Open Access

Anti-periodic solutions for high-order cellular neural networks with mixed delays and impulses

Advances in Difference Equations20152015:161

https://doi.org/10.1186/s13662-015-0497-4

Received: 3 March 2015

Accepted: 8 May 2015

Published: 26 May 2015

Abstract

In this paper, delayed high-order cellular neural networks with impulses are investigated. Some sufficient conditions on the existence and exponential stability of anti-periodic solutions are established. An example with its numerical simulations is presented. Our results are new and complement previously known results.

Keywords

high-order cellular neural networks anti-periodic solution exponentially stability delay impulse

MSC

34C25 34K13 34K25

1 Introduction

During the past decades, high-order cellular neural networks (HCNNs) have been extensively investigated due to their immense potential of application perspective in various fields such as signal and image processing, pattern recognition, optimization, and many other subjects. Many results on the problem of global stability of equilibrium points and periodic solutions of HCNNs have been reported (see [19]). In applied sciences, the existence of anti-periodic solutions plays a key role in characterizing the behavior of nonlinear differential equations [1013]. In recent years, there have been some papers which deal with the problem of existence and stability of anti-periodic solutions. For example, Gong [14] investigated the existence and exponential stability of anti-periodic solutions for a class of Cohen-Grossberg neural networks; Peng and Huang [15] studied the anti-periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays, Zhang [16] focused on the existence and exponential stability of anti-periodic solutions for HCNNs with time-varying leakage delays. For details, we refer readers to [15, 1735]. We know that many evolutionary processes exhibit impulsive effects [33, 3643]. Thus, it is worthwhile to investigate the existence and stability of anti-periodic solutions for HCNNs with impulses. To the best of our knowledge, very few scholars have considered the problem of anti-periodic solutions for such impulsive systems. In this paper, we study the anti-periodic solution of the following high-order cellular neural network with mixed delays and impulses modeled by
$$ \left \{ \textstyle\begin{array}{l} \dot{x}_{i}(t)=-b_{i}(t)x_{i}(t)+\sum_{j=1}^{n}c_{ij}(t)g_{j}(x_{j}(t-\tau_{ij}(t)))\\ \hphantom{\dot{x}_{i}(t)=}{}+\sum_{j=1}^{n}d_{ij}(t)\int_{0}^{\sigma}k_{ij}(s)g_{j}(x_{j}(t-s))\,ds\\ \hphantom{\dot{x}_{i}(t)=}{} +\sum_{j=1}^{n}\sum_{l=1}^{n}e_{ijl}(t)g_{j}(x_{j}(t-\alpha_{jl}(t)))g_{l}(x_{l}(t-\beta _{jl}(t)))+I_{i}(t),\quad t\neq{t_{k}},\\ {x_{i}}(t_{k}^{+})=(1+\gamma_{ik})x_{i}(t_{k}),\quad k=1,2,\dots, \end{array} \right .$$
(1.1)
where \(i=1, 2, \dots, n\), \(x_{i}(t)\) denotes the state of the ith unit, \(b_{i}(t)>0\) denotes the passive decay, \(c_{ij}\), \(d_{ij}\), \(e_{ijl}\) are the synaptic connections strengths, \(\tau_{ij}(t)\geq0\), \(\alpha_{jl}(t)\geq0\) and \(\beta_{jl}(t)\geq0\) correspond to the delays, \(I_{i}(t)\) stands for the external inputs, \(g_{j}\) is the activation function of signal transmission, the delay kernels \(k_{ij}\) is a real-valued negative continuous function defined on \(R^{+}:=[0,\infty)\), \(t_{k}\) is the impulsive moment, and \(\gamma_{ik}\) characterizes the impulsive jump at time \(t_{k}\) for the ith unit.
For convenience, we introduce some notations as follows.
$$\begin{aligned}& \overline{c}_{ij}=\sup_{t\in{R}}\bigl|c_{ij}(t)\bigr|, \qquad \overline{d}_{ij}=\sup_{t\in{R}}\bigl|d_{ij}(t)\bigr|, \qquad\overline{e}_{ijl}=\sup_{t\in{R}}\bigl|e_{ijl}(t)\bigr|, \qquad\overline{I}_{i}=\sup_{t\in{R}}\bigl|I_{i}(t)\bigr|, \\& \underline{b}_{i}=\inf_{t\in{R}}\bigl|b_{i}(t)\bigr|,\qquad \tau=\sup_{t\in{R}}\max_{1\leq {i,j,l}\leq{n}}\bigl\{ \tau_{ij}(t),\alpha_{jl}(t),\beta_{jl}(t),\sigma \bigr\} . \end{aligned}$$
Throughout this paper, we assume that
(H1) For \(i,j,l=1,2,\dots,n\), \(b_{i}, c_{ij}, d_{ij}, e_{ijl}, I_{i}(t), g_{j}: R\rightarrow{R}\), \(k_{ij}: R^{+}\rightarrow{R^{+}}\), \(\alpha_{jl},\beta_{jl}: R\rightarrow{R^{+}}\) are continuous functions, and there exists a constant \(T>0\) such that
$$\begin{aligned}& b_{i}(t+T)=b_{i}(t),\qquad I_{i}(t+T)=-I_{i}(t), \qquad\tau_{ij}(t+T)=\tau_{ij}(t),\qquad \alpha _{jl}(t+T)=\alpha_{jl}(t), \\& c_{ij}(t+T)g_{j}(u)=-c_{ij}(t)g_{j}(-u), \qquad d_{ij}(t+T)g_{j}(u)=-d_{ij}(t)g_{j}(-u), \\& \beta_{jl}(t+T)=\beta _{jl}(t),\qquad e_{ijl}(t+T)g_{j}(u)g_{l}(u)=-e_{ijl}(t)g_{j}(-u)g_{l}(-u). \end{aligned}$$

(H2) The sequence of times \(\{t_{k}\}\) (\(k\in{N}\)) satisfies \(t_{k}< t_{k+1}\) and \(\lim_{k\rightarrow{+\infty}}t_{k}=+\infty\), and \(\gamma_{ik}\) satisfies \(-2\leq\gamma_{ik}\leq0\) for \(i\in\{1,2,\dots,n\}\) and \(k\in{N}\).

(H3) There exists \(q\in{N}\) such that \(\gamma_{i(k+q)}=\gamma_{ik}\), \(t_{k+q}=t_{k}+T\), \(k\in{N}\).

(H4) For each \(j\in\{1,2,\dots,n\}\), the activation function \(g_{j}: R\rightarrow{R}\) is continuous, and there exist nonnegative constants \(L_{g}^{j}\) and \(M_{g}\) such that, for all \(u,v\in{R}\),
$$g_{j}(0)=0,\qquad \bigl|g_{j}(u)\bigr|\leq{M_{g}},\qquad \bigl|g_{j}(u)-g_{j}(v)\bigr|\leq{L_{g}^{j}}|u-v| \quad\mbox{for all } u,v\in{R}. $$
(H5) There exist constants \(\eta>0\), \(\lambda>0\), \(i=1, 2, \dots, n\), such that
$$\begin{aligned}& (\lambda-\underline{b}_{i})+\sum_{j=1}^{n} \overline {c}_{ij}L_{g}^{j}e^{\lambda\tau}+\sum _{j=1}^{n}|\overline{d}_{ij}|\int _{0}^{\sigma}\bigl|k_{ij}(s)\bigr|L_{g}^{j}e^{\lambda{s}} \,ds \\& \quad{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\overline{e}_{ijl} \bigl(M_{g}L_{g}^{l}e^{\lambda \tau}+M_{g}L_{g}^{j}e^{\lambda\tau} \bigr)< -\eta< 0. \end{aligned}$$
(H6) For \(i=1,2,\ldots,n\), the following condition holds:
$$\left \{ \textstyle\begin{array}{@{}l} -b_{i}+\sum_{j=1}^{n}\bar{c}_{ij}L_{g}^{j}+\sum_{j=1}^{n}L_{g}^{j}\bar {d}_{ij}\int_{0}^{\sigma}|k_{ij}(s)|\,ds< 0,\\ (-b_{i}+\sum_{j=1}^{n}\bar{c}_{ij}L_{g}^{j}+\sum_{j=1}^{n}L_{g}^{j}\bar {d}_{ij}\int_{0}^{\sigma}|k_{ij}(s)|\,ds )^{2}-4\bar{I}_{i}\sum_{j=1}^{n}\sum_{l=1}^{n}\bar{e}_{ijl}L_{g}^{j}L_{g}^{l}>0. \end{array} \right . $$
Let \(x=(x_{1},x_{2},\dots,x_{n})^{T}\in{R^{n}}\), in which `T’ denotes the transposition. We define \(|x|=(|x_{1}|,|x_{2}|,\dots,|x_{n}|)^{T}\) and \(\|x\|=\max_{1\leq{i}\leq{n}}|x_{i}|\). Obviously, the solution \(x(t)=(x_{1}(t),x_{2}(t), \dots,x_{n}(t))^{T}\) of (1.1) has components \(x_{i}(t)\) piece-wise continuous on \((-\tau,+\infty)\), \(x(t)\) is differentiable on the open intervals \((t_{k-1},t_{k})\) and \(x(t_{k}^{+})\) exists.

Definition 1.1

Let \(u(t):R\rightarrow{R}\) be a piece-wise continuous function having a countable number of discontinuous \(\{t_{k}\}|_{k=1}^{+\infty}\) of the first kind. It is said to be T-anti-periodic on R if
$$\left \{ \begin{array}{@{}l} u(t+T)=-u(t), \quad t\neq{t_{k}},\\ u((t_{k}+T)^{+})=-u(t_{k}^{+}), \quad k=1,2,\dots. \end{array} \right . $$

Definition 1.2

Let \(x^{*}(t)= (x^{*}_{1}(t), x^{*}_{2}(t),\dots, x^{*}_{n}(t) )^{T} \) be an anti-periodic solution of (1.1) with initial value \(\varphi^{*}=(\varphi^{*}_{1}(t), \varphi^{*}_{2}(t), \dots, \varphi^{*}_{n}(t))^{T} \). If there exist constants \(\lambda>0\) and \(M >1\) such that for every solution \(x(t)=(x_{1}(t), x_{2}(t),\dots,x_{n}(t))^{T} \) of (1.1) with an initial value \(\varphi=(\varphi_{1}(t), \varphi_{2}(t), \dots, \varphi_{n}(t))^{T}\),
$$\bigl|x_{i}(t)-x^{*}_{i}(t)\bigr|\leq M \bigl\| \varphi- \varphi^{*}\bigr\| e^{-\lambda t} \quad\mbox{for all } t>0, i=1, 2, \dots, n, $$
where
$$\bigl\| \varphi-\varphi^{*}\bigr\| =\sup_{-\tau\leq s\leq0} \max _{1\leq i\leq n}\bigl|\varphi_{i}(s)-\varphi_{i}^{*}(s)\bigr|. $$
Then \(x^{*}(t)\) is said to be globally exponentially stable.

The purpose of this paper is to present sufficient conditions of existence and exponential stability of anti-periodic solution of system (1.1). Not only can our results be applied directly to many concrete examples of cellular neural networks, but they also extend, to a certain extent, the results in some previously known ones. In addition, an example with its numerical simulations is presented to illustrate the effectiveness of our main results.

The rest of this paper is organized as follows. In the next section, we give some preliminary results. In Section 3, we derive the existence of T-anti-periodic solution, which is globally exponential stable. In Section 4, we present an example to illustrate the effectiveness of our main results.

2 Preliminary results

In this section, we present two important lemmas which are used to prove our main results in Section 3.

Lemma 2.1

Let (H1)-(H6) hold. Suppose that \({x}(t)= ({x}_{1}(t), {x}_{2}(t),\dots, {x}_{n}(t))^{T} \) is a solution of (1.1) with initial conditions
$$ {x}_{i}(s)={\varphi}_{i}(s), \quad\bigl|{ \varphi}_{i}(s)\bigr|< \delta, s\in[-\tau,0], i=1,2,\dots,n. $$
(2.1)
Then
$$ \bigl|{x}_{i}(t)\bigr|< \delta\quad \textit{and}\quad \bigl|{x}_{i} \bigl(t_{k}^{+}\bigr)\bigr|< \delta\quad \textit{for all } t\geq0, i=1,2, \dots,n, $$
(2.2)
where δ satisfies
$$\begin{aligned} -\underline{b}_{i}\delta+\sum _{j=1}^{n}\overline {c}_{ij}L_{g}^{j} \delta+\sum_{j=1}^{n}L_{g}^{j} \overline{d}_{ij}\delta\int_{0}^{\sigma}\bigl|k_{ij}(s)\bigr| \,ds+\sum_{j=1}^{n}\sum _{l=1}^{n}\overline{e}_{ijl}L_{g}^{j}L_{g}^{l} \delta ^{2}+\overline{I}_{i}< 0. \end{aligned}$$
(2.3)

Proof

For any given initial condition, hypothesis (H4) guarantees the existence and uniqueness of \(x(t)\), the solution to (1.1) in \([-\tau, +\infty)\). Consider the following polynomial \(ax^{2}+bx+c\), where a, b, c are all real numbers. If \(a<0\) and \(b^{2}-4ac<0\), then \(ax^{2}+bx+c>0\). In view of (H6), we know that there exists a positive constant δ which satisfies (2.3). By way of contradiction, we assume that (2.2) does not hold. Notice that \({x}_{i}(t_{k}^{+})=(1+\gamma_{ik}){x}_{i}(t_{k})\) and by assumption (H2), \(-2\leq\gamma_{ik}\leq0\), then \(|{x}_{i}(t_{k}^{+})|=|(1+\gamma_{ik})||{x}_{i}(t_{k})|\leq|{x}_{i}(t_{k})|\). Then, if \(|{x}_{i}(t_{k}^{+})|\geq\delta\), then \(|{x}_{i}(t_{k})|\geq\delta\). Thus we may assume that there must exist \(i\in\{1,2,\dots,n \}\) and \(\widetilde{t}\in(t_{k},t_{k+1}]\) such that
$$ \bigl|{x}_{i}(\widetilde{t})\bigr| =\delta \quad\mbox{and}\quad \bigl|{x}_{j}(\widetilde{t})\bigr| < \delta \quad\mbox{for all } t\in(-\tau, \widetilde{t}), j=1,2,\dots,n. $$
(2.4)
By directly computing the upper left derivative of \(|{x}_{i}(t)|\), together with assumptions (2.3), (H4) and (2.4), we deduce that
$$\begin{aligned} 0 \leq& D^{+}\bigl(\bigl|{x}_{i}(\widetilde{t})\bigr|\bigr) \\ \leq& -b_{i}(t)\bigl|x_{i}(\widetilde{t})\bigr|+ \Biggl|\sum _{j=1}^{n}c_{ij}(\widetilde {t})g_{j}\bigl(x_{j}\bigl(\widetilde{t}-\tau_{ij}( \widetilde{t})\bigr)\bigr)+\sum_{j=1}^{n}d_{ij}( \widetilde{t})\int_{0}^{\sigma}k_{ij}(s)g_{j} \bigl(x_{j}(\widetilde {t}-s)\bigr)\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}e_{ijl}(\widetilde{t})g_{j} \bigl(x_{j}\bigl(\widetilde {t}-\alpha_{jl}(\widetilde{t}) \bigr)\bigr)g_{l}\bigl(x_{l}\bigl(\widetilde{t}-\beta _{jl}(\widetilde{t})\bigr)\bigr)+I_{i}(\widetilde{t}) \Biggr| \\ \leq& -b_{i}(t)\bigl|x_{i}(\widetilde{t})\bigr|+\sum _{j=1}^{n}\bigl|c_{ij}(\widetilde {t})\bigr|\bigl|g_{j}\bigl(x_{j}\bigl(\widetilde{t}- \tau_{ij}(\widetilde{t})\bigr)\bigr)\bigr|+\sum_{j=1}^{n}\bigl|d_{ij}( \widetilde{t})\bigr|\int_{0}^{\sigma }\bigl|k_{ij}(s)\bigr|\bigl|g_{j} \bigl(x_{j}(\widetilde{t}-s)\bigr)\bigr|\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\bigl|e_{ijl}(\widetilde{t})\bigr|\bigl|g_{j} \bigl(x_{j}\bigl(\widetilde {t}-\alpha_{jl}(\widetilde{t}) \bigr)\bigr)\bigr|\bigl|g_{l}\bigl(x_{l}\bigl(\widetilde{t}-\beta _{jl}(\widetilde{t})\bigr)\bigr)\bigr|+\bigl|I_{i}(\widetilde{t})\bigr| \\ \leq& -b_{i}(t)\bigl|x_{i}(\widetilde{t})\bigr|+\sum _{j=1}^{n}\overline {c}_{ij}L_{g}^{j}\bigl|x_{j} \bigl(\widetilde{t}-\tau_{ij}(\widetilde{t})\bigr)\bigr|+\sum _{j=1}^{n}L_{g}^{j} \overline{d}_{ij}\int_{0}^{\sigma}\bigl|k_{ij}(s)\bigr|\bigl|x_{j}( \widetilde {t}-s)\bigr|\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\overline{e}_{ijl}L_{g}^{j}L_{g}^{l}\bigl|x_{j} \bigl(\widetilde {t}-\alpha_{jl}(\widetilde{t})\bigr)\bigr|\bigl|x_{l} \bigl(\widetilde{t}-\beta_{jl}(\widetilde {t})\bigr)\bigr|+ \overline{I}_{i} \\ \leq& -\underline{b}_{i}\delta+\sum_{j=1}^{n} \overline{c}_{ij}L_{g}^{j}\delta+\sum _{j=1}^{n}L_{g}^{j} \overline{d}_{ij}\delta\int_{0}^{\sigma }\bigl|k_{ij}(s)\bigr|\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\overline{e}_{ijl}L_{g}^{j}L_{g}^{l} \delta ^{2}+\overline{I}_{i}< 0, \end{aligned}$$
(2.5)
which is a contradiction and implies that (2.2) holds. This completes the proof. □

Lemma 2.2

Suppose that (H1)-(H6) hold. Let \(x^{*}(t)=(x^{*}_{1}(t), x^{*}_{2}(t),\dots, x^{*}_{n}(t))^{T} \) be the solution of (1.1) with initial value \(\varphi^{*}=(\varphi^{*}_{1}(t), \varphi^{*}_{2}(t), \dots, \varphi^{*}_{n}(t))^{T} \), and \(x(t)=(x_{1}(t), x_{2}(t), \dots,x_{n}(t))^{T} \) be the solution of (1.1) with initial value \(\varphi=(\varphi_{1}(t), \varphi_{2}(t), \dots, \varphi _{n}(t))^{T}\). Then there exist constants \(\lambda>0\) and \(M>1\) such that
$$\bigl|x_{i}(t)-x^{*}_{i}(t)\bigr|\leq M \bigl\| \varphi- \varphi^{*}\bigr\| e^{-\lambda t}\quad\textit{for all } t>0, i=1, 2, \dots, n. $$

Proof

Let \(y(t)=\{y_{ j}(t) \}=\{x_{ j}(t)-x^{\ast}_{ j}(t) \}=x(t)-x^{*}(t)\). Then
$$\begin{aligned}& \begin{aligned}[b] y_{i}^{\prime}(t) ={}& {-}b_{i}(t) \bigl[x_{i}(t)-x_{i}^{*}(t)\bigr]+\sum _{j=1}^{n}c_{ij}(t)\bigl[g_{j} \bigl(x_{j}\bigl(t-\tau_{ij}(t)\bigr)\bigr)-g_{j} \bigl(x_{j}^{*}\bigl(t-\tau _{ij}(t)\bigr)\bigr)\bigr]\\ &{}+\sum_{j=1}^{n}d_{ij}(t)\int _{0}^{\sigma }k_{ij}(s)\bigl[g_{j} \bigl(x_{j}(t-s)\bigr)-g_{j}\bigl(x_{j}^{*}(t-s)\bigr) \bigr]\,ds\\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}e_{ijl}(t)\bigl[g_{j} \bigl(x_{j}\bigl(t-\alpha _{jl}(t)\bigr)\bigr)g_{l} \bigl(x_{l}\bigl(t-\beta_{jl}(t)\bigr)\bigr)\\ &{}-g_{j}\bigl(x_{j}^{*}\bigl(t-\alpha_{jl}(t)\bigr) \bigr)g_{l}\bigl(x_{l}^{*}\bigl(t-\beta _{jl}(t)\bigr) \bigr)\bigr]+I_{i}(t)\\ ={}& {-}b_{i}(t)\bigl[x_{i}(t)-x_{i}^{*}(t)\bigr]+ \sum_{j=1}^{n}c_{ij}(t) \bigl[g_{j}\bigl(x_{j}\bigl(t-\tau _{ij}(t)\bigr) \bigr)-g_{j}\bigl(x_{j}^{*}\bigl(t-\tau_{ij}(t)\bigr) \bigr)\bigr]\\ &{} +\sum_{j=1}^{n}d_{ij}(t)\int _{0}^{\sigma }k_{ij}(s)\bigl[g_{j} \bigl(x_{j}(t-s)\bigr)-g_{j}\bigl(x_{j}^{*}(t-s)\bigr) \bigr]\,ds\\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}e_{ijl}(t)\bigl[g_{j} \bigl(x_{j}\bigl(t-\alpha _{jl}(t)\bigr)\bigr)g_{l} \bigl(x_{l}\bigl(t-\beta_{jl}(t)\bigr)\bigr)\\ &{}-g_{j}\bigl(x_{j}\bigl(t-\alpha_{jl}(t)\bigr) \bigr)g_{l}\bigl(x_{l}^{*}\bigl(t-\beta_{jl}(t)\bigr) \bigr)\\ &{}+g_{j}\bigl(x_{j}\bigl(t-\alpha_{jl}(t)\bigr) \bigr)g_{l}\bigl(x_{l}^{*}\bigl(t-\beta_{jl}(t)\bigr) \bigr)\\ &{}-g_{j}\bigl(x_{j}^{*}\bigl(t-\alpha_{jl}(t)\bigr) \bigr)g_{l}\bigl(x_{l}^{*}\bigl(t-\beta_{jl}(t)\bigr) \bigr)\bigr],\quad t\neq {t_{k}}, \end{aligned} \end{aligned}$$
(2.6)
$$\begin{aligned}& y_{i}\bigl(t_{k}^{+}\bigr)=(1+ \gamma_{ik})y_{i}(t_{k}), \quad k=1,2,\dots, \end{aligned}$$
(2.7)
where \(i=1, 2, \dots, n\). Next, define a Lyapunov functional as
$$ V_{i }(t) =\bigl|y_{i }(t)\bigr|e^{\lambda t},\quad i=1, 2, \dots, n. $$
(2.8)
It follows from (2.6), (2.7) and (2.8) that
$$\begin{aligned} D^{+}\bigl(V_{i }(t)\bigr) \leq& D^{+} \bigl(\bigl|y_{i}(t)\bigr|\bigr)e^{\lambda t}+\lambda\bigl|y_{i}(t)\bigr|e^{\lambda t} \\ \leq& \bigl(\lambda-b_{i}(t)\bigr)\bigl|y_{i}(t)\bigr|e^{\lambda t}+ \Biggl[\sum_{j=1}^{n}\bigl|c_{ij}(t)\bigr|\bigl|g_{j} \bigl(x_{j}\bigl(t-\tau _{ij}(t)\bigr)\bigr)-g_{j} \bigl(x_{j}^{*}\bigl(t-\tau_{ij}(t)\bigr)\bigr)\bigr| \\ &{}+\sum_{j=1}^{n}\bigl|d_{ij}(t)\bigr|\int _{0}^{\sigma }\bigl|k_{ij}(s)\bigr|\bigl|g_{j} \bigl(x_{j}(t-s)\bigr)-g_{j}\bigl(x_{j}^{*}(t-s) \bigr)\bigr|\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\bigl|e_{ijl}(t)\bigr|\bigl|g_{j} \bigl(x_{j}\bigl(t-\alpha _{jl}(t)\bigr)\bigr)g_{l} \bigl(x_{l}\bigl(t-\beta_{jl}(t)\bigr)\bigr) \\ &-g_{j}\bigl(x_{j}\bigl(t-\alpha_{jl}(t)\bigr) \bigr)g_{l}\bigl(x_{l}^{*}\bigl(t-\beta_{jl}(t)\bigr) \bigr)\bigr| \\ &{}+\bigl|g_{j}\bigl(x_{j}\bigl(t-\alpha_{jl}(t)\bigr) \bigr)g_{l}\bigl(x_{l}^{*}\bigl(t-\beta_{jl}(t)\bigr) \bigr) \\ &-g_{j}\bigl(x_{j}^{*}\bigl(t-\alpha_{jl}(t)\bigr) \bigr)g_{l}\bigl(x_{l}^{*}\bigl(t-\beta_{jl}(t)\bigr) \bigr)\bigr| \Biggr]e^{\lambda t} \\ \leq& \bigl(\lambda-b_{i}(t)\bigr)\bigl|y_{i}(t)\bigr|e^{\lambda t}+ \Biggl\{ \sum_{j=1}^{n}\bigl|c_{ij}(t)\bigr|L_{g}^{j}\bigl|y_{j}(x_{j} \bigl(t-\tau_{ij}(t)\bigr)\bigr| \\ &{}+\sum_{j=1}^{n}\bigl|d_{ij}(t)\bigr|\int _{0}^{\sigma }\bigl|k_{ij}(s)\bigr|L_{g}^{j}\bigl|y_{j}(t-s)\bigr| \,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\bigl|e_{ijl}(t)\bigr| \bigl[M_{g}L_{g}^{l}\bigl|y_{l} \bigl(t-\beta _{jl}(t)\bigr)\bigr| \\ &{}+M_{g}L_{g}^{j}\bigl|y_{j} \bigl(t-\alpha_{jl}(t)\bigr)\bigr| \bigr] \Biggr\} e^{\lambda t},\quad t \neq{t_{k}}, \end{aligned}$$
(2.9)
and
$$ V_{i}\bigl(t_{k}^{+} \bigr)=\bigl|y_{i}\bigl(t_{k}^{+}\bigr)\bigr|e^{\lambda t_{k}}=\bigl|x_{i} \bigl(t_{k}^{+}\bigr)-x_{i}^{*}\bigl(t_{k}^{+} \bigr)\bigr|e^{\lambda t_{k}}=|1+\gamma_{ik}|\bigl|y_{i}(t_{k})\bigr|e^{\lambda t_{k}}, $$
(2.10)
where \(i=1, 2, \dots,n\). Let \(M>1\) denote an arbitrary real number and set
$$\bigl\| \varphi-\varphi^{*}\bigr\| =\sup_{-\tau\leq s\leq0}\max _{1\leq j\leq n } \bigl|\varphi_{ j}(s)-\varphi_{j}^{*}(s)\bigr|>0,\quad j=1, 2, \dots, n. $$
Then, by (2.8), we have
$$V_{i }(t) =\bigl|y_{i }(t)\bigr|e^{\lambda t}< M\bigl\| \varphi- \varphi^{*}\bigr\| \quad\mbox{for all } t\in[-\tau, 0], i=1, 2, \dots, n. $$
Thus we can claim that
$$ V_{i }(t) =\bigl|y_{i }(t)\bigr|e^{\lambda t}< M\bigl\| \varphi-\varphi^{*}\bigr\| \quad \mbox{for all } t\in[-\tau, t_{1}], i=1, 2, \dots, n. $$
(2.11)
Otherwise, there must exist \(i \in\{ 1, 2, \dots, n \}\) and \(\sigma\in(-\tau, t_{1}]\) such that
$$ V_{i}(\sigma)=M\bigl\| \varphi-\varphi^{*}\bigr\| ,\qquad V_{j}(t)< M\bigl\| \varphi-\varphi^{*}\bigr\| \quad\mbox{for all } t\in[- \tau, \sigma), j=1, 2, \dots, n. $$
(2.12)
Combining (2.9), (2.10) with (2.12), we obtain
$$\begin{aligned} 0 \leq& D^{+}\bigl(V_{i }(\sigma)-M\bigl\| \varphi- \varphi^{*}\bigr\| \bigr) \\ =& D^{+}\bigl(V_{i }(\sigma)\bigr) \\ \leq& \bigl(\lambda-b_{i}(\sigma)\bigr)\bigl|y_{i}( \sigma)\bigr|e^{\lambda \sigma}+ \Biggl\{ \sum_{j=1}^{n}\bigl|c_{ij}( \sigma)\bigr|L_{g}^{j}\bigl|y_{j}(x_{j}\bigl(\sigma- \tau _{ij}(\sigma)\bigr)\bigr| \\ &{}+\sum_{j=1}^{n}\bigl|d_{ij}( \sigma)\bigr|\int_{0}^{\sigma }\bigl|k_{ij}(s)\bigr|L_{g}^{j}\bigl|y_{j}( \sigma-s)\bigr|\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\bigl|e_{ijl}(\sigma)\bigr| \bigl[M_{g}L_{g}^{l}\bigl|y_{l}\bigl(\sigma- \beta _{jl}(\sigma)\bigr)\bigr|+M_{g}L_{g}^{j}\bigl|y_{j} \bigl(\sigma-\alpha_{jl}(\sigma)\bigr)\bigr|\bigr] \Biggr\} e^{\lambda \sigma} \\ = &\bigl(\lambda-b_{i}(\sigma)\bigr)\bigl|y_{i}( \sigma)\bigr|e^{\lambda \sigma}+\sum_{j=1}^{n}\bigl|c_{ij}( \sigma)\bigr|L_{g}^{j}\bigl|y_{j}(x_{j}\bigl(\sigma- \tau _{ij}(\sigma)\bigr)\bigr|e^{\lambda(\sigma-\tau_{ij}(\sigma))}e^{\lambda\tau _{ij}(\sigma)} \\ &{}+\sum_{j=1}^{n}\bigl|d_{ij}( \sigma)\bigr|\int_{0}^{\sigma }\bigl|k_{ij}(s)\bigr|L_{g}^{j}\bigl|y_{j}( \sigma-s)\bigr|e^{\lambda(\sigma-s)}e^{\lambda {s}}\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\bigl|e_{ijl}(\sigma)\bigr| \bigl[M_{g}L_{g}^{l}\bigl|y_{l}\bigl(\sigma - \beta_{jl}(\sigma)\bigr)\bigr|e^{\lambda(\sigma-\beta_{jl}(\sigma))}e^{\lambda \beta_{jl}(\sigma)} \\ &{}+M_{g}L_{g}^{j}\bigl|y_{j}\bigl( \sigma-\alpha_{jl}(\sigma)\bigr)\bigr|e^{\lambda(\sigma -\alpha_{jl}(\sigma))}e^{\lambda\alpha_{jl}(\sigma)} \bigr] \\ \leq&\bigl(\lambda-b_{i}(\sigma)\bigr)M\bigl\| \varphi- \varphi^{*}\bigr\| +\sum_{j=1}^{n}\bigl|c_{ij}( \sigma)\bigr|L_{g}^{j}M\bigl\| \varphi-\varphi^{*} \bigr\| e^{\lambda\tau _{ij}(\sigma)} \\ &{}+\sum_{j=1}^{n}\bigl|d_{ij}( \sigma)\bigr|\int_{0}^{\sigma}\bigl|k_{ij}(s)\bigr|L_{g}^{j}M \bigl\| \varphi-\varphi^{*}\bigr\| e^{\lambda{s}}\,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\bigl|e_{ijl}(\sigma)\bigr| \bigl[M_{g}L_{g}^{l}M\bigl\| \varphi - \varphi^{*}\bigr\| e^{\lambda\beta_{jl}(\sigma)}+M_{g}L_{g}^{j}M \bigl\| \varphi-\varphi ^{*}\bigr\| e^{\lambda\alpha_{jl}(\sigma)} \bigr] \\ = & \Biggl[\bigl(\lambda-b_{i}(\sigma)\bigr)+\sum _{j=1}^{n}\bigl|c_{ij}(\sigma )\bigr|L_{g}^{j}e^{\lambda\tau_{ij}(\sigma)}+\sum _{j=1}^{n}\bigl|d_{ij}(\sigma)\bigr|\int _{0}^{\sigma}\bigl|k_{ij}(s)\bigr|L_{g}^{j}e^{\lambda{s}} \,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\bigl|e_{ijl}(\sigma)\bigr| \bigl(M_{g}L_{g}^{l}e^{\lambda\beta_{jl}(\sigma)}+M_{g}L_{g}^{j}Me^{\lambda\alpha _{jl}(\sigma)} \bigr) \Biggr]M\bigl\| \varphi-\varphi^{*}\bigr\| \\ \leq& \Biggl[(\lambda-\underline{b}_{i})+\sum _{j=1}^{n}\overline {c}_{ij}L_{g}^{j}e^{\lambda\tau}+ \sum_{j=1}^{n}|\overline{d}_{ij}| \int_{0}^{\sigma}\bigl|k_{ij}(s)\bigr|L_{g}^{j}e^{\lambda{s}} \,ds \\ &{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\overline{e}_{ijl} \bigl(M_{g}L_{g}^{l}e^{\lambda\tau}+M_{g}L_{g}^{j}e^{\lambda\tau} \bigr) \Biggr]M\bigl\| \varphi -\varphi^{*}\bigr\| . \end{aligned}$$
(2.13)
Then
$$\begin{aligned} &(\lambda-\underline{b}_{i})+\sum_{j=1}^{n} \overline {c}_{ij}L_{g}^{j}e^{\lambda\tau}+\sum _{j=1}^{n}|\overline{d}_{ij}|\int _{0}^{\sigma}\bigl|k_{ij}(s)\bigr|L_{g}^{j}e^{\lambda{s}} \,ds\\ &\quad{}+\sum_{j=1}^{n}\sum _{l=1}^{n}\overline{e}_{ijl} \bigl(M_{g}L_{g}^{l}e^{\lambda \tau}+M_{g}L_{g}^{j}e^{\lambda\tau} \bigr)>0, \end{aligned}$$
which contradicts (H5). Then (2.11) holds. In view of (2.11), we know that
$$V_{i}(t_{1})=\bigl|y_{i}(t_{1})\bigr|e^{\lambda t_{1}}< M \bigl\| \varphi-\varphi^{*}\bigr\| ,\quad i=1,2,\dots $$
and
$$V_{i}\bigl(t_{1}^{+}\bigr)=|1+ \gamma_{i1}|\bigl|y_{i}(t_{1})\bigr|e^{\lambda t_{1}} \leq\bigl|y_{i}(t_{1})\bigr|e^{\lambda t_{1}}. $$
Then
$$ V_{i}\bigl(t_{1}^{+}\bigr)< M\bigl\| \varphi-\varphi^{*}\bigr\| . $$
(2.14)
Thus, for \(t\in[t_{1},t_{2}]\), we can repeat the above procedure and obtain
$$V_{i}(t)=\bigl|y_{i}(t)\bigr|e^{\lambda t}< M\bigl\| \varphi- \varphi^{*}\bigr\| \quad\mbox{for all } t\in[t_{1},t_{2}],i=1,2, \dots. $$
Similarly, we have
$$V_{i}(t)=\bigl|y_{i}(t)\bigr|e^{\lambda t}< M\bigl\| \varphi- \varphi^{*}\bigr\| \quad\mbox{for all } t>0,i=1,2,\dots. $$
Namely,
$$\bigl|x_{i}(t)-x_{i}^{*}(t)\bigr|=\bigl|y_{i}(t)\bigr|< M\bigl\| \varphi- \varphi^{*}\bigr\| \quad\mbox{for all } t>0,i=1,2,\dots. $$
This completes the proof. □

Remark 2.1

If \(x^{*}(t)=(x^{*}_{1}(t), x^{*}_{2}(t),\dots,x^{*}_{n}(t))^{T} \) is a T-anti-periodic solution of (1.1), it follows from Lemma 2.2 and Definition 1.2 that \(x^{*}(t)\) is globally exponentially stable.

3 Main result

In this section,we present our main result that there exists the exponentially stable anti-periodic solution of (1.1).

Theorem 3.1

Assume that (H1)-(H6) are satisfied. Then (1.1) has exactly one T-anti-periodic solution \(x^{*}(t)\). Moreover, this solution is globally exponentially stable.

Proof

Let \(v(t)= (v_{1}(t), v_{2}(t),\dots, v_{n}(t))^{T} \) be a solution of (1.1) with initial conditions
$$ v_{i}(s)=\varphi^{v}_{i}(s),\quad \bigl| \varphi^{v}_{i}(s)\bigr|< \delta, s\in (-\tau, 0], i=1,2,\dots,n. $$
(3.1)
Thus, according to Lemma 2.1, the solution \(v(t)\) is bounded and
$$ \bigl|v_{i}(t)\bigr|< \delta \quad\mbox{for all } t\in{R}, i=1,2, \dots,n. $$
(3.2)
For \(p\in N\), if \(t\notin{t_{k}}\), then \(t + (p+1)T\notin\{t_{k}\}\); if \(t\in{t_{k}}\), then \(t + (p+1)T\in\{t_{k}\}\). From (1.1), we obtain
$$\begin{aligned} &\bigl((-1)^{p+1}v_{i} \bigl(t + (p+1)T \bigr)\bigr)' \\ &\quad=(-1)^{p+1} \Biggl\{ -b_{i}\bigl(t + (p+1)T \bigr)v_{i}\bigl(t + (k+1)T\bigr) \\ &\qquad{}+\sum_{j=1}^{n}c_{ij}\bigl(t + (p+1)T\bigr)g_{j}\bigl(v_{j}\bigl(t + (p+1)T- \tau_{ij}\bigl(t + (p+1)T\bigr)\bigr)\bigr) \\ &\qquad{}+\sum_{j=1}^{n}d_{ij}\bigl(t + (p+1)T\bigr)\int_{0}^{\sigma}k_{ij}(s)g_{j} \bigl(v_{j}\bigl(t +(p+1)T-s\bigr)\bigr)\,ds \\ &\qquad{}+\sum_{j=1}^{n}\sum _{l=1}^{n}e_{ijl}\bigl(t +(p+1)T \bigr)g_{j}\bigl(v_{j}\bigl(t + (p+1)T-\alpha _{jl} \bigl(t + (p+1)T\bigr)\bigr)\bigr) \\ &\qquad{}\times{g_{l}}\bigl(v_{l}\bigl(t + (p+1)T- \beta_{jl}\bigl(t + (p+1)T\bigr)\bigr)\bigr)+I_{i}\bigl(t + (p+1)T\bigr) \Biggr\} \\ &\quad=-b_{i}(t) (-1)^{p+1}v_{i}\bigl(t +(p+1)T \bigr) \\ &\qquad{}+\sum_{j=1}^{n}c_{ij}(t)g_{j} \bigl((-1)^{p+1}v_{j}\bigl(t +(p+1)T-\tau _{ij}(t) \bigr)\bigr) \\ &\qquad{}+\sum_{j=1}^{n}d_{ij}(t)\int _{0}^{\sigma}k_{ij}(s)g_{j} \bigl((-1)^{p+1}v_{j}\bigl(t +(p+1)T-s\bigr)\bigr)\,ds \\ &\qquad{}+\sum_{j=1}^{n}\sum _{l=1}^{n}e_{ijl}(t)g_{j} \bigl((-1)^{p+1}v_{j}\bigl(t + (p+1)T-\alpha_{jl}(t) \bigr)\bigr) \\ &\qquad{}\times{g_{l}}\bigl((-1)^{p+1}v_{l}\bigl(t +(p+1)T-\beta_{jl}(t)\bigr)\bigr)+I_{i}(t),\quad t \neq{t_{k}} \end{aligned}$$
(3.3)
and
$$\begin{aligned} (-1)^{p+1}v_{i}\bigl(\bigl(t_{k}+(p+1)T \bigr)^{+}\bigr) =& (-1)^{p+1}\bigl(1+\gamma_{i(k+(p+1)q)}v_{i} \bigl(t_{k}+(p+1)T\bigr)\bigr) \\ =&(-1)^{p+1}(1+\gamma_{ik})v_{i} \bigl(t_{k}+(p+1)T\bigr) \\ =&(1+\gamma_{ik}) \bigl((-1)^{p+1}v_{i} \bigl(t_{k}+(p+1)T\bigr)\bigr), \quad k=1,2,\dots, \end{aligned}$$
(3.4)
where \(i=1, 2, \dots,n\). Thus \((-1)^{p+1} v(t +(p+1)T)\) are solutions of (1.1) on \(R^{+}\) for any natural number p. Then, from Lemma 2.2, there exists a constant \(M>1\) such that
$$\begin{aligned} &\bigl|(-1)^{p+1}v_{i} \bigl(t + (p+1)T \bigr)-(-1)^{k} v_{i}(t + pT)\bigr| \\ &\quad\leq M e^{-\lambda(t + pT)}\sup_{-\tau\leq s\leq0}\max_{1\leq i\leq n}\bigl|v_{i} \bigl(s + (p+1) T\bigr)+ v_{i} (s+pT)\bigr| \\ &\quad\leq 2e^{-\lambda(t + pT)} M\delta, \end{aligned}$$
(3.5)
and
$$\begin{aligned} &\bigl|(-1)^{p+1}v_{i} \bigl( \bigl(t_{k} + (p+1)T\bigr)^{+}\bigr)-(-1)^{p} v_{i}\bigl((t_{k} + pT)^{+}\bigr)\bigr| \\ &\quad= \bigl|x_{i}\bigl(\bigl(t_{k}+(p+1)T\bigr)^{+} \bigr)+x_{i}\bigl((t_{k}+pT)^{+}\bigr)\bigr| \\ &\quad=|1+\gamma_{ik}|\bigl|x_{i}\bigl(t_{k}+(p+1)T \bigr)+x_{i}(t_{k}+pT)\bigr| \leq2M\delta{e^{-\lambda(pT+t_{k})}}, \end{aligned}$$
(3.6)
where \(k\in{N}\), \(i=1,2,\dots,n\). Thus, for any natural number m, we have
$$\begin{aligned} &(-1)^{m+1} v_{i} \bigl(t + (m+1)T\bigr) \\ &\quad = v_{i} (t ) +\sum_{k=0}^{m} \bigl[(-1)^{k+1} v _{i}\bigl(t + (k+1)T\bigr)-(-1)^{k} v_{i} (t + kT)\bigr],\quad t\neq{t_{k}}. \end{aligned}$$
(3.7)
Hence
$$\begin{aligned} &\bigl|(-1)^{m+1} v_{i} \bigl(t + (m+1)T\bigr)\bigr| \\ &\quad\leq \bigl| v_{i} (t )\bigr| +\sum_{k=0}^{m}\bigl| (-1)^{k+1} v _{i}\bigl(t + (k+1)T\bigr)-(-1)^{k} v_{i} (t + kT)\bigr|,\quad t\neq{t_{k}}, \end{aligned}$$
(3.8)
and
$$\begin{aligned} \bigl|(-1)^{m+1} v_{i} \bigl(\bigl(t_{k} + (m+1)T\bigr)^{+}\bigr)\bigr|&=\bigl|(1+\gamma_{ik}) (-1)^{m+1}v_{i}\bigl(t_{k}+(m+1)T\bigr)\bigr| \\ &\leq \bigl|(-1)^{m+1}v_{i}\bigl(t_{k}+(m+1)T\bigr)\bigr|, \end{aligned}$$
(3.9)
where \(i =1,2,\dots,n\). It follows from (3.5)-(3.9) that \((-1)^{m+1}v_{i}(t+(m+1)T)\) is a fundamental sequence on any compact set of \({R}^{+}\). Obviously, \(\{(-1)^{m} v (t + mT)\}\) uniformly converges to a piece-wise continuous function \(x^{*}(t)=(x^{*}_{1}(t), x^{*}_{2}(t),\dots,x^{*}_{n}(t))^{T}\) on any compact set of \({R}^{+}\).
Now we show that \(x^{*}(t)\) is T-anti-periodic solution of (1.1). Firstly, \(x^{*}(t)\) is T-anti-periodic, since
$$\begin{aligned} x^{*}(t+T) =&\lim_{m\to\infty}(-1)^{m } v (t +T+ mT) \\ =&-\lim_{(m+1)\to\infty}(-1)^{m+1 } v \bigl(t +(m +1)T \bigr)=-x^{*}(t ),\quad t\neq{t_{k}}, \end{aligned}$$
(3.10)
and
$$\begin{aligned} x^{*}\bigl((t+T)^{+}\bigr) =&\lim _{m\to\infty}(-1)^{m } v \bigl((t +T+ mT)^{+}\bigr) \\ =&-\lim_{(m+1)\to\infty}(-1)^{m+1 } v \bigl(\bigl(t +(m +1)T \bigr)^{+}\bigr)=-x^{*}(t_{k})^{+}. \end{aligned}$$
(3.11)
In the sequel, we prove that \(x^{*}(t)\) is a solution of (1.1). Noting that the right-hand side of (1.1) is piece-wise continuous, (3.3) and (3.4) imply that \(\{((-1)^{m+1} v (t +(m+1)T))'\}\) uniformly converges to a piece-wise continuous function on any compact subset of \({R}^{+}\). Thus, letting \(m \to\infty\) on both sides of (3.3) and (3.4), we can easily obtain
$$ \left \{ \textstyle\begin{array}{@{}l} \dot{x}_{i}^{*}(t)=-b_{i}(t)x_{i}^{*}(t)+\sum_{j=1}^{n}c_{ij}(t) g_{j}(x_{j}^{*}(t-\tau_{ij}(t)))\\ \hphantom{\dot{x}_{i}^{*}(t)=}{}+\sum_{j=1}^{n}d_{ij}(t) \int_{0}^{\sigma}k_{ij}(s)g_{j}(x_{j}^{*}(t-s))\,ds\\ \hphantom{\dot{x}_{i}^{*}(t)=}{} +\sum_{j=1}^{n}\sum_{l=1}^{n}e_{ijl}(t) g_{j}(x_{j}^{*}(t-\alpha_{jl}(t)))g_{l}(x_{l}^{*}(t-\beta _{jl}(t)))+I_{i}(t),\quad t\neq{t_{k}},\\ {x_{i}}^{*}(t_{k}^{+})=(1+\gamma_{ik})x_{i}^{*}(t_{k}),\quad k=1,2,\dots, \end{array} \right .$$
(3.12)
where \(i=1,2,\dots,n\). Therefore, \(x^{*}(t)\) is a solution of (1.1). Finally, by applying Lemma 2.2, it is easy to check that \(x^{*}(t)\) is globally exponentially stable. The proof of Theorem 3.1 is completed. □

Remark 3.1

In [1012, 14, 15, 2024, 44], although authors consider the existence and exponential stability of anti-periodic solutions of neural networks, they do not consider the impulsive case. In this paper, we consider the high-order cellular neural networks with impulses. The obtained results show that impulses play a certain role in the existence and exponential stability of anti-periodic solutions of cellular neural networks. If the \(\gamma_{ik}=0 \) (i.e., there is no impulse), then Theorem 3.1 is still valid if we delete the condition on the impulse. All the results in [1012, 14, 15, 2024, 44] cannot be applicable to system (1.1) to obtain the existence and exponential stability of anti-periodic solutions. This implies that the results of this paper are essentially new. Our results complement the previous work.

4 An example

In this section, we give an example to illustrate our main results obtained in previous sections. Consider the high-order cellular neural network with delays and impulses
$$\begin{aligned}& \begin{aligned}[b] \dot{x}_{1}(t)={}& {-}x_{1}(t)+ \frac{1}{12}g_{1}\bigl(x_{1}\bigl(t-\sin^{2}t \bigr)\bigr) +\frac{1}{14}g_{2}\bigl(x_{2}\bigl(t-7 \sin^{2}t\bigr)\bigr) \\ &{}+\frac{1}{36}|\sin t|\int_{0}^{20} e^{-s}g_{1}\bigl(x_{1}(t-s)\bigr)\,ds + \frac{1}{20}|\cos{t}|\int_{0}^{20} e^{-s}g_{2}\bigl(x_{2}(t-s)\bigr)\,ds \\ &{}+\frac{1}{80}\sin{t}g_{1}\bigl(x_{1}\bigl(t-3 \sin^{2}t\bigr)\bigr)g_{2}\bigl(x_{2}\bigl(t-2 \sin^{2}t\bigr)\bigr)+2\sin {t}, \end{aligned}\\& \begin{aligned}[b] \dot{x}_{2}(t) ={}& {-}x_{2}(t)+\frac{1}{16}g_{1}\bigl(x_{1} \bigl(t-\cos^{2}t\bigr)\bigr) +\frac{1}{16}g_{2}\bigl(x_{2} \bigl(t-4\sin^{2}t\bigr)\bigr) \\ &{}+\frac{1}{20}|\cos t|\int_{0}^{20} e^{-s}g_{1}\bigl(x_{1}(t-s)\bigr)\,ds + \frac{1}{20}|\sin{t}|\int_{0}^{20} e^{-s}g_{2}\bigl(x_{2}(t-s)\bigr)\,ds \\ &{}+\frac{1}{15}\sin{t}g_{1}\bigl(x_{1}\bigl(t- \sin^{2}t\bigr)\bigr)g_{2}\bigl(x_{2}\bigl(t-2 \sin^{2}t\bigr)\bigr)+\sin {t},\quad t\neq{t_{k}}, \end{aligned}\\& \begin{aligned} &{x_{1}}\bigl(t_{k}^{+}\bigr)=0.4x_{1}(t_{k}),\quad k=1,2,\dots,\\ &{x_{2}}\bigl(t_{k}^{+}\bigr)=0.4x_{2}(t_{k}),\quad k=1,2, \dots, \end{aligned} \end{aligned}$$
(4.1)
where \(g_{1}(u)=g_{2}(u)=\frac{1}{2}(|u+1|-|u-1|)\) and
$$\begin{aligned}& \begin{bmatrix} c_{11}(t) & c_{12}(t) \\ c_{21}(t) & c_{22}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{11} & \frac{1}{14} \\ \frac{1}{16} & \frac{1}{16} \end{bmatrix},\quad \begin{bmatrix} k_{11}(s) & k_{12}(s) \\ k_{21}(s) & k_{22}(s) \end{bmatrix} = \begin{bmatrix} e^{-s} & e^{-s} \\ e^{-s} & e^{-s} \end{bmatrix}, \\& \begin{bmatrix} \tau_{11}(t) & \tau_{12}(t) \\ \tau_{21}(t) & \tau_{22}(t) \end{bmatrix} = \begin{bmatrix} \sin^{2}t & 7\sin^{2}t \\ \cos^{2}t & 4\sin^{2}t \end{bmatrix},\quad \begin{bmatrix} d_{11}(t) & d_{12}(t) \\ d_{21}(t) & d_{22}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{36}|\sin t| & \frac{1}{20}|\cos t| \\ \frac{1}{20}|\cos t| & \frac{1}{20}|\sin t| \end{bmatrix}, \\& \begin{bmatrix} u_{1l}(t) & u_{2l}(t) \\ v_{1l}(t) & v_{2l}(t) \end{bmatrix} = \begin{bmatrix} 3\sin^{2}t & \sin^{2}t \\ 2\sin^{2}t & 2\sin^{2}t \end{bmatrix}, \quad \begin{bmatrix} e_{11l}(t) & e_{12l}(t) \\ e_{21l}(t) & e_{22l}(t) \end{bmatrix}= \begin{bmatrix} \frac{1}{80}\sin t & \frac{1}{80}\sin t \\ \frac{1}{15}\sin t & \frac{1}{15}\sin t \end{bmatrix},\\& \begin{bmatrix} b_{1}(t) & b_{2}(t) \\ I_{1}(t) & I_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2\sin t & \sin t \end{bmatrix}, \end{aligned}$$
where \(l=1,2\). By a simple calculation, we get
$$\begin{aligned}& \underline{b}_{i}=L_{i}^{g}=M_{g}=1\quad(i=1,2),\qquad \overline{c}_{11}=\frac{1}{11},\qquad \overline{c}_{12}= \frac{1}{14},\qquad\overline{c}_{21}=\frac{1}{16},\qquad\overline {c}_{22}=\frac{1}{16}, \\& \overline{d}_{11}=\frac{1}{36},\qquad \overline{d}_{12}= \frac{1}{20},\qquad\overline{d}_{21}=\frac{1}{20},\qquad\overline {d}_{22}=\frac{1}{20},\\& \overline{e}_{1jl}= \frac{1}{80}, \qquad\overline{e}_{2jl}=\frac{1}{15}\quad(j,l=1,2), \\& \overline{\tau}_{11}=1,\qquad\overline{\tau}_{12}=7,\qquad\overline{\tau }_{21}=1,\qquad\overline{\tau}_{22}=4,\qquad \overline{I}_{1}=2,\qquad \overline{I}_{2}=1. \end{aligned}$$
Let \(\eta=0.2\), \(\lambda=0.001\). Then
$$\begin{aligned} &(\lambda-\underline{b}_{i})+\sum_{j=1}^{2} \overline {c}_{ij}L_{g}^{j}e^{\lambda\tau}+\sum _{j=1}^{2}|\overline{d}_{ij}|\int _{0}^{\sigma}\bigl|k_{ij}(s)\bigl|L_{g}^{j}e^{\lambda{s}} \,ds\\ &\qquad{}+\sum_{j=1}^{2}\sum _{l=1}^{2}\overline{e}_{ijl} \bigl(M_{g}L_{g}^{l}e^{\lambda \tau}+M_{g}L_{g}^{j}e^{\lambda\tau} \bigr)\\ & \quad\leq(0.001-1)+ \biggl(\frac{1}{11}+\frac{1}{14}+\frac{1}{16}+ \frac {1}{16} \biggr)e^{0.007}+ \biggl(\frac{1}{11}+ \frac{1}{36}+\frac {3}{20} \biggr)\\ &\qquad{}+ \biggl(\frac{1}{80}+\frac{1}{80}+\frac{1}{15}+ \frac{1}{15} \biggr)\times2\times{e^{0.001}}=-0.2149< -0.2< 0 \end{aligned}$$
and
$$\begin{aligned}& \begin{aligned}[b] &{-}b_{i}+\sum_{j=1}^{2} \bar{c}_{ij}L_{g}^{j}+\sum _{j=1}^{2}L_{g}^{j} \bar{d}_{ij}\int_{0}^{\sigma}\bigl|k_{ij}(s)\bigl| \,ds\\ &\quad< -1+\frac{1}{11}+\frac{1}{14}+\frac{1}{16}\times \frac{1}{36} +\frac{1}{10}\times\frac{1}{20}=-0.8309< 0, \end{aligned}\\& \begin{aligned}[b] &\Biggl(-b_{i}+\sum_{j=1}^{2} \bar{c}_{ij}L_{g}^{j}+\sum _{j=1}^{2}L_{g}^{j}\bar {d}_{ij}\int_{0}^{\sigma}\bigl|k_{ij}(s)\bigr| \,ds \Biggr)^{2} -4\bar{I}_{i}\sum _{j=1}^{2}\sum_{l=1}^{2} \bar{e}_{ijl}L_{g}^{j}L_{g}^{l}\\ &\quad< \biggl(-1+\frac{1}{11}+\frac{1}{14}+\frac{1}{16}\times \frac{1}{36} +\frac{1}{10}\times\frac{1}{20} \biggr)^{2}-4 \times \biggl(\frac{1}{40}+\frac {1}{10} \biggr)=0.14>0, \end{aligned} \end{aligned}$$
which implies that system (4.1) satisfies all the conditions in Theorem 3.1. Thus, (4.1) has exactly one π-anti-periodic solution. Moreover, this solution is globally exponentially stable. The results are shown in Figure 1.
Figure 1

Times series of \(\pmb{x_{1}(t)}\) and \(\pmb{x_{2}(t)}\) of system ( 4.1 ).

Declarations

Acknowledgements

The first author was supported by the National Natural Science Foundation of China (No. 11261010) and Governor Foundation of Guizhou Province ([2012]53). The second author was supported by the National Natural Science Foundation of China (No. 11101126). The authors would like to thank the referees and the editor for helpful suggestions incorporated into this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics
(2)
School of Mathematics and Statistics, Henan University of Science and Technology

References

  1. Cao, J, Wang, J: Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans. Circuits Syst. I 52(5), 920-931 (2005) View ArticleMathSciNetGoogle Scholar
  2. Chen, Z, Zhao, DH, Ruan, J: Dynamic analysis of high order Cohen-Grossberg neural networks with time delay. Chaos Solitons Fractals 32(4), 1538-1546 (2007) View ArticleMATHMathSciNetGoogle Scholar
  3. Lou, XY, Cui, BT: Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays. J. Math. Anal. Appl. 330(1), 144-158 (2007) View ArticleMATHMathSciNetGoogle Scholar
  4. Wu, C, Ruan, J, Lin, W: On the existence and stability of the periodic solution in the Cohen-Grossberg neural network with time delay and high-order terms. Appl. Math. Comput. 177(1), 194-210 (2006) View ArticleMATHMathSciNetGoogle Scholar
  5. Xiang, H, Yan, KM, Wang, BY: Existence and global exponential stability of periodic solution for delayed high-order Hopfield-type neural networks. Phys. Lett. A 352(4-5), 341-349 (2006) View ArticleMATHGoogle Scholar
  6. Xu, BJ, Liu, XZ, Liao, XX: Global exponential stability of high order Hopfield type neural networks. Appl. Math. Comput. 174(1), 98-116 (2006) View ArticleMATHMathSciNetGoogle Scholar
  7. Xu, BJ, Liu, XZ, Liao, XX: Global exponential stability of high order Hopfield type neural networks with time delays. Comput. Math. Appl. 45(10-11), 1729-1737 (2003) View ArticleMATHMathSciNetGoogle Scholar
  8. Wu, W, Cui, BT: Global robust exponential stability of delayed neural networks. Chaos Solitons Fractals 35(4), 747-754 (2008) View ArticleMATHMathSciNetGoogle Scholar
  9. Zeng, ZG, Wang, J: Improved conditions for global exponential stability of recurrent neural networks with time-varying delays. IEEE Trans. Neural Netw. 17(3), 623-635 (2006) View ArticleMathSciNetGoogle Scholar
  10. Li, YK, Yang, L: Anti-periodic solutions for Cohen-Grossberg neural networks with bounded and unbounded delays. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3134-3140 (2009) View ArticleMATHMathSciNetGoogle Scholar
  11. Shao, JY: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Phys. Lett. A 372(30), 5011-5016 (2008) View ArticleMATHGoogle Scholar
  12. Fan, QY, Wang, WT, Yi, XJ: Anti-periodic solutions for a class of nonlinear nth-order differential equations with delays. J. Comput. Appl. Math. 230(2), 762-769 (2009) View ArticleMATHMathSciNetGoogle Scholar
  13. Li, YK, Xu, EL, Zhang, TW: Existence and stability of anti-periodic solution for a class of generalized neural networks with impulses and arbitrary delays on time scales. J. Inequal. Appl. 2010, Article ID 132790 (2010) View ArticleMathSciNetMATHGoogle Scholar
  14. Gong, SH: Anti-periodic solutions for a class of Cohen-Grossberg neural networks. Comput. Math. Appl. 58(2), 341-347 (2009) View ArticleMATHMathSciNetGoogle Scholar
  15. Peng, GQ, Huang, LH: Anti-periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Nonlinear Anal., Real World Appl. 10(40), 2434-2440 (2009) View ArticleMATHMathSciNetGoogle Scholar
  16. Zhang, AP: Existence and exponential stability of anti-periodic solutions for HCNNs with time-varying leakage delays. Adv. Differ. Equ. 2013, Article ID 162 (2013). doi:https://doi.org/10.1186/1687-1847-2013-162 View ArticleMathSciNetGoogle Scholar
  17. Aftabizadeh, AR, Aizicovici, S, Pavel, NH: On a class of second-order anti-periodic boundary value problems. J. Math. Anal. Appl. 171(2), 301-320 (1992) View ArticleMATHMathSciNetGoogle Scholar
  18. Aizicovici, S, McKibben, M, Reich, S: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal. TMA 43(2), 233-251 (2001) View ArticleMATHMathSciNetGoogle Scholar
  19. Liu, BW: An anti-periodic LaSalle oscillation theorem for a class of functional differential equations. J. Comput. Appl. Math. 223(2), 1081-1086 (2009) View ArticleMATHMathSciNetGoogle Scholar
  20. Huang, ZD, Peng, LQ, Xu, M: Anti-periodic solutions for high-order cellular neural networks with time-varying delays. Electron. J. Differ. Equ. 2010, 59 (2010) MathSciNetMATHGoogle Scholar
  21. Li, YK, Yang, L, Wu, WQ: Anti-periodic solutions for a class of Cohen-Grossberg neural networks with time-varying on time scales. Int. J. Syst. Sci. 42(7), 1127-1132 (2011) View ArticleMATHMathSciNetGoogle Scholar
  22. Pan, LJ, Cao, JD: Anti-periodic solution for delayed cellular neural networks with impulsive effects. Nonlinear Anal., Real World Appl. 12(6), 3014-3027 (2011) MATHMathSciNetGoogle Scholar
  23. Li, YK: Anti-periodic solutions to impulsive shunting inhibitory cellular neural networks with distributed delays on time scales. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3326-3336 (2011) View ArticleMATHMathSciNetGoogle Scholar
  24. Fan, QY, Wang, WT, Yi, XJ, Huang, LH: Anti-periodic solutions for a class of third-order nonlinear differential equations with deviating argument. Electron. J. Qual. Theory Differ. Equ. 2010, 8 (2010) MathSciNetMATHGoogle Scholar
  25. Wang, W, Shen, J: Existence of solutions for anti-periodic boundary value problems. Nonlinear Anal. 70(2), 598-605 (2009) View ArticleMATHMathSciNetGoogle Scholar
  26. Chen, YQ, Nieto, JJ, O’Regan, D: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Model. 46(9-10), 1183-1190 (2007) View ArticleMATHMathSciNetGoogle Scholar
  27. Peng, L, Wang, WT: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in leakage terms. Neurocomputing 111, 27-33 (2013) View ArticleGoogle Scholar
  28. Park, JY, Ha, TG: Existence of anti-periodic solutions for quasilinear parabolic hemivariational inequalities. Nonlinear Anal. TMA 71(7-8), 3203-3217 (2009) View ArticleMATHMathSciNetGoogle Scholar
  29. Yu, YH, Shao, JY, Yue, GX: Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments. Nonlinear Anal. TMA 71(10), 4689-4695 (2009) View ArticleMATHMathSciNetGoogle Scholar
  30. Lv, X, Yan, P, Liu, DJ: Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations with delays. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3593-3598 (2010) View ArticleMATHMathSciNetGoogle Scholar
  31. Li, YQ, Huang, LH: Anti-periodic solutions for a class of Liénard-type systems with continuously distributed delays. Nonlinear Anal., Real World Appl. 10(4), 2127-2132 (2009) View ArticleMATHMathSciNetGoogle Scholar
  32. Liu, BW: Anti-periodic solutions for forced Rayleigh-type equations. Nonlinear Anal., Real World Appl. 10(5), 2850-2856 (2009) View ArticleMATHMathSciNetGoogle Scholar
  33. Shi, PL, Dong, LZ: Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses. Appl. Math. Comput. 216(2), 623-630 (2010) View ArticleMATHMathSciNetGoogle Scholar
  34. Wang, Q, Fang, YY, Li, H, Su, LJ, Dai, BX: Anti-periodic solutions for high-order Hopfield neural networks with impulses. Neurocomputing 138, 339-346 (2014) View ArticleGoogle Scholar
  35. Liu, Y, Yang, YQ, Liang, T, Li, L: Existence and global exponential stability of anti-periodic solutions for competitive neural networks with delays in the leakage terms on time scales. Neurocomputing 133, 471-482 (2014) View ArticleGoogle Scholar
  36. Zheng, QQ, Shen, JW: Bifurcations and dynamics of cancer signaling network regulated by micro RNA. Discrete Dyn. Nat. Soc. 2013, Article ID 176956 (2013) View ArticleMathSciNetGoogle Scholar
  37. Shen, JW, Liu, ZR, Zheng, WX, Xu, FD, Chen, LN: Oscillatory dynamics in a simple gene regulatory network mediated by small RNAs. Physica A 388(14), 2995-3000 (2009) View ArticleMathSciNetGoogle Scholar
  38. Tang, XH, Zou, XF: The existence and global exponential stability of a periodic solution of a class of delay differential equations. Nonlinearity 22(10), 2423-2442 (2009) View ArticleMATHMathSciNetGoogle Scholar
  39. Xu, CJ, Tang, XH, Liao, MX: Bifurcation analysis of a delayed predator-prey model of prey migration and predator switching. Bull. Korean Math. Soc. 50, 353-373 (2013) View ArticleMATHMathSciNetGoogle Scholar
  40. Ferrara, M, Munteanu, F, Udriste, C, Zugravescu, D: Controllability of a nonholonomic macroeconomic system. J. Optim. Theory Appl. 154, 1036-1054 (2012) View ArticleMATHMathSciNetGoogle Scholar
  41. Ferrara, M, Bianca, C, Guerrini, L: High-order moments conservation in thermostatted kinetic models. J. Glob. Optim. 58(2), 389-404 (2014) View ArticleMATHMathSciNetGoogle Scholar
  42. Ferrara, M, Khademloob, S, Heidarkhani, S: Multiplicity results for perturbed fourth-order Kirchhoff type problems. Appl. Math. Comput. 234, 316-325 (2014) View ArticleMATHMathSciNetGoogle Scholar
  43. Ferrara, M, Heidarkhani, S: Multiple solutions for perturbed p-Laplacian boundary-value problems with impulsive effects. Electron. J. Differ. Equ. 2014, 106 (2014) View ArticleMathSciNetMATHGoogle Scholar
  44. Ou, CX: Anti-periodic solutions for high-order Hopfield neural networks. Comput. Math. Appl. 56(7), 1838-1844 (2008) View ArticleMATHMathSciNetGoogle Scholar

Copyright

© Xu and Wu 2015