Skip to main content

Degenerate q-Euler polynomials

Abstract

Recently, some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \(\mathbb{Z}_{p}\) were introduced in Kim and Kim (Integral Transforms Spec. Funct. 26(4):295-302, 2015). In this paper, we study degenerate q-Euler polynomials which are derived from p-adic q-integrals on \(\mathbb{Z}_{p}\).

Introduction

Let p be a fixed odd prime number. Throughout this paper, \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\) and \(\mathbb{C}_{p}\) will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \(\mathbb{Q}_{p}\), respectively. Let \(\nu_{p}\) be the normalized exponential valuation in \(\mathbb{C}_{p}\) with \(\vert p\vert _{p}=p^{-\nu_{p} (p )}=\frac{1}{p}\).

Let q be an indeterminate in \(\mathbb{C}_{p}\) such that \(\vert 1-q\vert _{p}< p^{-\frac{1}{p-1}}\). The q-extension of x is defined as \([x ]_{q}=\frac{1-q^{x}}{1-q}\). Note that \(\lim_{q\rightarrow1} [x ]_{q}=x\). For \(f\in C (\mathbb{Z}_{p})\) = {\(f\mid, f\) is a \(\mathbb{C}_{p}\)-valued continuous function on \(\mathbb{Z}_{p}\)}, the fermionic p-adic q-integral on \(\mathbb{Z}_{p}\) is defined by Kim to be

$$ I_{-q} (f )=\int_{\mathbb{Z}_{p}}f (x )\,d\mu_{-q} (x )=\lim_{N\rightarrow\infty}\frac{1}{ [p^{N} ]_{-q}}\sum _{x=0}^{p^{N}-1}f (x ) (-q )^{x} \quad(\mbox{see [1, 2]} ), $$
(1.1)

where \([x ]_{-q}=\frac{1- (-q )^{x}}{1+q}\).

By (1.1), we easily get

$$ qI_{-q} (f_{1} )+I_{-q} (f )= [2 ]_{q}f (0 )\quad \bigl(f_{1} (x )=f (x+1 ) \bigr), $$
(1.2)

and

$$ q^{n}I_{-q} (f_{n} )+ (-1 )^{n-1}I_{-q} (f )= [2 ]_{q}\sum_{l=0}^{n-1} (-1 )^{n-1-l}q^{l}f (l )\quad (n\in\mathbb{N} ), $$
(1.3)

where \(f_{n} (x )=f (x+n )\) (see [116]).

The ordinary fermionic p-adic integral on \(\mathbb{Z}_{p}\) is defined as

$$ \lim_{q\rightarrow1}I_{-q} (f )=I_{-1} (f )=\int _{\mathbb{Z}_{p}}f (x )\,d\mu_{-1} (x )=\lim_{N\rightarrow\infty} \sum_{x=0}^{p^{N}-1}f (x ) (-1 )^{x} \quad(\mbox{see [2]}). $$
(1.4)

The degenerate Euler polynomials of order r (\(\in\mathbb{N}\)) are defined by the generating function to be

$$ \biggl(\frac{2}{ (1+\lambda t )^{\frac{1}{\lambda}}+1} \biggr)^{r} (1+\lambda t )^{\frac{x}{\lambda}}= \sum_{n=0}^{\infty }\mathcal{E}_{n}^{ (r )} (x\mid\lambda )\frac {t^{n}}{n!} \quad(\mbox{see [5, 6, 10]} ), $$
(1.5)

where \(\lambda,t\in \mathbb{Z}_{p}\) such that \(\vert \lambda t\vert _{p}< p^{-\frac {1}{p-1}}\).

From (1.5), we have

$$\begin{aligned} & \sum_{n=0}^{\infty}\lim_{\lambda\rightarrow0} \mathcal{E}_{n}^{ (r )} (x\mid\lambda )\frac{t^{n}}{n!} \\ &\quad= \lim_{\lambda\rightarrow0} \biggl(\frac{2}{ (1+\lambda t )^{\frac{1}{\lambda}}+1} \biggr)^{r} (1+\lambda t )^{\frac {x}{\lambda}} \\ &\quad= \biggl(\frac{2}{e^{t}+1} \biggr)^{r}e^{xt} \\ &\quad= \sum_{n=0}^{\infty}E_{n}^{ (r )} (x )\frac {t^{n}}{n!}, \end{aligned}$$
(1.6)

where \(E_{n}^{ (r )} (x )\) are the higher-order Euler polynomials.

Thus, by (1.6), we get

$$ \lim_{\lambda\rightarrow0}\mathcal{E}_{n}^{ (r )} (x\mid \lambda )=E_{n}^{ (r )} (x )\quad(n\geq 0 ). $$
(1.7)

When \(x=0\), \(\mathcal{E}_{n}^{ (r )} (\lambda )=\mathcal{E}_{n}^{ (r )} (0\mid\lambda )\) are called the higher-order degenerate Euler numbers, while \(\lim_{\lambda\rightarrow0}\mathcal{E}_{n}^{ (r )} (\lambda )=E_{n}^{ (r )}\) are called the higher-order Euler numbers.

In [10], it was shown that

$$ \mathcal{E}_{n}^{ (r )} (x\mid\lambda )=\int _{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} (x_{1}+x_{2}+ \cdots+x_{r}+x\mid\lambda )_{n}\,d\mu_{-1} (x_{1} )\cdots \,d\mu_{-1} (x_{r} ), $$
(1.8)

where \((x )_{n}=x (x-1 )\cdots (x-n+1 )\) and \(n\in\mathbb{Z}_{\ge0}\).

In this paper, we study q-extensions of the degenerate Euler polynomials and give some formulae and identities of those polynomials which are derived from the fermionic p-adic q-integrals on \(\mathbb{Z}_{p}\).

Some identities of q-analogues of higher-order degenerate Euler polynomials

In this section, we assume that \(\lambda,t\in \mathbb{Z}_{p}\) with \(\vert \lambda t\vert _{p}< p^{-\frac{1}{p-1}}\). From (1.2), we have

$$\begin{aligned} &\int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} (1+\lambda t )^{ (x_{1}+\cdots +x_{r}+x )/\lambda}\,d\mu_{-q} (x_{1} )\cdots \,d\mu_{-q} (x_{r} ) \\ &\quad= \biggl(\frac{ [2 ]_{q}}{q (1+\lambda t )^{1/\lambda }+1} \biggr)^{r} (1+\lambda t )^{\frac{x}{\lambda}}. \end{aligned}$$
(2.1)

Now, we define a q-analogue of degenerate Euler polynomials of order r as follows:

$$ \biggl(\frac{ [2 ]_{q}}{q (1+\lambda t )^{1/\lambda }+1} \biggr)^{r} (1+\lambda t )^{\frac{x}{\lambda}}= \sum_{n=0}^{\infty}\mathcal{E}_{n,q}^{ (r )} (x\mid\lambda )\frac{t^{n}}{n!}. $$
(2.2)

Thus, by (2.2), we easily get

$$\begin{aligned} & \sum_{n=0}^{\infty}\lim_{\lambda\rightarrow0} \mathcal{E}_{n,q}^{ (r )} (x\mid\lambda )\frac{t^{n}}{n!} \\ &\quad= \lim_{\lambda\rightarrow0} \biggl(\frac{ [2 ]_{q}}{q (1+\lambda t )^{1/\lambda}+1} \biggr)^{r} (1+\lambda t )^{\frac{x}{\lambda}} \\ &\quad= \biggl(\frac{ [2 ]_{q}}{qe^{t}+1} \biggr)^{r}e^{xt} \\ &\quad= \sum_{n=0}^{\infty}E_{n,q}^{ (r )} (x )\frac {t^{n}}{n!}, \end{aligned}$$
(2.3)

where \(E_{n,q}^{ (r )} (x )\) are called the higher-order q-Euler polynomials (see [1517]). Thus, by (2.3), we get

$$ \lim_{\lambda\rightarrow0}\mathcal{E}_{n,q}^{ (r )} (x\mid \lambda )=E_{n,q}^{ (r )} (x )\quad (n\geq 0 ). $$

For \(\lambda\in\mathbb{C}_{p}\) with \(\lambda\neq1\), the Frobenius-Euler polynomials of order r are defined by the generating function to be

$$ \biggl(\frac{1-\lambda}{e^{t}-\lambda} \biggr)^{r}e^{xt}=\sum _{n=0}^{\infty}H_{n}^{ (r )} (x\mid \lambda )\frac {t^{n}}{n!} \quad(\mbox{see [3, 18]} ). $$
(2.4)

By replacing λ by \(-q^{-1}\), we get

$$ \biggl(\frac{1+q^{-1}}{e^{t}+q^{-1}} \biggr)^{r}e^{xt}=\sum _{n=0}^{\infty }H_{n}^{ (r )} \bigl(x \mid{-}q^{-1} \bigr)\frac{t^{n}}{n!}. $$
(2.5)

Now, we define the degenerate Frobenius-Euler polynomials of order r as follows:

$$ \biggl(\frac{1-u}{ (1+\lambda t )^{\frac{1}{\lambda}}-u} \biggr)^{r} (1+\lambda t )^{\frac{x}{\lambda}}= \sum_{n=0}^{\infty }h_{n}^{ (r )} (x,u\mid\lambda )\frac {t^{n}}{n!}. $$
(2.6)

From (2.6), we note that

$$\begin{aligned} \sum_{n=0}^{\infty}\lim_{\lambda\rightarrow0}h_{n}^{ (r)} (x,u\mid\lambda )\frac{t^{n}}{n!} &= \lim_{\lambda\rightarrow0} \biggl(\frac{1-u}{ (1+\lambda t )^{\frac{1}{\lambda}}-u} \biggr)^{r} (1+\lambda t )^{\frac {x}{\lambda}} \\ &= \biggl(\frac{1-u}{e^{t}-u} \biggr)^{r}e^{xt} = \sum_{n=0}^{\infty}H_{n} (x\mid u )\frac {t^{n}}{n!}. \end{aligned}$$
(2.7)

Thus, by (2.7), we get

$$\lim_{\lambda\rightarrow0}h_{n}^{ (r )} (x,u\mid\lambda )=H_{n} (x\mid u )\quad (n\ge0 ). $$

By (2.2) and (2.6), we get

$$ \mathcal{E}_{n,q}^{ (r )} (x\mid\lambda )=h_{n}^{ (r )} \bigl(x,-q^{-1}\mid\lambda \bigr)\quad (n\ge0 ). $$
(2.8)

From (2.1) and (2.2), we have

$$\begin{aligned} & \sum_{n=0}^{\infty}\int_{\mathbb{Z}_{p}} \cdots\int_{\mathbb{Z}_{p}} \biggl(\frac{x_{1}+\cdots +x_{r}+x}{\lambda} \biggr)_{n}\,d\mu_{-q} (x_{1} )\cdots \,d\mu _{-q} (x_{r} )\frac{\lambda^{n}t^{n}}{n!} \\ &\quad= \sum_{n=0}^{\infty}\mathcal{E}_{n,q}^{ (r )} (x\mid \lambda )\frac{t^{n}}{n!}. \end{aligned}$$
(2.9)

Now, we define

$$\begin{aligned} &(x\mid\lambda )_{n}= x (x-\lambda )\cdots \bigl(x- (n-1 )\lambda \bigr)\quad (n>0 ),\\ &(x\mid\lambda )_{0}= 1. \end{aligned}$$
(2.10)

By (2.9) and (2.10), we get

$$ \int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} (x+x_{1}+\cdots+x_{r}\mid\lambda )_{n}\,d\mu_{-q} (x_{1} )\cdots \,d\mu_{-q} (x_{r} )=\mathcal{E}_{n,q}^{ (r )} (x\mid\lambda )\quad (u\ge0 ). $$
(2.11)

Therefore, by (2.6) and (2.11), we obtain the following theorem.

Theorem 2.1

For \(n\ge0\), we have

$$\begin{aligned} \mathcal{E}_{n,q}^{ (r )} (x\mid\lambda ) & =\int _{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} (x_{1}+ \cdots+x_{r}+x\mid\lambda )_{n}\,d\mu _{-q} (x_{1} )\cdots \,d\mu_{-q} (x_{r} ) \\ & =h_{n}^{ (r )} \bigl(x,-q^{-1}\mid\lambda \bigr)\quad (n\ge0 ), \end{aligned}$$

where \(h_{n}^{ (r )} (x,u\mid\lambda )\) are called the degenerate Frobenius-Euler polynomials of order r.

It is not difficult to show that

$$\begin{aligned} & (x_{1}+\cdots+x_{r}+x\mid\lambda )_{n} \\ &\quad= (x_{1}+\cdots+x_{r}+x ) (x_{1}+\cdots+x_{r}+x-\lambda )\cdots \bigl(x_{1}+\cdots +x_{r}+x- (n-1 )\lambda \bigr) \\ &\quad= \lambda^{n} \biggl(\frac{x_{1}+\cdots+x_{r}+x}{\lambda} \biggr)_{n} \\ &\quad= \lambda^{n}\sum_{l=0}^{n}S_{1} (n,l ) \biggl(\frac {x_{1}+\cdots+x_{r}+x}{\lambda} \biggr)^{l} \\ &\quad= \sum_{l=0}^{n}\lambda^{n-l}S_{1} (n,l ) (x_{1}+\cdots +x_{r}+x )^{l}, \end{aligned}$$
(2.12)

where \(S_{1} (n,l )\) is the Stirling number of the first kind.

We observe that

$$ \int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}}e^{ (x_{1}+\cdots+x_{r}+x )t} \,d\mu _{-q} (x_{1} )\cdots \,d\mu_{-q} (x_{r} )= \biggl(\frac { [2 ]_{q}}{qe^{t}+1} \biggr)^{r}e^{xt}. $$
(2.13)

Thus, by (2.13), we get

$$\begin{aligned} & \sum_{n=0}^{\infty}\int_{\mathbb{Z}_{p}} \cdots\int_{\mathbb{Z}_{p}} (x_{1}+\cdots +x_{r}+x )^{n}\,d\mu_{-q} (x_{1} )\cdots \,d\mu_{-q} (x_{r} )\frac{t^{n}}{n!} \\ &\quad= \biggl(\frac{ [2 ]_{q}}{qe^{t}+1} \biggr)^{r}e^{xt} = \sum_{n=0}^{\infty}E_{n,q}^{ (r )} (x )\frac {t^{n}}{n!}. \end{aligned}$$
(2.14)

By comparing the coefficients on both sides of (2.14), we get

$$ E_{n,q}^{ (r )} (x )=\int_{\mathbb{Z}_{p}}\cdots\int _{\mathbb{Z}_{p}} (x_{1}+\cdots+x_{r}+x )^{n}\,d\mu_{-q} (x_{1} )\cdots \,d\mu _{-q} (x_{r} ). $$
(2.15)

From Theorem 2.1, (2.12) and (2.15), we note that

$$\begin{aligned} h_{n}^{ (r )} \bigl(x,-q^{-1}\mid\lambda \bigr) &= \int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} (x_{1}+\cdots+x_{r}+x\mid\lambda )_{n}\,d\mu_{-q} (x_{1} )\cdots \,d\mu_{-q} (x_{r} ) \\ &= \sum_{l=0}^{n}\lambda^{n-l}S_{1} (n,l )\int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} (x_{1}+\cdots+x_{r}+x )^{l}\,d\mu_{-q} (x_{1} )\cdots \,d\mu_{-q} (x_{r} ) \\ &= \sum_{l=0}^{n}\lambda^{n-l}S_{1} (n,l )E_{l,q}^{ (r )} (x ) \\ & = \sum_{l=0}^{n}\lambda^{n-l}S_{1} (n,l )H_{l}^{ (r )} \bigl(x\mid-q^{-1} \bigr). \end{aligned}$$
(2.16)

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.2

For \(n\geq0\), we have

$$h_{n}^{ (r )} \bigl(x,-q^{-1}\mid\lambda \bigr)=\sum _{l=0}^{n}\lambda^{n-l}S_{1} (n,l )H_{l}^{ (r )} \bigl(x\mid-q^{-1} \bigr). $$

In particular,

$$\mathcal{E}_{n,q}^{ (r )} (x\mid\lambda )=\sum _{l=0}^{n}\lambda^{n-l}S_{1} (n,l )E_{l,q}^{ (r )} (x ). $$

By replacing t by \((e^{\lambda t}-1 )/\lambda\) in (2.2), we get

$$\begin{aligned} & \biggl(\frac{ [2 ]_{q}}{qe^{t}+1} \biggr)^{r}e^{xt} \\ &\quad= \sum_{n=0}^{\infty}\mathcal{E}_{n,q}^{ (r )} (x\mid \lambda )\frac{1}{n!}\frac{1}{\lambda^{n}} \bigl(e^{\lambda t}-1 \bigr)^{n} \\ &\quad= \sum_{n=0}^{\infty}\mathcal{E}_{n,q}^{ (r )} (x\mid \lambda )\frac{1}{\lambda^{n}}\sum_{m=n}^{\infty}S_{2} (m,n )\frac{\lambda^{m}}{m!}t^{m} \\ &\quad= \sum_{m=0}^{\infty} \Biggl(\sum _{n=0}^{m}\mathcal{E}_{n,q}^{ (r )} (x\mid\lambda )\lambda^{m-n}S_{2} (m,n ) \Biggr) \frac{t^{m}}{m!}, \end{aligned}$$
(2.17)

where \(S_{2} (m,n )\) is the Stirling number of the second kind.

Thus, by (2.17), we obtain the following theorem.

Theorem 2.3

For \(m\ge0\), we have

$$H_{m}^{ (r )} \bigl(x\mid-q^{-1} \bigr)=\sum _{n=0}^{m}h_{n}^{ (r )} \bigl(x,-q^{-1}\mid\lambda \bigr)\lambda ^{m-n}S_{2} (m,n ). $$

In particular,

$$E_{m,q}^{ (r )} (x )=\sum_{n=0}^{m} \mathcal {E}_{n,q}^{ (r )} (x\mid\lambda )\lambda ^{m-n}S_{2} (m,n ). $$

When \(r=1\), \(\mathcal{E}_{n,q} (x\mid\lambda )=\mathcal {E}_{n,q}^{ (1 )} (x\mid\lambda )\) are called the degenerate q-Euler polynomials. In particular, \(x=0\), \(\mathcal{E}_{n,q} (\lambda )=\mathcal{E}_{n,q} (0\mid \lambda )\) are called the degenerate q-Euler numbers. \(h_{n} (x,u\mid\lambda )=h_{n}^{ (1 )} (x,u\mid\lambda )\) are called the degenerate Frobenius-Euler polynomials. When \(x=0\), \(h_{n} (u\mid\lambda )=h_{n} (0,u\mid\lambda )\) are called the degenerate Frobenius-Euler numbers.

From (1.2), we have

$$\begin{aligned} & \int_{\mathbb{Z}_{p}} (1+\lambda t )^{\frac{x_{1}+x}{\lambda}}\,d\mu _{-q} (x_{1} ) \\ &\quad= \biggl(\frac{ [2 ]_{q}}{q (1+\lambda t )^{\frac {1}{\lambda}}+1} \biggr) (1+\lambda t )^{\frac{x}{\lambda }} \\ &\quad= \biggl(\frac{1+q^{-1}}{ (1+\lambda t )^{\frac{1}{\lambda }}+q^{-1}} \biggr) (1+\lambda t )^{\frac{x}{\lambda}} \\ &\quad= \sum_{n=0}^{\infty}h_{n} \bigl(x,-q^{-1}\mid\lambda \bigr)\frac {t^{n}}{n!}. \end{aligned}$$
(2.18)

Thus, by (2.18), we get

$$\begin{aligned} & h_{n} \bigl(x,-q^{-1}\mid\lambda \bigr) \\ &\quad= \int_{\mathbb{Z}_{p}} (x_{1}+x\mid\lambda )_{n}\,d\mu_{-q} (x_{1} ) \\ &\quad= \lambda^{n}\int_{\mathbb{Z}_{p}} \biggl(\frac{x_{1}+x}{\lambda} \biggr)_{n}\,d\mu _{-q} (x_{1} ) \\ &\quad= \sum_{l=0}^{n}S_{1} (n,l ) \lambda^{n-l}\int_{\mathbb{Z}_{p}} (x_{1}+x )^{l}\,d\mu_{-q} (x_{1} ) \\ &\quad= \sum_{l=0}^{n}S_{1} (n,l ) \lambda^{n-l}H_{l} \bigl(x\mid -q^{-1} \bigr) \end{aligned}$$
(2.19)

and

$$\begin{aligned} & h_{n} \bigl(-q^{-1}\mid\lambda \bigr) \\ &\quad= \int_{\mathbb{Z}_{p}} (x_{1}\mid\lambda )_{n}\,d\mu_{-q} (x_{1} ) \\ &\quad= \lambda^{n}\int_{\mathbb{Z}_{p}} \biggl(\frac{x_{1}}{\lambda} \biggr)_{n}\,d\mu _{-q} (x_{1} ) \\ &\quad= \sum_{l=0}^{n}S_{1} (n,l ) \lambda^{n-l}H_{l} \bigl(-q^{-1} \bigr). \end{aligned}$$
(2.20)

For \(d\in\mathbb{N}\), by (1.3), we get

$$\begin{aligned} & q^{d}\int_{\mathbb{Z}_{p}} (x_{1}+d\mid\lambda )_{n}\,d\mu_{-q} (x_{1} )+ (-1 )^{d-1}\int _{\mathbb{Z}_{p}} (x_{1}\mid\lambda )_{n}\,d\mu_{-q} (x_{1} ) \\ &\quad= [2 ]_{q}\sum_{l=0}^{d-1} (-1 )^{d-1-l}q^{l} (l\mid\lambda )_{n}. \end{aligned}$$
(2.21)

Let \(d\equiv1\ (\operatorname{mod}{2})\). Then we have

$$ [2 ]_{q}\sum_{l=0}^{d-1} (-1 )^{l}q^{l} (l\mid \lambda )_{n}=q^{d}h_{n} \bigl(d,-q^{-1}\mid\lambda \bigr)+h_{n} \bigl(-q^{-1} \mid\lambda \bigr). $$
(2.22)

For \(d\in\mathbb{N}\) with \(d\equiv0\ (\operatorname{mod}{2})\), we get

$$ [2 ]_{q}\sum_{l=0}^{d-1} (-1 )^{l-1}q^{l} (l\mid \lambda )_{n}=q^{d}h_{n} \bigl(d,-q^{-1}\mid\lambda \bigr)-h_{n} \bigl(-q^{-1} \mid\lambda \bigr). $$
(2.23)

Therefore, by (2.22) and (2.23), we obtain the following theorem.

Theorem 2.4

Let \(d\in\mathbb{N}\) and \(n\geq0\).

  1. (i)

    For \(d\equiv1\ (\operatorname{mod}{2})\), we have

    $$q^{d}h_{n} \bigl(d,-q^{-1}\mid\lambda \bigr)+h_{n} \bigl(-q^{-1}\mid \lambda \bigr)= [2 ]_{q}\sum_{l=0}^{d-1} (-1 )^{l}q^{l} (l\mid\lambda )_{n}. $$
  2. (ii)

    For \(d\equiv0\ (\operatorname{mod}{2})\), we have

    $$q^{d}h_{n} \bigl(d,-q^{-1}\mid\lambda \bigr)-h_{n} \bigl(-q^{-1}\mid \lambda \bigr)= [2 ]_{q}\sum_{l=0}^{d-1} (-1 )^{l-1}q^{l} (l\mid\lambda )_{n}. $$

Corollary 2.5

Let \(d\in\mathbb{N}\) and \(n\geq0\).

  1. (i)

    For \(d\equiv1\ (\operatorname{mod}{2})\), we have

    $$q^{d}E_{n,q} (d\mid\lambda )+E_{n,q} (\lambda )= [2 ]_{q}\sum_{l=0}^{d-1} (-1 )^{l}q^{l} (l\mid\lambda )_{n}. $$
  2. (ii)

    For \(d\equiv0\ (\operatorname{mod}{2})\), we have

    $$q^{d}E_{n,q} (d\mid\lambda )-E_{n,q} (\lambda )= [2 ]_{q}\sum_{l=0}^{d-1} (-1 )^{l-1}q^{l} (l\mid \lambda )_{n}. $$

From (1.1), we note that

$$ \int_{\mathbb{Z}_{p}}f (x )\,d\mu_{-q} (x )=\frac{ [2 ]_{q}}{ [2 ]_{q^{d}}} \sum_{l=0}^{d-1} (-q )^{a}\int _{\mathbb{Z}_{p}}f (a+dx )\,d\mu_{-q^{d}} (x ), $$
(2.24)

where \(d\in\mathbb{N}\) with \(d\equiv1\ (\operatorname{mod}{2})\).

By (2.24), we get

$$\begin{aligned} & \int_{\mathbb{Z}_{p}} (x_{1}\mid\lambda )_{n}\,d\mu_{-q} (x_{1} ) \\ &\quad= \frac{ [2 ]_{q}}{ [2 ]_{q^{d}}}\sum_{a=0}^{d-1} (-q )^{a}\int_{\mathbb{Z}_{p}} (a+dx_{1}\mid\lambda )_{n}\,d\mu_{-q^{d}} (x_{1} ) \\ &\quad= \frac{ [2 ]_{q}}{ [2 ]_{q^{d}}}d^{n}\sum_{a=0}^{d-1} (-q )^{a}\int_{\mathbb{Z}_{p}} \biggl(\frac {a}{d}+x_{1}\Bigm| \frac{\lambda}{d} \biggr)_{n}\,d\mu_{-q^{d}} (x_{1} ) \\ &\quad= d^{n}\frac{ [2 ]_{q}}{ [2 ]_{q^{d}}}\sum_{a=0}^{d-1} (-q )^{a}\mathcal{E}_{n,q^{d}} \biggl(\frac {a}{d} \Bigm| \frac{\lambda}{d} \biggr), \end{aligned}$$
(2.25)

where \(d\in\mathbb{N}\) with \(d\equiv1\ (\operatorname{mod}{2})\) and \(n\geq0\).

Therefore, by (2.25), we obtain the following theorem.

Theorem 2.6

For \(n\geq0\), \(d\in\mathbb{N}\) with \(d\equiv1\ (\operatorname{mod}{2})\), we have

$$\mathcal{E}_{n,q} (\lambda )=d^{n}\frac{ [2 ]_{q}}{ [2 ]_{q^{d}}}\sum _{a=0}^{d-1} (-q )^{a} \mathcal{E}_{n,q^{d}} \biggl(\frac{a}{d}\Bigm| \frac{\lambda }{d} \biggr). $$

Moreover,

$$\mathcal{E}_{n,q} (x\mid\lambda )=d^{n}\frac{ [2 ]_{q}}{ [2 ]_{q^{d}}}\sum _{a=0}^{d-1} (-q )^{a} \mathcal{E}_{n,q^{d}} \biggl(\frac{a+x}{d}\Bigm| \frac{\lambda }{d} \biggr). $$

Now, we consider the degenerate q-Euler polynomials of the second kind as follows:

$$ \widehat{\mathcal{E}}_{n,q} (x\mid\lambda )=\int_{\mathbb{Z}_{p}} \bigl(- (x_{1}+x )\mid \lambda \bigr)_{n}\,d\mu_{-q} (x_{1} )\quad (n\ge0 ). $$
(2.26)

From (2.26), we note that

$$\begin{aligned} & \sum_{n=0}^{\infty}\hat{\mathcal{E}}_{n,q} (x\mid\lambda )\frac{t^{n}}{n!} \\ &\quad= \sum_{n=0}^{\infty}\lambda^{n} \int_{\mathbb{Z}_{p}}\binom{-\frac {x_{1}+x}{\lambda}}{n}\,d\mu_{-q} (x_{1} )t^{n} \\ &\quad= (1+\lambda t )^{-x/\lambda}\int_{\mathbb{Z}_{p}} (1+\lambda t )^{-x_{1}/\lambda}\,d\mu_{-q} (x_{1} ) \\ &\quad= \frac{ [2 ]_{q}}{ (1+\lambda t )^{1/\lambda }+q} (1+\lambda t )^{ (1-x )/\lambda}. \end{aligned}$$
(2.27)

When \(x=0\), \(\hat{\mathcal{E}}_{n,q} (\lambda )=\hat{\mathcal {E}}_{n,q} (0\mid\lambda )\) are called the degenerate q-Euler numbers of the second kind.

By (2.26), we get

$$\begin{aligned} & \hat{\mathcal{E}}_{n,q} (x\mid\lambda ) \\ &\quad= \lambda^{n}\int_{\mathbb{Z}_{p}} \biggl(- \frac{x_{1}+x}{\lambda} \biggr)_{n}\,d\mu _{-q} (x ) \\ &\quad= \lambda^{n}\sum_{l=0}^{n}S_{1} (n,l )\frac{ (-1 )^{l}}{\lambda^{l}}\int_{\mathbb{Z}_{p}} (x_{1}+x )^{l}\,d\mu_{-q} (x ) \\ &\quad= \sum_{l=0}^{n}S_{1} (n,l ) \lambda^{n-l} (-1 )^{l}E_{l,q} (x ). \end{aligned}$$
(2.28)

Thus, from (2.28), we have

$$\begin{aligned} & (-1 )^{n}\hat{\mathcal{E}}_{n,q} (x\mid\lambda) \\ &\quad= \sum_{l=0}^{n} (-1 )^{n-l}S_{1} (n,l )\lambda ^{n-l}E_{l,q} (x ) \\ &\quad= \sum_{l=0}^{n}\bigl\vert S_{1} (n,l )\bigr\vert \lambda ^{n-l}E_{l,q} (x ). \end{aligned}$$
(2.29)

We observe that

$$\begin{aligned} & \sum_{n=0}^{\infty}E_{n,q^{-1}} (1-x ) \frac{t^{n}}{n!} \\ &\quad= \frac{1+q^{-1}}{q^{-1}e^{t}+1}e^{ (1-x )t}=\frac {1+q}{qe^{-t}+1}e^{-xt} \\ &\quad= \frac{ [2 ]_{q}}{qe^{-t}+1}e^{-xt}=\sum_{n=0}^{\infty} (-1 )^{n}E_{n,q} (x )\frac{t^{n}}{n!}. \end{aligned}$$
(2.30)

From (2.30), we have

$$ E_{n,q^{-1}} (1-x )= (-1 )^{n}E_{n,q} (x )\quad (n\ge0 ). $$
(2.31)

By replacing t by \(\frac{e^{\lambda t}-1}{\lambda}\) in (2.27), we get

$$\begin{aligned} & \sum_{n=0}^{\infty}\hat{\mathcal{E}}_{n,q} (x\mid\lambda )\frac{1}{n!}\frac{1}{\lambda^{n}} \bigl(e^{\lambda t}-1 \bigr)^{n} \\ &\quad= \frac{1+q}{e^{t}+q}e^{ (1-x )t} \\ &\quad= \frac{ [2 ]_{q^{-1}}}{q^{-1}e^{t}+1}e^{ (1-x )t} \\ &\quad= \sum_{n=0}^{\infty}E_{n,q^{-1}} (1-x ) \frac{t^{n}}{n!}. \end{aligned}$$
(2.32)

On the other hand, we have

$$\begin{aligned} & \sum_{m=0}^{\infty}\hat{\mathcal{E}}_{m,q} (x\mid\lambda )\frac{1}{m!}\frac{1}{\lambda^{m}} \bigl(e^{\lambda t}-1 \bigr)^{m} \\ &\quad= \sum_{m=0}^{\infty}\hat{ \mathcal{E}}_{m,q} (x\mid\lambda )\frac{1}{\lambda^{m}}\sum _{n=m}^{\infty}S_{2} (n,m )\frac {\lambda^{n}t^{n}}{n!} \\ &\quad= \sum_{n=0}^{\infty} \Biggl(\sum _{m=0}^{n}\hat{\mathcal{E}}_{m,q} (x\mid \lambda )S_{2} (m,n )\lambda^{n-m} \Biggr)\frac {t^{n}}{n!}. \end{aligned}$$
(2.33)

From (2.32) and (2.33), we note that

$$ (-1 )^{n}E_{n,q^{-1}} (x )=\sum_{m=0}^{n} \hat {\mathcal{E}}_{m,q} (x\mid\lambda )S_{2} (n,m )\lambda ^{n-m}. $$
(2.34)

Therefore, by (2.29) and (2.34), we obtain the following theorem.

Theorem 2.7

For \(n\geq0\), we have

$$(-1 )^{n}\hat{\mathcal{E}}_{n,q} (x\mid\lambda )=\sum _{l=0}^{n}\bigl\vert S_{1} (n,l )\bigr\vert \lambda^{n-l}E_{l,q} (x ) $$

and

$$(-1 )^{n}E_{n,q^{-1}} (x )=\sum_{l=0}^{n}S_{2} (n,l )\lambda^{n-l}\hat{\mathcal{E}}_{l,q} (x\mid\lambda ). $$

It is easy to show that

$$ \binom{x+y}{n}=\sum_{l=0}^{n} \binom{x}{l}\binom{y}{n-l}\quad(n\geq 0 ). $$
(2.35)

From (2.35), we have

$$\begin{aligned} & \frac{ (-1 )^{n}\mathcal{E}_{n,q} (\lambda )}{n!} \\ &\quad= \frac{ (-1 )^{n}}{n!}\int_{\mathbb{Z}_{p}} (x_{1}\mid\lambda )_{n}\,d\mu_{-q} (x_{1} ) \\ &\quad= \lambda^{n}\int_{\mathbb{Z}_{p}}\binom{-\frac{x_{1}}{\lambda}+n-1}{n}\,d\mu _{-q} (x_{1} ) \\ &\quad= \lambda^{n}\sum_{l=0}^{n} \binom{n-1}{n-l}\int_{\mathbb{Z}_{p}}\binom{-\frac {x_{1}}{\lambda}}{l}\,d\mu_{-q} (x_{1} ) \\ &\quad= \lambda^{n}\sum_{l=1}^{n} \binom{n-1}{l-1}\frac{1}{\lambda^{l}l!}\int_{\mathbb{Z}_{p}} (-x_{1}\mid\lambda )_{l}\,d\mu_{-q} (x_{1} ) \\ &\quad= \sum_{l=1}^{n}\binom{n-1}{l-1} \lambda^{n-l}\frac{1}{l!}\hat{\mathcal {E}}_{l,q} (\lambda) \end{aligned}$$
(2.36)

and

$$ \frac{ (-1 )^{n}}{n!}\hat{\mathcal{E}}_{n,q} (\lambda )=\sum _{l=1}^{n}\binom{n-1}{l-1}\lambda^{n-l} \frac{1}{l!}\mathcal {E}_{l,q} (\lambda ). $$
(2.37)

References

  1. 1.

    Kim, T: Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \(\Bbb{Z}_{p}\). Russ. J. Math. Phys. 16(4), 484-491 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Kim, T: q-Euler numbers and polynomials associated with p-adic q-integrals. J. Nonlinear Math. Phys. 14(1), 15-27 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(3), 399-406 (2012)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Cangül, IN, Kurt, V, Simsek, Y, Pak, HK, Rim, S-H: An invariant p-adic q-integral associated with q-Euler numbers and polynomials. J. Nonlinear Math. Phys. 14(1), 8-14 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Carlitz, L: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51-88 (1979)

    MATH  Google Scholar 

  6. 6.

    Carlitz, L: A degenerate Staudt-Clausen theorem. Arch. Math. (Basel) 7, 28-33 (1956)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    He, Y, Zhang, W: A convolution formula for Bernoulli polynomials. Ars Comb. 108, 97-104 (2013)

    MATH  Google Scholar 

  8. 8.

    Jeong, J-H, Jin, J-H, Park, J-W, Rim, S-H: On the twisted weak q-Euler numbers and polynomials with weight 0. Proc. Jangjeon Math. Soc. 16(2), 157-163 (2013)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Kim, BM, Jang, L-C: A note on the Von Staudt-Clausen’s theorem for the weighted q-Genocchi numbers. Adv. Differ. Equ. 2015, 4 (2015)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Kim, DS, Kim, T: Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \(\Bbb{Z}_{p}\). Integral Transforms Spec. Funct. 26(4), 295-302 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kim, DS, Kim, T: A note on Boole polynomials. Integral Transforms Spec. Funct. 25(8), 627-633 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Kim, DS, Kim, T, Dolgy, DV, Komatsu, T: Barnes-type degenerate Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 25(1), 121-146 (2015)

    Google Scholar 

  13. 13.

    Zhang, Z, Yang, J: On sums of products of the degenerate Bernoulli numbers. Integral Transforms Spec. Funct. 20(9-10), 751-755 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Luo, Q-M, Qi, F: Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials. Adv. Stud. Contemp. Math. 7(1), 11-18 (2003)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Kim, T: An invariant p-adic q-integral on \(\Bbb{Z}_{p}\). Appl. Math. Lett. 21(2), 105-108 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Ozden, H, Simsek, Y: A new extension of q-Euler numbers and polynomials related to their interpolation functions. Appl. Math. Lett. 21(9), 934-939 (2008)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Rim, S-H, Jeong, J: On the modified q-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. (Kyungshang) 22(1), 93-98 (2012)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Sen, E: Theorems on Apostol-Euler polynomials of higher order arising from Euler basis. Adv. Stud. Contemp. Math. (Kyungshang) 23(2), 337-345 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by Grant No. 14-11-00022 of Russian Scientific Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kim, D.S. & Dolgy, D.V. Degenerate q-Euler polynomials. Adv Differ Equ 2015, 246 (2015). https://doi.org/10.1186/s13662-015-0563-y

Download citation

MSC

  • 11B68
  • 11S80

Keywords

  • degenerate Euler polynomials
  • p-adic q-fermionic integral