Skip to main content

Advertisement

A note on degenerate poly-Bernoulli numbers and polynomials

Article metrics

Abstract

In this paper, we consider the degenerate poly-Bernoulli polynomials and present new and explicit formulas for computing them in terms of the degenerate Bernoulli polynomials and Stirling numbers of the second kind.

Introduction

For \(\lambda\in\mathbb{C}\), Carlitz considered the degenerate Bernoulli polynomials given by the generating function

$$ \frac{t}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac{x}{\lambda}}=\sum _{n=0}^{\infty}\beta_{n} (x\mid \lambda ) \frac{t^{n}}{n!}\quad (\text{see [1--3]}). $$
(1.1)

When \(x=0\), \(\beta_{n} (\lambda )=\beta_{n} (0\mid\lambda )\) are called the degenerate Bernoulli numbers.

Thus, by (1.1), we get

$$ \beta_{n} (x\mid\lambda )=\sum_{l=0}^{n} \binom{n}{l}\beta _{l} (\lambda ) (x\mid\lambda )_{n-l}, $$
(1.2)

where \((x\mid\lambda )_{n}=x (x-\lambda ) (x-2\lambda )\cdots (x-\lambda (n-1 ) )\).

The classical polylogarithm function \(\operatorname{Li}_{k}\) is

$$ \operatorname{Li}_{k} (x )=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}}\quad (k\in\mathbb{Z} \text{; see [2, 4--11]}). $$
(1.3)

From (1.1), we note that

$$\begin{aligned} & \sum_{n=0}^{\infty}\lim_{\lambda\rightarrow0} \beta _{n} (x\mid\lambda )\frac{t^{n}}{n!} \\ &\quad =\lim_{\lambda\rightarrow0}\frac{t}{ (1+\lambda t )^{\frac {1}{\lambda}}-1} (1+\lambda t )^{\frac{x}{\lambda}} \\ & \quad =\frac{t}{e^{t}-1}e^{xt} \\ & \quad =\sum_{n=0}^{\infty}B_{n} (x ) \frac{t^{n}}{n!}, \end{aligned}$$
(1.4)

where \(B_{n} (x )\) are called the Bernoulli polynomials (see [127]).

Thus, by (1.4), we get

$$ \lim_{\lambda\rightarrow0}\beta_{n} (x\mid\lambda )=B_{n} (x )\quad (n\ge0 ). $$
(1.5)

In [4, 14], the poly-Bernoulli polynomials are given by

$$ \frac{\operatorname{Li}_{k} (1-e^{-t} )}{e^{t}-1}e^{xt}=\sum_{n=0}^{\infty }B_{n}^{ (k )} (x )\frac{t^{n}}{n!}. $$
(1.6)

For \(k=1\), we have

$$\begin{aligned} \frac{\operatorname{Li}_{1} (1-e^{-t} )}{e^{t}-1}e^{xt}&=\frac {t}{e^{t}-1}e^{xt} \\ &=\sum _{n=0}^{\infty}B_{n} (x ) \frac {t^{n}}{n!}. \end{aligned}$$
(1.7)

By (1.4) and (1.7), we get \(B_{n}^{ (1 )} (x )=B_{n} (x )\).

The Stirling numbers of the second kind are given by

$$ x^{n}=\sum_{l=0}^{n}S_{2} (n,l ) (x )_{l} \quad (\text{see [1--27]}), $$
(1.8)

and the Stirling numbers of the first kind are defined by

$$ (x )_{n}=x (x-1 )\cdots (x-n+1 )=\sum_{l=0}^{n}S_{1} (n,l )x^{l}\quad (n\ge0 ). $$
(1.9)

The purpose of this paper is to construct the degenerate poly-Bernoulli polynomials and present new and explicit formulas for computing them in terms of the degenerate Bernoulli polynomials and Stirling numbers of the second kind.

Degenerate poly-Bernoulli numbers and polynomials

For \(\lambda\in\mathbb{C}\), \(k\in\mathbb{Z}\), we consider the degenerate poly-Bernoulli polynomials given by the generating function

$$ \frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac {1}{\lambda}}-1} (1+\lambda t )^{\frac{x}{\lambda}}=\sum _{n=0}^{\infty}\beta_{n}^{ (k )} (x\mid \lambda )\frac {t^{n}}{n!}. $$
(2.1)

When \(x=0\), \(\beta_{n}^{ (k )} (\lambda )=\beta _{n}^{ (k )} (0\mid\lambda )\) are called the degenerate poly-Bernoulli numbers. Note that \(\beta _{n}^{ (1 )} (x\mid\lambda )=\beta_{n} (x\mid \lambda )\) and \(\lim_{\lambda\rightarrow0}\beta_{n}^{ (k )} (x\mid \lambda )=B_{n}^{ (k )} (x )\).

From (2.1), we can derive the following equation:

$$\begin{aligned} \sum_{n=0}^{\infty}\beta_{n}^{ (k )} (x\mid\lambda )\frac{t^{n}}{n!} & = \biggl(\frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} \biggr) (1+\lambda t )^{\frac{x}{\lambda}} \\ & = \Biggl(\sum_{l=0}^{\infty} \beta_{l}^{ (k )} (\lambda )\frac{t^{l}}{l!} \Biggr) \Biggl( \sum_{m=0}^{\infty} (x\mid \lambda )_{m}\frac{t^{m}}{m!} \Biggr) \\ & =\sum_{n=0}^{\infty} \Biggl(\sum _{l=0}^{n}\binom{n}{l}\beta_{l}^{ (k )} (\lambda ) (x\mid\lambda )_{n-l} \Biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(2.2)

Thus, by (2.2), we get

$$ \beta_{n}^{ (k )} (x\mid\lambda )=\sum _{l=0}^{n}\binom {n}{l}\beta_{l}^{ (k )} (\lambda ) (x\mid\lambda )_{n-l}. $$
(2.3)

Now, we observe that

$$\begin{aligned} & \frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+t )^{\frac{x}{\lambda }} \\ &\quad =\sum_{n=0}^{\infty}\beta_{n}^{ (k )} (x\mid\lambda )\frac{t^{n}}{n!} \\ &\quad =\frac{ (1+t )^{\frac{x}{\lambda}}}{ (1+\lambda t )^{\frac{1}{\lambda}}-1}\underset{ (k-2)\text{ times}}{\int_{0}^{t} \underbrace{\frac{1}{e^{y}-1}\int_{0}^{y} \frac{1}{e^{y}-1}\int_{0}^{y}\cdots \frac{1}{e^{y}-1}\int_{0}^{y}}} \frac{y}{e^{y}-1}\,dy\cdots dy. \end{aligned}$$
(2.4)

From (2.4), we have

$$\begin{aligned} & \sum_{n=0}^{\infty}\beta_{n}^{ (2 )} (x\mid\lambda )\frac{t^{n}}{n!} \\ & \quad =\frac{ (1+t )^{\frac{x}{\lambda}}}{ (1+\lambda t )^{\frac{1}{\lambda}}-1}\int_{0}^{t} \frac{y}{e^{y}-1}\,dy \\ &\quad =\frac{ (1+t )^{\frac{x}{\lambda}}}{ (1+\lambda t )^{\frac{1}{\lambda}}-1}\sum_{l=0}^{\infty} \frac{B_{l}}{l!}\int_{0}^{t}y^{l}\,dy \\ &\quad = \biggl(\frac{t}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac{x}{\lambda}} \biggr) \Biggl(\sum _{l=0}^{\infty }\frac{B_{l}}{l+1} \frac{t^{l}}{l!} \Biggr) \\ & \quad =\sum_{n=0}^{\infty} \Biggl\{ \sum _{l=0}^{n}\binom{n}{l}\frac {B_{l}}{l+1} \beta_{n-l} (x\mid\lambda ) \Biggr\} \frac {t^{n}}{n!}, \end{aligned}$$
(2.5)

where \(B_{n}=B_{n} (0 )\) are the Bernoulli numbers.

By comparing the coefficients on both sides of (2.5), we obtain the following theorem.

Theorem 2.1

For \(n\ge0\), we have

$$\begin{aligned} \begin{aligned} \beta_{n}^{ (2 )} (x\mid\lambda ) & =\sum _{l=0}^{n}\binom{n}{l}\frac{B_{l}}{l+1} \beta_{n-l} (x\mid\lambda ) \\ & =\beta_{n} (x\mid\lambda )-\frac{n}{4}\beta_{n-1} (x \mid \lambda )+\sum_{l=2}^{n} \binom{n}{l}\frac{B_{l}}{l+1}\beta _{n-l} (x\mid\lambda ). \end{aligned} \end{aligned}$$

Moreover,

$$\beta_{n}^{ (k )} (x\mid\lambda )=\sum _{l=0}^{n}\binom {n}{l}\beta_{l}^{ (k )} (\lambda ) (x\mid\lambda )_{n-l}. $$

By (2.4), we easily get

$$\begin{aligned} & \sum_{n=0}^{\infty}\beta_{n}^{ (k )} (x\mid\lambda )\frac{t^{n}}{n!} \\ & \quad =\frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac {1}{\lambda}}-1} (1+t )^{\frac{x}{\lambda}} \\ &\quad =\frac{t}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+t )^{\frac{x}{\lambda}}\frac{\operatorname{Li}_{k} (1-e^{-t} )}{t}. \end{aligned}$$
(2.6)

We observe that

$$\begin{aligned} \frac{1}{t}\operatorname{Li}_{k} \bigl(1-e^{-t} \bigr) & = \frac{1}{t}\sum_{n=1}^{\infty } \frac{1}{n^{k}} \bigl(1-e^{-t} \bigr)^{n} \\ & =\frac{1}{t}\sum_{n=1}^{\infty} \frac{ (-1 )^{n}}{n^{k}}n!\sum_{l=n}^{\infty}S_{2} (l,n )\frac{ (-t )^{l}}{l!} \\ & =\frac{1}{t}\sum_{l=1}^{\infty}\sum _{n=1}^{l}\frac{ (-1 )^{n+l}}{n^{k}}n!S_{2} (l,n )\frac{t^{l}}{l!} \\ & =\sum_{l=0}^{\infty}\sum _{n=1}^{l+1}\frac{ (-1 )^{n+l+1}}{n^{k}}n!\frac{S_{2} (l+1,n )}{l+1} \frac {t^{l}}{l!}. \end{aligned}$$
(2.7)

From (2.6) and (2.7), we have

$$\begin{aligned} & \sum_{n=0}^{\infty}\beta_{n}^{ (k )} (x\mid\lambda )\frac{t^{n}}{n!} \\ & \quad = \Biggl(\sum_{m=0}^{\infty} \beta_{m} (x\mid\lambda )\frac {t^{m}}{m!} \Biggr) \Biggl(\sum _{l=0}^{\infty} \Biggl(\sum _{p=1}^{l+1}\frac { (-1 )^{p+l+1}}{p^{k}}p!\frac{S_{2} (l+1,p )}{l+1} \Biggr)\frac{t^{l}}{l!} \Biggr) \\ & \quad =\sum_{n=0}^{\infty} \Biggl\{ \sum _{l=0}^{n}\binom{n}{l} \Biggl(\sum _{p=1}^{l+1}\frac{ (-1 )^{p+l+1}p!}{p^{k}}\frac{S_{2} (l+1,p )}{l+1} \Biggr)\beta_{n-l} (x\mid\lambda ) \Biggr\} \frac{t^{n}}{n!}. \end{aligned}$$
(2.8)

By comparing the coefficients on both sides of (2.8), we obtain the following theorem.

Theorem 2.2

For \(n\ge0\), we have

$$\beta_{n}^{ (k )} (x\mid\lambda )=\sum _{l=0}^{n}\binom {n}{l} \Biggl(\sum _{p=1}^{l+1}\frac{ (-1 )^{p+l+1}p!}{p^{k}}\frac {S_{2} (l+1,p )}{l+1} \Biggr)\beta_{n-l} (x\mid\lambda ). $$

It is easy to show that

$$\begin{aligned} & \frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac {x+1}{\lambda}}-\frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac {x}{\lambda}} \\ & \quad = (1+\lambda t )^{\frac{x}{\lambda}} \operatorname{Li}_{k} \bigl(1-e^{-t} \bigr) \\ &\quad = \Biggl(\sum_{l=0}^{\infty} (x\mid\lambda )_{l}\frac {t^{l}}{l!} \Biggr) \Biggl(\sum _{m=1}^{\infty}\frac{ (1-e^{-t} )^{m}}{m^{k}} \Biggr) \\ &\quad = \Biggl(\sum_{l=0}^{\infty} (x\mid\lambda )_{l}\frac {t^{l}}{l!} \Biggr) \Biggl(\sum _{m=0}^{\infty}\frac{ (1-e^{-t} )^{m+1}}{ (m+1 )^{k}} \Biggr) \\ &\quad = \Biggl(\sum_{l=0}^{\infty} (x\mid\lambda )_{l}\frac {t^{l}}{l!} \Biggr) \Biggl(\sum _{p=1}^{\infty} \Biggl(\sum_{m=0}^{p-1} \frac { (-1 )^{m+p+1}}{ (m+1 )^{k}} (m+1 )!S_{2} (p,m+1 ) \Biggr)\frac{t^{p}}{p!} \Biggr) \\ & \quad =\sum_{n=1}^{\infty} \Biggl\{ \sum _{p=1}^{n}\sum_{m=0}^{p-1} \frac{ (-1 )^{m+p+1}}{ (m+1 )^{k}} (m+1 )!S_{2} (p,m+1 )\binom{n}{p} (x\mid\lambda )_{n-p} \Biggr\} \frac {t^{n}}{n!}. \end{aligned}$$
(2.9)

On the other hand,

$$\begin{aligned} & \frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac {x+1}{\lambda}}-\frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac {x}{\lambda}} \\ &\quad =\sum_{n=0}^{\infty} \bigl\{ \beta_{n}^{ (k )} (x+1\mid \lambda )-\beta_{n}^{ (k )} (x\mid\lambda ) \bigr\} \frac{t^{n}}{n!}. \end{aligned}$$
(2.10)

Therefore, by (2.9) and (2.10), we obtain the following theorem.

Theorem 2.3

For \(n\ge1\), we have

$$\begin{aligned} & \beta_{n}^{ (k )} (x+1\mid\lambda )-\beta_{n}^{ (k )} (x\mid\lambda ) \\ & \quad =\sum_{p=1}^{n} \Biggl(\sum _{m=0}^{p-1}\frac{ (-1 )^{m+k+1}}{ (m+1 )^{k}} (m+1 )!S_{2} (k+m+1 ) \Biggr)\binom{n}{p} (x\mid\lambda )_{n-p}. \end{aligned}$$

Now, we note that

$$\begin{aligned} & \frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac {x}{\lambda}} \\ & \quad =\frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac {d}{\lambda}}-1}\sum_{a=0}^{d-1} (1+ \lambda t )^{\frac {l+x}{\lambda}} \\ &\quad = \biggl(\frac{\operatorname{Li}_{k} (1-e^{-t} )}{t} \biggr)\frac{1}{d}\sum _{a=0}^{d-1}\frac{dt}{ (1+\lambda t )^{\frac{d}{\lambda }}-1} (1+\lambda t )^{\frac{l+x}{\lambda}} \\ & \quad =\sum_{l=0}^{\infty} \Biggl(\sum _{p=1}^{l+1}\frac{ (-1 )^{p+l+1}}{p^{k}}p!\frac{S_{2} (l+1,p )}{l+1} \Biggr)\frac {t^{l}}{l!} \\ & \qquad {}\times\sum_{a=0}^{d-1}\sum _{m=0}^{\infty}\beta _{m} \biggl( \frac{l+x}{d}\,\Big|\,\frac{\lambda}{d} \biggr)d^{m-1} \frac {t^{m}}{m!} \\ &\quad =\sum_{a=0}^{d-1} \Biggl(\sum _{n=0}^{\infty} \Biggl(\sum_{l=0}^{n} \sum_{p=1}^{l+1}\binom{n}{l} \frac{ (-1 )^{p+l+1}}{p^{k}}p!\frac {S_{2} (l+1,p )}{l+1}\beta_{n-l} \biggl( \frac{l+x}{d}\,\Big|\, \frac{\lambda}{d} \biggr)d^{n-l-1} \Biggr) \frac{t^{n}}{n!} \Biggr) \\ &\quad =\sum_{n=0}^{\infty} \Biggl\{ \sum _{a=0}^{d-1}\sum_{l=0}^{n} \sum_{p=1}^{l+1}\binom{n}{l} \frac{ (-1 )^{p+l+1}}{p^{k}}p!\frac {S_{2} (l+1,p )}{l+1}\beta_{n-l} \biggl( \frac{l+x}{d}\,\Big|\, \frac{\lambda}{d} \biggr)d^{n-l-1} \Biggr\} \frac{t^{n}}{n!}, \end{aligned}$$
(2.11)

where d is a fixed positive integer.

On the other hand,

$$\begin{aligned} & \frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+\lambda t )^{\frac {x}{\lambda}} \\ & \quad =\sum_{n=0}^{\infty}\beta_{n}^{ (k )} (x\mid\lambda )\frac{t^{n}}{n!}. \end{aligned}$$
(2.12)

Therefore, by (2.11) and (2.12), we obtain the following theorem.

Theorem 2.4

For \(n\ge0\), \(d\in\mathbb{N}\) and \(k\in\mathbb{Z}\), we have

$$\begin{aligned} & \beta_{n}^{ (k )} (x\mid\lambda ) \\ &\quad =\sum_{a=0}^{d-1}\sum _{l=0}^{n}\sum_{p=1}^{l+1} \binom{n}{l}\frac { (-1 )^{p+l+1}}{p^{k}}p!\frac{S_{2} (l+1,p )}{l+1}\beta_{n-l} \biggl(\frac{l+x}{d}\,\Big|\, \frac{\lambda }{d} \biggr)d^{n-l-1}. \end{aligned}$$

From (2.4), we can derive the following equation:

$$\begin{aligned} & \sum_{n=0}^{\infty}\beta_{n}^{ (k )} (x+y\mid\lambda )\frac{t^{n}}{n!} \\ & \quad =\frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac {1}{\lambda}}-1} (1+\lambda t )^{\frac{x+y}{\lambda}} \\ &\quad = \biggl(\frac{\operatorname{Li}_{k} (1-e^{-t} )}{ (1+\lambda t )^{\frac{1}{\lambda}}-1} (1+t\lambda )^{\frac{x}{\lambda }} \biggr) (1+\lambda t )^{\frac{y}{\lambda}} \\ & \quad = \Biggl(\sum_{l=0}^{\infty} \beta_{l}^{ (k )} (x\mid \lambda )\frac{t^{l}}{l!} \Biggr) \Biggl(\sum_{m=0}^{\infty} (y\mid\lambda )_{m}\frac{t^{m}}{m!} \Biggr) \\ & \quad =\sum_{n=0}^{\infty} \Biggl(\sum _{l=0}^{n}\binom{n}{l}\beta_{l}^{ (k )} (x\mid\lambda ) (y\mid\lambda )_{n-l} \Biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(2.13)

Therefore, by (2.13), we obtain the following theorem.

Theorem 2.5

For \(n\ge0\), we have

$$\beta_{n}^{ (k )} (x+y\mid\lambda )=\sum _{l=0}^{n}\binom{n}{l}\beta_{l}^{ (k )} (x\mid\lambda ) (y\mid\lambda )_{n-l}. $$

Remark

$$\begin{aligned} & \frac{d}{dx}\beta_{n}^{ (k )} (x\mid \lambda ) \\ & \quad =\frac{d}{dx}\sum_{l=0}^{n} \binom{n}{l}\beta_{n-l}^{ (k )} (\lambda ) (x\mid\lambda )_{l} \\ & \quad =\sum_{l=0}^{n}\binom{n}{l} \beta_{n-l}^{ (k )} (\lambda )\sum_{j=0}^{l-1} \frac{1}{x-\lambda j}\prod_{i=0}^{l-1} (x-\lambda i ) \\ &\quad =\sum_{l=0}^{n}\binom{n}{l} \beta_{n-l}^{ (k )} (\lambda )\sum_{j=0}^{l-1} \prod_{\substack{i=0\\ i\neq j } }^{l-1} (x-\lambda i ). \end{aligned}$$

References

  1. 1.

    Carlitz, L: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51-88 (1979)

  2. 2.

    Kim, DS, Kim, T, Dolgy, DV, Komatsu, T: Barnes-type degenerate Bernoulli polynomials. Adv. Stud. Contemp. Math. 25(1), 121-146 (2015)

  3. 3.

    Kim, T: Barnes’ type multiple degenerate Bernoulli and Euler polynomials. Appl. Math. Comput. 258, 556-564 (2015)

  4. 4.

    Jolany, H, Mohebbi, H: Some results on Generalized multi poly-Bernoulli and Euler polynomials. Int. J. Math. Comb. 2, 117-129 (2011)

  5. 5.

    Kim, DS, Kim, T, Mansour, T, Dolgy, DV: On poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint. Adv. Differ. Equ. 2015(1), 27 (2015)

  6. 6.

    Kim, DS, Kim, T: Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \(\Bbb{Z}_{p}\). Integral Transforms Spec. Funct. 26(4), 295-302 (2015)

  7. 7.

    Kim, DS, Kim, T: Higher-order Frobenius-Euler and poly-Bernoulli mixed-type polynomials. Adv. Differ. Equ. 2013, 251 (2013)

  8. 8.

    Kim, DS, Kim, T: Hermite and poly-Bernoulli mixed-type polynomials. Adv. Differ. Equ. 2013(343), 12 (2013)

  9. 9.

    Kim, DS, Kim, T: A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials. Russ. J. Math. Phys. 22(1), 26-33 (2015)

  10. 10.

    Kim, DS, Kim, T, Lee, SH: A note on poly-Bernoulli polynomials arising umbral calculus. Adv. Stud. Theor. Phys. 7(15), 731-744 (2013)

  11. 11.

    Kim, T, Jang, YS, Seo, JJ: Poly-Bernoulli polynomials and their applications. Int. J. Math. Anal. 8(30), 1495-1503 (2014)

  12. 12.

    Acikgoz, M, Erdal, D, Araci, S: A new approach to q-Bernoulli numbers and q-Bernoulli polynomials related to q-Bernstein polynomials. Adv. Differ. Equ. 9, Article ID 951764 (2010)

  13. 13.

    Araci, S, Acikgoz, M, Jolany, H: On the families of q-Euler polynomials and their applications. J. Egypt. Math. Soc. 23(1), 1-5 (2015)

  14. 14.

    Bayad, A, Hamahata, Y: Multiple polylogarithms and multi-poly-Bernoulli polynomials. Funct. Approx. Comment. Math. 46, 45-61 (2012)

  15. 15.

    Bayad, A, Gaboury, S: Generalized Dirichlet L-function of arbitrary order with applications. Adv. Stud. Contemp. Math. (Kyungshang) 23(4), 607-619 (2013)

  16. 16.

    Gaboury, S, Tremblay, R, Fugère, B-J: Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 17(1), 115-123 (2014)

  17. 17.

    Carlitz, L: A degenerate Staudt-Clausen theorem. Arch. Math. (Basel) 7, 28-33 (1956)

  18. 18.

    Dere, R, Simsek, Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(3), 433-438 (2012)

  19. 19.

    Ding, D, Yang, J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 20(1), 7-21 (2010)

  20. 20.

    Kim, T, Kwon, HK, Lee, SH, Seo, JJ: A note on poly-Bernoulli numbers and polynomials of the second kind. Adv. Differ. Equ. 2014, 219 (2014)

  21. 21.

    Kim, T: Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \(\Bbb{Z}_{p}\). Russ. J. Math. Phys. 16(4), 484-491 (2009)

  22. 22.

    Luo, Q-M, Guo, B-N, Qi, F: On evaluation of Riemann zeta function \(\zeta(s)\). Adv. Stud. Contemp. Math. (Kyungshang) 7(2), 135-144 (2003)

  23. 23.

    Luo, Q-M, Qi, F: Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 7(1), 11-18 (2003)

  24. 24.

    Park, J-W, Rim, S-H: On the modified q-Bernoulli polynomials with weight. Proc. Jangjeon Math. Soc. 17(2), 231-236 (2014)

  25. 25.

    Şen, E: Theorems on Apostol-Euler polynomials of higher order arising from Euler basis. Adv. Stud. Contemp. Math. (Kyungshang) 23(2), 337-345 (2013)

  26. 26.

    Srivastava, HM, Kim, T, Simsek, Y: q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 12(2), 241-268 (2005)

  27. 27.

    Zhang, Z, Yang, J: On sums of products of the degenerate Bernoulli numbers. Integral Transforms Spec. Funct. 20(9-10), 751-755 (2009)

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments.

Author information

Correspondence to Dae San Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

MSC

  • 11B68
  • 11B73
  • 11B83

Keywords

  • degenerate poly-Bernoulli polynomial
  • degenerate Bernoulli polynomial
  • Stirling number of the second kind