}^{m}\int_{0}^{u_{i}(t_{k})}I_{k}(t) \,dt \\ &{}+ \sum_{k=1}^{m}\int _{0}^{v_{i}(t_{k})}J_{k}(t)\,dt-\int _{0}^{T}f(u_{i},v_{i})\,dt \Biggr\} \\ \geq& \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{X}^{2}+ \sum_{k=1}^{m}\int_{0}^{u(t_{k})}I_{k}(t) \,dt \\ &{}+\sum_{k=1}^{m}\int_{0}^{v(t_{k})}J_{k}(t) \,dt-\int_{0}^{T}f(u,v)\,dt \\ =& \Phi(u,v). \end{aligned}$$

This implies that the functional Φ is weakly lower semi-continuous. □

Proof of Theorem 1.1

For any \((u,v)\in X\), using assumptions (H2), (H3) and Lemma 2.2, we have

$$\begin{aligned} \Phi(u,v) =& \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{X}^{2}+\sum_{k=1}^{m} \int_{0}^{u(t_{k})}I_{k}(t)\,dt+\sum _{k=1}^{m}\int_{0}^{v(t_{k})}J_{k}(t) \,dt-\int_{0}^{T}f(u,v)\,dt \\ \geq& \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{X}^{2}- \sum_{k=1}^{m}\int_{0}^{u(t_{k})} \bigl(a_{k}+b_{k}|t|^{\beta_{k}}\bigr)\,dt-\sum _{k=1}^{m}\int_{0}^{v(t_{k})} \bigl(a_{k}+b_{k}|t|^{\beta_{k}}\bigr)\,dt \\ &{}- \int_{0}^{T} \bigl(a|u|+a|v|+b|u|^{\gamma_{1}+1}+b|v|^{\gamma_{2}+1} \bigr)\,dt \\ \geq& \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{X}^{2}-m A \Vert u\Vert _{\infty}-B\sum_{k=1}^{m} \Vert u\Vert _{\infty}^{\beta_{k}+1}-m A \Vert v\Vert _{\infty}\\ &{}- B \sum_{k=1}^{m}\Vert v\Vert _{\infty}^{\beta_{k}+1}-aT\bigl(\Vert u\Vert _{\infty}+\Vert v \Vert _{\infty}\bigr)-bT\bigl(\Vert u\Vert _{\infty}^{\gamma_{1}+1}+ \Vert v\Vert _{\infty}^{\gamma_{2}+1}\bigr) \\ \geq& \frac{1}{2}\bigl\Vert (u,v)\bigr\Vert _{X}^{2}-2m A c_{2} \bigl\Vert (u,v)\bigr\Vert _{X}-2B\sum _{k=1}^{m}c_{2}^{\beta_{k}+1} \bigl\Vert (u,v)\bigr\Vert _{X}^{\beta_{k}+1} \\ &{}- 2aT\bigl\Vert (u,v)\bigr\Vert _{X}-bTc_{2}^{\gamma_{1}+1} \bigl\Vert (u,v)\bigr\Vert _{X}^{\gamma_{1}+1}-bTc_{2}^{\gamma _{2}+1} \bigl\Vert (u,v)\bigr\Vert _{X}^{\gamma_{2}+1}, \end{aligned}$$

where \(A=\max\{a_{1},a_{2},\ldots,a_{k}\}\), \(B=\max\{b_{1},b_{2},\ldots,b_{k}\}\).

In connection with \(\gamma_{1},\gamma_{2},\beta_{k}\in [0,1)\), \(k=1,2,\ldots,m\), it follows that the functional Φ is coercive on X. Furthermore, by Lemma 3.1 and Lemma 2.3, we have that Φ has a minimum point on X. Hence, problem (1.1) has at least one nontrivial solution. □

Corollary 3.1

Assume that \(f_{u}\), \(f_{v}\), \(I_{k}\) and \(J_{k}\), \(k=1,2,\ldots,m\), are bounded. Then problem (1.1) has at least one solution.

4 Example

Let \(T=\pi\), \(t_{1}=1\). We consider the following problem with impulses:

$$ \left \{ \textstyle\begin{array}{l} -u''(t)+(1+t)u(t)=t^{2}+\sqrt{u(t)}, \\ -v''(t)+(t+t^{2})v(t)=t+\sqrt[3]{v(t)}, \\ u(0)=u(\pi)=v(0)=v(\pi)=0, \\ \Delta u'(t_{1})=u'(t_{1}^{+})-u'(t_{1}^{-})=2+\sqrt[3]{u(t_{1})}, \\ \Delta v'(t_{1})=v'(t_{1}^{+})-v'(t_{1}^{-})=t_{1}+\sqrt[4]{v(t_{1})}. \end{array}\displaystyle \right . $$
(4.1)

First we can see that \(g(t)=1+t\), \(h(t)=t+t^{2}\), and \(\alpha=0 >-\frac {\pi^{2}}{T^{2}}\), then (H1) holds. Next, taking \(a=\pi^{2}\), \(b=1\), \(\gamma _{1}=\frac{1}{2}\), and \(\gamma_{2}=\frac{1}{3}\), (H2) holds. Finally, taking \(a_{1}=2\), \(b=1\), and \(\beta_{1}=\frac{1}{3}\), (H3) holds. Then, by Theorem 1.1, the impulsive problem (4.1) has at least one nontrivial solution.

References

  1. Haddad, WM, Chellaboina, C, Nersesov, SG, Stability, GS: Dissipativity and Control. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  2. Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  3. Agarwal, RP, Franco, D, O’Regan, D: Singular boundary value problem for first and second order impulsive differential equations. Aequ. Math. 69, 83-96 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ahmad, B, Nieto, JJ: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. TMA 69, 3291-3298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hernandez, E, Henriquez, HR, McKibben, MA: Existence results for abstract impulsive second-order neutral functional differential equations. Nonlinear Anal. TMA 70, 2736-2751 (2009)

    Article  MATH  Google Scholar 

  6. Li, J, Nieto, JJ, Shen, J: Impulsive periodic boundary value problems of first-order differential equations. J. Math. Anal. Appl. 325, 226-236 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Luo, Z, Nieto, JJ: New results for the periodic boundary value problem for impulsive integro-differential equations. Nonlinear Anal. TMA 70, 2248-2260 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nieto, JJ: Basic theory for nonresonance impulsive periodic problems of first order. J. Math. Anal. Appl. 205, 423-433 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nieto, JJ, Rodríguez-López, R: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. Math. Anal. Appl. 318, 593-610 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  11. Braverman, E, Zhukovskiy, S: The problem of a lazy tester, or exponential dichotomy for impulsive differential equations revisited. Nonlinear Anal. Hybrid Syst. 2, 971-979 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dai, B, Su, H, Hu, D: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal. TMA 70, 126-134 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Del Pino, M, Elgueta, M, Manasevich, R: A homotopic deformation along p of a Leray-Schauder degree result and existence for \((|u'|^{p-2}u')'+f(t,u)=0\), \(u(0)=u(T)=0\), \(p>1^{\ast}\). J. Differ. Equ. 80, 1-13 (1989)

    Article  MATH  Google Scholar 

  14. Guo, H, Chen, L: Time-limited pest control of a Lotka-Volterra model with impulsive harvest. Nonlinear Anal., Real World Appl. 10, 840-848 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang, G, Lu, Q, Qian, L: Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos Solitons Fractals 31, 448-461 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang, G, Lu, Q, Qian, L: Chaos and its control in an impulsive differential system. Chaos Solitons Fractals 34, 1135-1147 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mohamad, S, Gopalsamy, K, Akca, H: Exponential stability of artificial neural networks with distributed delays and large impulses. Nonlinear Anal., Real World Appl. 9, 872-888 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pei, Y, Li, C, Chen, L, Wang, C: Complex dynamics of one-prey multi-predator system with defensive ability of prey and impulsive biological control on predators. Adv. Complex Syst. 8, 483-495 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shen, J, Li, J: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal., Real World Appl. 10, 227-243 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, W, Shen, J, Nieto, JJ: Permanence and periodic solution of predator-prey system with Holling type functional response and impulse. Discrete Dyn. Nat. Soc. 2007, Article ID 81756 (2007)

    Article  MathSciNet  Google Scholar 

  21. Wei, C, Chen, L: A delayed epidemic model with pulse vaccination. Discrete Dyn. Nat. Soc. 2008, Article ID 746951 (2008)

    Article  MathSciNet  Google Scholar 

  22. Xia, Y: Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance. Nonlinear Anal., Real World Appl. 8, 204-221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yan, J, Zhao, A, Nieto, JJ: Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems. Math. Comput. Model. 40, 509-518 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zeng, G, Wang, F, Nieto, JJ: Complexity of delayed predator-prey model with impulsive harvest and Holling type II functional response. Adv. Complex Syst. 11, 77-97 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, H, Chen, L, Nieto, JJ: A delayed epidemic model with stage structure and pulses for management strategy. Nonlinear Anal., Real World Appl. 9, 1714-1726 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, H, Xu, W, Chen, L: An impulsive infective transmission SI model for pest control. Math. Methods Appl. Sci. 30, 1169-1184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, J, Xiang, L, Liu, Z: Synchronization in complex delayed dynamical networks with impulsive effects. Physica A 384, 684-692 (2007)

    Article  MathSciNet  Google Scholar 

  28. Carter, TE: Necessary and sufficient conditions for optional impulsive rendezvous with linear equations of motions. Dyn. Control 10, 219-227 (2000)

    Article  MATH  Google Scholar 

  29. Liu, X, Willms, AR: Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft. Math. Probl. Eng. 2, 277-299 (1996)

    Article  MATH  Google Scholar 

  30. Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65. Am. Math. Soc., Providence (1986)

    Google Scholar 

  31. Tian, Y, Ge, W: Applications of variational methods to boundary value problem for impulsive ordinary differential equations. Proc. Edinb. Math. Soc. 51, 509-527 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nieto, JJ, O’Regan, D: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10, 680-690 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, H, Li, ZX: Variational approach to impulsive differential equations with periodic boundary conditions. Nonlinear Anal., Real World Appl. 11, 67-78 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, ZH, Yuan, R: An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal., Real World Appl. 11, 155-162 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhou, JW, Li, YK: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal. TMA 71, 2856-2865 (2009)

    Article  MATH  Google Scholar 

  36. Mawhin, J, Willem, M: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees very much for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (11271364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiang Wu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, W. Variational approach to impulsive differential system. Adv Differ Equ 2015, 303 (2015). https://doi.org/10.1186/s13662-015-0641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-015-0641-1

MSC

Keywords