Open Access

Some unified formulas and representations for the Apostol-type polynomials

Advances in Difference Equations20152015:137

https://doi.org/10.1186/s13662-015-0480-0

Received: 12 February 2015

Accepted: 20 April 2015

Published: 1 May 2015

Abstract

Recently, a family of the Apostol-type polynomials was introduced by Luo and Srivastava (Appl. Math. Comput. 217:5702-5728 (2011)). In this paper, we further investigate the Apostol-type polynomials and obtain their unified multiplication formula and explicit representations in terms of the Gaussian hypergeometric function and the generalized Hurwitz zeta function. We also show some special cases, which include the corresponding results of Luo, Garg, Srivastava, Ozden, and Özarslan etc.

Keywords

(generalized) Apostol-type polynomials Apostol-Euler polynomials Apostol-Bernoulli polynomials Genocchi polynomials of high order multiplication formula Gaussian hypergeometric function (generalized) Hurwitz zeta function

MSC

11B68 11M35 11B73 33C05

1 Introduction, definitions, and motivation

Throughout this paper, we always make use of the following notations: \(\mathbb{N}=\{1,2,3, \ldots\}\) denotes the set of natural numbers, \(\mathbb{N}_{0}=\{0,1,2,3, \ldots\}\) denotes the set of nonnegative integers, \(\mathbb{Z}_{0}^{-}=\{0,-1,-2,-3,\ldots\}\) denotes the set of nonpositive integers, \(\mathbb{Z}\) denotes the set of integers, \(\mathbb{R}\) denotes the set of real numbers, and \(\mathbb{C}\) denotes the set of complex numbers.

The symbol \((a)_{k}\) denotes the shifted factorial (or the Pochhammer symbol), defined, \(a \in\mathbb{C}\), by
$$ (a)_{k} = \frac{\Gamma(a+k)}{\Gamma(a)} = \begin{cases} 1, & k=0,\\ a(a+1) \cdots(a+k-1), & k \in\mathbb{N}. \end{cases} $$
(1.1)
The symbol \(\{n\}_{k}\) denotes the falling factorial, defined, \(a \in \mathbb{C}\), by
$$ \{a\}_{k}= \begin{cases} 1, & k=0, \\ a(a-1)\cdots(a-k+1)=\frac{\Gamma(a+1)}{\Gamma(a-k+1)}, & k \in \mathbb{N}, \end{cases} $$
(1.2)
where \(\Gamma(x)\) is the usual gamma function.
The classical Bernoulli polynomials \(B_{n}(x)\), Euler polynomials \(E_{n}(x)\), and Genocchi polynomials \(G_{n}(x)\), together with their familiar generalizations \(B_{n}^{(\alpha)}(x)\), \(E_{n}^{(\alpha)}(x)\), and \(G_{n}^{(\alpha)}(x)\) of order α, are usually defined by means of the following generating functions (see, for details, [1], pp.532-533 and [2]):
$$\begin{aligned}& \biggl(\frac{z}{e^{z}-1} \biggr)^{\alpha}e^{xz}=\sum _{n=0}^{\infty }B_{n}^{(\alpha)}(x) \frac{z^{n}}{n!}\quad \bigl(\vert z\vert < 2\pi\bigr), \end{aligned}$$
(1.3)
$$\begin{aligned}& \biggl(\frac{2}{e^{z}+1} \biggr)^{\alpha}e^{xz}=\sum _{n=0}^{\infty }E_{n}^{(\alpha)}(x) \frac{z^{n}}{n!} \quad \bigl(\vert z\vert < \pi\bigr) \end{aligned}$$
(1.4)
and
$$ \biggl(\frac{2z}{e^{z}+1} \biggr)^{\alpha}e^{xz}=\sum _{n=0}^{\infty }G_{n}^{(\alpha)}(x) \frac{z^{n}}{n!} \quad \bigl(\vert z\vert < \pi\bigr). $$
(1.5)
Thus, the Bernoulli polynomials \(B_{n}(x)\), Euler polynomials \(E_{n}(x)\), and Genocchi polynomials \(G_{n}(x)\) are given, respectively, by
$$ B_{n}(x):=B_{n}^{(1)}(x), \qquad E_{n}(x):=E_{n}^{(1)}(x) \quad \text{and}\quad G_{n}(x):=G_{n}^{(1)}(x) \quad (n\in{ \mathbb{N}}_{0}). $$
(1.6)
The Bernoulli numbers \(B_{n}\), Euler numbers \(E_{n}\), and Genocchi numbers \(G_{n}\) are, respectively,
$$ B_{n}:=B_{n}(0)=B_{n}^{(1)}(0), \qquad E_{n}:=E_{n}(0)=E_{n}^{(1)}(0) \quad \text {and}\quad G_{n}:=G_{n}(0)=G_{n}^{(1)}(0). $$
(1.7)

Some interesting analogs of the classical Bernoulli polynomials and numbers were first investigated by Apostol (see [3], p.165, Eq. (3.1)) and (more recently) by Srivastava (see [4], pp.83-84). We begin by recalling here Apostol’s definitions as follows.

Definition 1.1

(Apostol [3]; see also Srivastava [4])

The Apostol-Bernoulli polynomials \({\mathcal{B}}_{n}(x;\lambda)\) (\(\lambda\in\mathbb{C}\)) are defined by means of the following generating function:
$$ \frac{ze^{xz}}{\lambda e^{z}-1}=\sum_{n=0}^{\infty}{ \mathcal {B}}_{n}(x;\lambda)\frac{z^{n}}{n!} \quad \bigl(\vert z\vert < 2\pi \mbox{ when } \lambda=1; |z|<|\log{\lambda}| \mbox{ when } \lambda \neq1\bigr) $$
(1.8)
with, of course,
$$ B_{n}(x)={\mathcal{B}}_{n}(x;1)\quad \mbox{and} \quad { \mathcal {B}}_{n}(\lambda):={\mathcal{B}}_{n}(0;\lambda), $$
(1.9)
where \({\mathcal{B}}_{n}(\lambda)\) denotes the so-called Apostol-Bernoulli numbers.

Recently, Luo and Srivastava [5] further extended the Apostol-Bernoulli polynomials as the so-called Apostol-Bernoulli polynomials of order α.

Definition 1.2

(Luo and Srivastava [5])

The Apostol-Bernoulli polynomials \({\mathcal{B}}_{n}^{(\alpha)}(x;\lambda )\) (\(\lambda\in\mathbb{C}\)) of order α (\(\alpha\in \mathbb{N}\)) are defined by means of the following generating function:
$$\begin{aligned}& { \biggl(\frac{z}{\lambda e^{z}-1} \biggr)}^{\alpha}\cdot e^{xz}=\sum _{n=0}^{\infty}{\mathcal {B}}_{n}^{(\alpha)}(x; \lambda)\frac{z^{n}}{n!} \\& \quad \bigl(\vert z\vert < 2\pi \mbox{ when } \lambda=1; |z|<|\log{\lambda}| \mbox{ when } \lambda \neq1\bigr) \end{aligned}$$
(1.10)
with, of course,
$$ B_{n}^{(\alpha)}(x)={\mathcal {B}}_{n}^{(\alpha)}(x;1) \quad \mbox{and} \quad {\mathcal {B}}_{n}^{(\alpha)}(\lambda):={ \mathcal{B}}_{n}^{(\alpha)}(0;\lambda), $$
(1.11)
where \({\mathcal{B}}_{n}^{(\alpha)}(\lambda)\) denotes the so-called Apostol-Bernoulli numbers of order α.

On the other hand, Luo [6] gave an analogous extension of the generalized Euler polynomials as the so-called Apostol-Euler polynomials of order α.

Definition 1.3

(Luo [6])

The Apostol-Euler polynomials \({\mathcal{E}}_{n}^{(\alpha)}(x;\lambda)\) of order α (\(\alpha, \lambda\in\mathbb{C}\)) are defined by means of the following generating function:
$$ { \biggl(\frac{2}{\lambda e^{z}+1} \biggr)}^{\alpha}\cdot e^{xz}=\sum _{n=0}^{\infty}{\mathcal {E}}_{n}^{(\alpha)}(x; \lambda)\frac{z^{n}}{n!} \quad \bigl(\vert z\vert < \bigl\vert \log ({- \lambda})\bigr\vert \bigr) $$
(1.12)
with, of course,
$$ E_{n}^{(\alpha)}(x)={\mathcal {E}}_{n}^{(\alpha)}(x;1) \quad \mbox{and}\quad {\mathcal {E}}_{n}^{(\alpha)}(\lambda):={ \mathcal{E}}_{n}^{(\alpha)}(0;\lambda), $$
(1.13)
where \({\mathcal{E}}_{n}^{(\alpha)}(\lambda)\) denotes the so-called Apostol-Euler numbers of order α.

On the subject of the Genocchi polynomials \(G_{n}(x)\) and their various extensions, a remarkably large number of investigations have appeared in the literature (see, for example, [711]). Moreover, Luo (see [12]) introduced and investigated the Apostol-Genocchi polynomials of (real or complex) order α, which are defined as follows.

Definition 1.4

The Apostol-Genocchi polynomials \({\mathcal {G}}_{n}^{(\alpha)}(x;\lambda)\) (\(\lambda\in\mathbb{C}\)) of order α (\(\alpha\in\mathbb{N}\)) are defined by means of the following generating function:
$$ { \biggl(\frac{2z}{\lambda e^{z}+1} \biggr)}^{\alpha}\cdot e^{xz}=\sum _{n=0}^{\infty}{\mathcal {G}}_{n}^{(\alpha)}(x; \lambda)\frac{z^{n}}{n!} \quad \bigl(|z|< \bigl\vert \log ({-\lambda})\bigr\vert \bigr) $$
(1.14)
with, of course,
$$ \begin{aligned} &G_{n}^{(\alpha)}(x)={\mathcal{G}}_{n}^{(\alpha)}(x;1), \qquad {\mathcal {G}}_{n}^{(\alpha)}(\lambda):={\mathcal {G}}_{n}^{(\alpha)}(0;\lambda), \\ &{\mathcal {G}}_{n}(x;\lambda):={\mathcal {G}}_{n}^{(1)}(x; \lambda) \quad \mbox{and} \quad {\mathcal {G}}_{n}(\lambda):={ \mathcal{G}}_{n}^{(1)}(\lambda), \end{aligned} $$
(1.15)
where \({\mathcal{G}}_{n}(\lambda)\), \({\mathcal {G}}_{n}^{(\alpha)}(\lambda)\), and \({\mathcal{G}}_{n}(x;\lambda)\) denote the so-called Apostol-Genocchi numbers, the Apostol-Genocchi numbers of order α, and the Apostol-Genocchi polynomials, respectively.
Ozden et al. [13] investigated the following unification (and generalization) of the generating functions of the three families of Apostol-type polynomials:
$$\begin{aligned}& \frac{2^{1-\kappa}z^{\kappa}}{{\beta}^{b}e^{z}-a^{b}}e^{xz}=\sum _{n=0}^{\infty}{\mathcal {Y}}_{n,\beta}(x; \kappa,a,b)\frac{z^{n}}{n!} \\& \quad \bigl(|z|< 2\pi \mbox{ when } \beta=a; |z|<\bigl\vert b\log(\beta /a) \bigr\vert \mbox{ when } \beta\neq a; \kappa,\beta\in\mathbb{C}; a,b \in \mathbb{C}\setminus\{0\} \bigr). \end{aligned}$$
(1.16)
In [14] Özarslan further gave an extension of the above definition (1.16) as follows:
$$\begin{aligned}& \biggl(\frac{2^{1-\kappa}z^{\kappa}}{{\beta}^{b}e^{z}-a^{b}} \biggr)^{\alpha}e^{xz}= \sum_{n=0}^{\infty}{\mathcal {Y}}^{(\alpha)}_{n,\beta}(x;\kappa,a,b)\frac{z^{n}}{n!} \\& \quad \bigl(\alpha\in\mathbb{N}; |z|< 2\pi \mbox{ when } \beta=a; |z|<\bigl\vert b\log(\beta /a)\bigr\vert \\& \quad \mbox{when } \beta\neq a; \kappa,\beta\in \mathbb{C}; a,b\in \mathbb{C}\setminus\{0\} \bigr) \end{aligned}$$
(1.17)
and gave some identities for \({\mathcal{Y}}^{(\alpha)}_{n,\beta }(x;\kappa,a,b)\).

Recently, Luo and Srivastava [15] further extended the Apostol-type polynomials as follows.

Definition 1.5

(Luo and Srivastava [15])

The generalized Apostol-type polynomials \({\mathcal{F}}_{n}^{(\alpha )}(x;\lambda;\mu;\nu)\) of order α (\(\alpha,\lambda,\mu ;\nu\in\mathbb{C}\)) are defined by means of the following generating function:
$$ { \biggl(\frac{2^{\mu}z^{\nu}}{\lambda e^{z}+1} \biggr)}^{\alpha} e^{xz}=\sum_{n=0}^{\infty}{\mathcal {F}}_{n}^{(\alpha)}(x;\lambda;\mu;\nu)\frac{z^{n}}{n!}\quad \bigl(|z|< \bigl\vert \log{(-\lambda)}\bigr\vert \bigr). $$
(1.18)
By comparing Definition 1.5 with Definitions 1.2, 1.3 and 1.4, we readily find that
$$\begin{aligned}& \mathcal{B}_{n}^{ ( \alpha ) } ( x;\lambda )=(-1)^{\alpha}\mathcal{F}_{n}^{ ( \alpha ) } (x;-\lambda; 0;1 ) \quad (\alpha\in\mathbb{N}), \end{aligned}$$
(1.19)
$$\begin{aligned}& \mathcal{E}_{n}^{ ( \alpha ) } ( x;\lambda )= \mathcal{F}_{n}^{ ( \alpha ) } (x;\lambda; 1;0 ) \quad (\alpha\in \mathbb{C}) \end{aligned}$$
(1.20)
and
$$ \mathcal{G}_{n}^{ ( \alpha ) } ( x;\lambda )= \mathcal{F}_{n}^{ ( \alpha ) } ( x;\lambda; 1;1 ) \quad (\alpha\in \mathbb{N}) . $$
(1.21)
Furthermore, if we compare the generating functions (1.16), (1.17) and (1.18), we readily see that
$$\begin{aligned}& {\mathcal{Y}}_{n,\beta}(x;\kappa,a,b)=-\frac{1}{a^{b}}{ \mathcal {F}}_{n}^{(1)} \biggl(x;- \biggl(\frac{\beta}{a} \biggr)^{b};1-\kappa ;\kappa \biggr), \end{aligned}$$
(1.22)
$$\begin{aligned}& {\mathcal{Y}}^{(\alpha)}_{n,\beta}(x; \kappa,a,b)=(-1)^{\alpha }\frac{1}{a^{b \alpha}}{\mathcal {F}}_{n}^{(\alpha)} \biggl(x;- \biggl(\frac{\beta}{a} \biggr)^{b};1-\kappa ;\kappa \biggr). \end{aligned}$$
(1.23)

More investigations of this subject can be found in [5, 6, 1222].

The aim of this paper is to give the multiplication formula for the Apostol-type polynomials \(\mathcal{F}_{n}^{ ( \alpha ) } (x;\lambda; \mu;\nu )\) and obtain an explicit representation of \(\mathcal{F}_{n}^{ ( \alpha ) } (x;\lambda; \mu;\nu )\) in terms of the Gauss hypergeometric function \({{}_{2}F_{1}}(a,b;c;z)\). We study some relations between the family of Apostol-type polynomials \({\mathcal{F}}_{n}^{(\alpha)}(x;\lambda;\mu;\nu)\) and the family of Hurwitz zeta functions \(\Phi_{\mu} (z,s,a)\). Some special cases also are shown.

2 Multiplication formula for the Apostol-type polynomials

In this section we give a unified multiplication formula for the Apostol-type polynomials \(\mathcal{F}_{n}^{ (\alpha ) } (x;\lambda; \mu;\nu )\). We will see that some well-known results are the corresponding special cases of our result.

First we need the following lemmas.

Lemma 2.1

(Multinomial identity [23], p.28, Theorem B)

If \(x_{1}, x_{2}, \ldots, x_{m}\) are commuting elements of a ring (\(\iff x_{i} x_{j} =x_{j} x_{i}\), \(1\le i < j\le m\)), then we have for all integers \(n\ge 0\):
$$ (x_{1}+x_{2}+\cdots+x_{m})^{n}= \sum_{\substack{a_{1},a_{2},\ldots,a_{m}\ge0 \\ a_{1}+a_{2}+\cdots+a_{m}=n}} {n \choose a_{1}, a_{2},\ldots,a_{m} } {x_{1}}^{a_{1}}{x_{2}}^{a_{2}} \cdots{x_{m}}^{a_{m}}, $$
(2.1)
the last summation takes place over all positive or zero integers \(a_{i}\ge0\) such that \(a_{1}+a_{2}+\cdots+a_{m}=n\), where
$${n \choose a_{1}, a_{2},\ldots,a_{m}}:= \frac{n!}{a_{1}!a_{2}!\cdots a_{m}!}, $$
are called multinomial coefficients defined by [23], p.28, Definition B.

Lemma 2.2

(Generalized multinomial identity [23], p.41, Eq. (12m))

If \(x_{1}, x_{2}, \ldots, x_{m}\) are commuting elements of a ring (\(\iff x_{i} x_{j} =x_{j} x_{i}\), \(1\le i < j\le m\)), then we have for all real or complex variable α:
$$ (1+x_{1}+x_{2}+\cdots+x_{m})^{\alpha}= \sum_{v_{1},v_{2},\ldots,v_{m}\ge0 } {\alpha\choose v_{1}, v_{2},\ldots,v_{m} } {x_{1}}^{v_{1}}{x_{2}}^{v_{2}} \cdots {x_{m}}^{v_{m}}, $$
(2.2)
the last summation takes place over all positive or zero integers \(v_{i}\ge0\), where
$${\alpha\choose v_{1}, v_{2},\ldots,v_{m}}:= \frac{\{\alpha\} _{v_{1}+v_{2}+\cdots+v_{m}}}{v_{1}!v_{2}!\cdots v_{m}!} =\frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha -v_{1}-v_{2}-\cdots-v_{m}+1)}{v_{1}!v_{2}!\cdots v_{m}!} $$
are called generalized multinomial coefficients defined by [23], p.27, Eq. (10 \(C^{\prime\prime}\)).

Theorem 2.3

(Multiplication formula)

For \(\mu,\nu, r \in\mathbb{N}\) and \(\nu\leq1\), \(n,l\in{\mathbb {N}}_{0}\), \(\alpha, \lambda \in\mathbb{C}\), we have
$$\begin{aligned}& {\mathcal{F}}_{n}^{(\alpha)}(rx; \lambda; \mu; \nu)=r^{n-\nu {\alpha}} \sum_{v_{1}, v_{2}, \ldots, v_{r-1}\ge0}{\alpha\choose v_{1}, v_{2}, \ldots, v_{r-1}} \\& \hphantom{{\mathcal{F}}_{n}^{(\alpha)}(rx; \lambda; \mu; \nu)=}{}\times(- \lambda)^{m}{\mathcal{F}}_{n}^{(\alpha)} \biggl(x+ \frac{m}{r}; {\lambda}^{r}; \mu;\nu \biggr),\quad r \textit{ odd}, \end{aligned}$$
(2.3)
$$\begin{aligned}& {\mathcal{F}}_{n}^{(l)}(rx; \lambda; \mu;\nu)= \frac{(-1)^{l} 2^{\mu{l}}r^{n-\nu{l}}}{(n+1)_{(1-\nu)l}}\sum_{\substack{0 \le v_{1}, v_{2}, \ldots, v_{r-1}\le l \\ v_{1}+v_{2}+\cdots+v_{r-1}=l}}{l \choose v_{1}, v_{2}, \ldots, v_{r-1}} \\& \hphantom{{\mathcal{F}}_{n}^{(l)}(rx; \lambda; \mu;\nu)=}{}\times (- \lambda)^{m}{\mathcal{B}}_{n+(1-\nu)l}^{(l)} \biggl(x+ \frac{m}{r}; {\lambda}^{r} \biggr), \quad r \textit{ even}, \end{aligned}$$
(2.4)
where \(m=v_{1}+2v_{2}+\cdots+(r-1)v_{r-1}\).

Proof

It is not difficult to show that
$$ \frac{1}{\lambda e^{z} +1}=-\frac{1-\lambda e^{z}+{\lambda}^{2}e^{2z}+\cdots+{(-\lambda )}^{r-1}e^{(r-1)z}}{{(-\lambda)}^{r}e^{rz}-1}. $$
(2.5)
When r is odd, by (1.18) and (2.5) we get
$$\begin{aligned}& \sum_{n=0}^{\infty}{\mathcal {F}}_{n}^{(\alpha)}(rx; \lambda;\mu;\nu)\frac{z^{n}}{n!} \\& \quad = \frac {1}{r^{\nu{\alpha}}} \biggl(\frac{2^{\mu}(rz)^{\nu}}{ {\lambda}^{r}e^{rz}+1} \biggr)^{\alpha} \biggl( \frac{{\lambda}^{r}e^{rz}+1}{ \lambda e^{z}+1} \biggr)^{\alpha}e^{rxz} \\& \quad = \frac{1}{r^{\nu{\alpha}}} \biggl(\frac{2^{\mu}(rz)^{\nu}}{ {\lambda}^{r}e^{rz}+1} \biggr)^{\alpha} \Biggl( \sum_{k=0}^{r-1}\bigl(-\lambda{e^{z}} \bigr)^{k} \Biggr)^{\alpha}e^{rxz} \\& \quad = \frac{1}{r^{\nu{\alpha}}}\sum_{v_{1}, v_{2},\ldots,v_{r-1}\ge 0}{\alpha \choose v_{1}, v_{2}, \ldots, v_{r-1}}(- \lambda)^{m} \biggl(\frac{2^{\mu }(rz)^{\nu}}{ {\lambda}^{r}e^{rz}+1} \biggr)^{\alpha}e^{(x+\frac{m}{r})rz} \\& \quad = \sum_{n=0}^{\infty} \biggl[r^{n-\nu{\alpha}} \sum_{v_{1},v_{2},\ldots ,v_{r-1}\ge 0}{\alpha\choose v_{1}, v_{2}, \ldots, v_{r-1}}(-\lambda)^{m}{ \mathcal{F}}_{n}^{(\alpha)} \biggl(x+\frac {m}{r};{ \lambda}^{r};\mu;\nu \biggr) \biggr]\frac{z^{n}}{n!}. \end{aligned}$$
(2.6)
Comparing the coefficients of \(\frac{z^{n}}{n!}\) on both sides of (2.6), we obtain the assertion (2.3) of Theorem 2.3.

When r is even, we can similarly prove the assertion (2.4) of Theorem 2.3. The proof is complete. □

It follows that we can deduce the well-known formulas from Theorem 2.3.

Letting \(\lambda\longmapsto-\lambda\), taking \(\mu=0\) and \(\nu=1\) in (2.3) and (2.4) and noting (1.19), we can obtain the following main result of Luo (see [24], p.380, Theorem 2.1).

Corollary 2.4

For \(r, \alpha\in\mathbb{N}\), \(n \in{\mathbb{N}}_{0}\), \(\lambda\in \mathbb{C}\), the following multiplication formula for the Apostol-Bernoulli polynomials of higher order holds true:
$$ {\mathcal{B}}_{n}^{(\alpha)}(rx; \lambda)=r^{n-\alpha} \sum _{v_{1}, v_{2}, \ldots, v_{r-1}\ge0}{\alpha\choose v_{1}, v_{2}, \ldots, v_{r-1}} {\lambda}^{m}{ \mathcal{B}}_{n}^{(\alpha)} \biggl(x+\frac{m}{r}; {\lambda }^{r} \biggr), $$
(2.7)
where \(m=v_{1}+2v_{2}+\cdots+(r-1)v_{r-1}\).

Taking \(\mu=1\) and \(\nu=0\) in (2.3) and (2.4), and noting (1.20), we can obtain the following main result of Luo (see [24], p.385, Theorem 3.1).

Corollary 2.5

For \(r \in\mathbb{N}\), \(n,l\in{\mathbb{N}}_{0}\), \(\alpha, \lambda \in\mathbb{C}\), the following multiplication formula for the Apostol-Euler polynomials of higher order holds true:
$$\begin{aligned}& {\mathcal{E}}_{n}^{(\alpha)}(rx; \lambda)=r^{n} \sum _{v_{1}, v_{2}, \ldots, v_{r-1}\ge0}{\alpha\choose v_{1}, v_{2}, \ldots, v_{r-1}} (-\lambda)^{m}{ \mathcal{E}}_{n}^{(\alpha)} \biggl(x+\frac{m}{r}; { \lambda}^{r} \biggr), \quad r \textit{ odd}, \end{aligned}$$
(2.8)
$$\begin{aligned}& {\mathcal{E}}_{n}^{(l)}(rx; \lambda)=\frac{(-2)^{l} r^{n}}{(n+1)_{l}}\sum _{\substack{0 \le v_{1}, v_{2}, \ldots, v_{r-1}\le l \\ v_{1}+v_{2}+\cdots+v_{r-1}=l}}{l \choose v_{1}, v_{2}, \ldots, v_{r-1}} \\& \hphantom{{\mathcal{E}}_{n}^{(l)}(rx; \lambda)=}{}\times(-\lambda)^{m}{\mathcal{B}}_{n+l}^{(l)} \biggl(x+\frac{m}{r}; {\lambda }^{r} \biggr), \quad r \textit{ even}, \end{aligned}$$
(2.9)
where \(m=v_{1}+2v_{2}+\cdots+(r-1)v_{r-1}\).

Taking \(\mu=\nu=1\) in (2.3) and (2.4), and noting (1.21), we can obtain the following main result (see [14], p.2462, Corollary 4.6).

Corollary 2.6

For \(\alpha, r \in\mathbb{N}\), \(n,l\in{\mathbb{N}}_{0}\), \(\lambda \in\mathbb{C}\), the following multiplication formula for the Apostol-Genocchi polynomials of higher order holds true:
$$\begin{aligned}& {\mathcal{G}}_{n}^{(\alpha)}(rx; \lambda)=r^{n-\alpha} \sum _{v_{1}, v_{2}, \ldots, v_{r-1}\ge0}{\alpha\choose v_{1}, v_{2}, \ldots, v_{r-1}} (-\lambda)^{m}{ \mathcal{G}}_{n}^{(\alpha)} \biggl(x+\frac{m}{r}; { \lambda}^{r} \biggr), \quad r \textit{ odd}, \end{aligned}$$
(2.10)
$$\begin{aligned}& {\mathcal{G}}_{n}^{(l)}(rx; \lambda)=(-2)^{l} r^{n-l}\sum_{\substack{0 \le v_{1}, v_{2}, \ldots, v_{r-1}\le l \\ v_{1}+v_{2}+\cdots+v_{r-1}=l}}{l \choose v_{1}, v_{2}, \ldots, v_{r-1}} \\& \hphantom{{\mathcal{G}}_{n}^{(l)}(rx; \lambda)=}{}\times(- \lambda)^{m}{\mathcal{B}}_{n}^{(l)} \biggl(x+ \frac{m}{r}; {\lambda}^{r} \biggr), \quad r \textit{ even}, \end{aligned}$$
(2.11)
where \(m=v_{1}+2v_{2}+\cdots+(r-1)v_{r-1}\).

Taking \(\lambda=- (\frac{\beta}{a} )^{b}\), \(\mu=1-\kappa\), \(\nu=\kappa\) in (2.3), and noting (1.23), we can obtain the following multiplication formulas for the polynomials \({\mathcal{Y}}^{(\alpha)}_{n,\beta}(x;\kappa,a,b)\) and \(\mathcal {Y}_{n,\beta} (x;\kappa,a,b )\) defined by (1.16) and (1.17), respectively.

Corollary 2.7

For \(\kappa, \mu, \nu, m, n, l, r \in{\mathbb{N}}_{0}\), \(\alpha, \lambda \in\mathbb{C}\), we have
$$\begin{aligned}& {\mathcal{Y}}^{(\alpha)}_{n,\beta}(rx;\kappa,a,b) \\& \quad =r^{n-\kappa{\alpha}} \sum_{v_{1}, v_{2}, \ldots, v_{r-1}\ge0}{\alpha\choose v_{1}, v_{2}, \ldots, v_{r-1}} \biggl( \frac{\beta}{a} \biggr)^{bm}a^{(r-1)b{\alpha }}{\mathcal{Y}}_{n,\beta}^{(\alpha)} \biggl(x+\frac{m}{r}; \kappa;a;br \biggr) \end{aligned}$$
(2.12)
$$\begin{aligned}& \quad =r^{n-\kappa{\alpha}} \sum_{v_{1}, v_{2}, \ldots, v_{r-1}\ge0}{ \alpha\choose v_{1}, v_{2}, \ldots, v_{r-1}} \biggl(\frac{\beta}{a} \biggr)^{bm}a^{(r-1)b{\alpha }}{ \mathcal{Y}}_{n,\beta^{r}}^{(\alpha)} \biggl(x+\frac{m}{r}; \kappa;a^{r};b \biggr), \end{aligned}$$
(2.13)
where \(m=v_{1}+2v_{2}+\cdots+(r-1)v_{r-1}\).

Setting \(\alpha=l=1\) in (2.12) and (2.13), respectively, we have (see [13], p.2786, Theorem 8) the following.

Corollary 2.8

For \(\kappa, \mu, \nu, n , r \in{\mathbb{N}}_{0}\), \(\lambda \in\mathbb{C}\), we have
$$\begin{aligned} {\mathcal{Y}}_{n,\beta}(rx;\kappa,a,b)&= r^{n-\kappa} \sum _{j=0}^{r-1} \biggl(\frac{\beta}{a} \biggr)^{bj}a^{(r-1)b}{\mathcal {Y}}_{n,\beta} \biggl(x+ \frac{j}{r}; \kappa;a;br \biggr) \end{aligned}$$
(2.14)
$$\begin{aligned} &= r^{n-\kappa} \sum_{j=0}^{r-1} \biggl(\frac{\beta}{a} \biggr)^{bj}a^{(r-1)b}{ \mathcal{Y}}_{n,\beta^{r}} \biggl(x+\frac{j}{r}; \kappa;a^{r};b \biggr). \end{aligned}$$
(2.15)

Remark 2.9

In [14], p.2460, Theorem 4.3, one of the main result of Özarslan is not right, the correct form should be (2.12) and (2.13) of Corollary 2.7.

Remark 2.10

In fact, setting \(\lambda=- (\frac{\beta}{a} )^{b}\), \(\mu=1-\kappa\), \(\nu=\kappa\) in (2.3) and noting (1.23), we deduce the multiplication formulas which are right only when r is odd. In the same way as the proof of [24], p.380, Theorem 2.1, we can obtain the multiplication formulas (2.12) and (2.13) of Corollary 2.7.

3 A unified representation in conjunction with the Gauss hypergeometric function

In this section we obtain a unified representation of the Apostol-type polynomials \({\mathcal{F}}_{n}^{(l)}(x;\lambda;\mu;\nu)\) with the Gaussian hypergeometric functions.

Theorem 3.1

For \(\mu,\nu,n,l \in{\mathbb{N}}_{0}\), \(\lambda\in\mathbb{C}\), we have
$$\begin{aligned}& {\mathcal{F}}_{n}^{(l)}(x;\lambda;\mu; \nu) \\& \quad = 2^{\mu{l}}(\nu{l})!{n \choose \nu{l}}\sum _{k=0}^{n-\nu{l}}{l+k-1 \choose k} {n-\nu{l} \choose k} \frac{(-\lambda)^{k}}{(\lambda+1)^{l+k}} \\& \qquad {} \times\sum_{m=0}^{k}(-1)^{m}{k \choose m}m^{k} (x+m)^{n-\nu{l}-k}{ {}_{2}F_{1}} \biggl(-n+\nu{l}+k,k;k+1;\frac {m}{m+x} \biggr), \end{aligned}$$
(3.1)
where \(F(a,b;c;z)\) denotes Gaussian hypergeometric functions defined by (see [2], p.44, Eq. (4))
$$ F(a,b;c;z):=\sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}}\frac{z^{n}}{n!},\quad \vert z\vert < 1. $$
(3.2)

Proof

Letting \(\alpha=l \in{\mathbb{N}}\) in (1.18), we have
$$ \sum_{n=0}^{\infty}{\mathcal {F}}_{n}^{(l)}(x;\lambda;\mu;\nu)\frac{z^{n}}{n!}= { \biggl( \frac {2^{\mu}z^{\nu}}{\lambda e^{z}+1} \biggr)}^{l} e^{xz}. $$
(3.3)
Differentiating both sides of (3.3) with respect to the variable z yields
$$\begin{aligned} {\mathcal{F}}_{n}^{(l)}(x;\lambda;\mu;\nu)&=D_{z}^{n} \biggl[ \biggl(\frac {2^{\mu}z^{\nu}}{\lambda e^{z}+1} \biggr)^{l}e^{xz} \biggr]_{z=0} \\ &=2^{\mu{l}}\sum_{s=0}^{n}{n \choose s}x^{n-s}D_{z}^{s} \bigl[z^{\nu {l}}\bigl( \lambda e^{z}+1\bigr)^{-l} \bigr]_{z=0} \\ &=2^{\mu{l}}\sum_{s=\nu{l}}^{n}{n \choose s}x^{n-s}(\nu{l})!{s \choose \nu{l}}D_{z}^{s-\nu{l}} \bigl[\bigl(\lambda e^{z}+1\bigr)^{-l} \bigr]_{z=0} \\ &=2^{\mu{l}}\sum_{s=\nu{l}}^{n}{n \choose s}x^{n-s}(\nu{l})!{s \choose \nu{l}}D_{z}^{s-\nu{l}} \bigl[ \bigl(\lambda+1+\lambda \bigl(e^{z}-1\bigr) \bigr)^{-l} \bigr]_{z=0}, \end{aligned}$$
where \(D_{z}=\frac{d}{dz}\) is the differential operator.
Applying the generalized binomial theorem
$$(a+b)^{-\alpha}=\sum_{l=0}^{\infty}{ \alpha+l-1 \choose l}a^{-\alpha -l}(-b)^{l} \quad \biggl(\alpha\in \mathbb{C}, \biggl\vert \frac {b}{a}\biggr\vert < 1 \biggr) $$
and the generating function of the Stirling numbers of the second kind \(S(n,k)\) (see, for details, [23], p.206, Theorem A),
$$\frac{(e^{z}-1)^{k}}{k!}=\sum_{n=0}^{\infty}S(n,k) \frac{z^{n}}{n!}, $$
we find that
$$\begin{aligned}& {\mathcal{F}}_{n}^{(l)}(x;\lambda;\mu;\nu) \\& \quad =2^{\mu{l}}\sum_{s=\nu{l}}^{n}{n \choose s}x^{n-s}(\nu{l})!{s \choose \nu{l}}\sum _{k=0}^{\infty}{l+k-1 \choose k}(\lambda+1)^{-l-k}(- \lambda)^{k}D_{z}^{s-\nu{l}}\bigl[\bigl(e^{z}-1 \bigr)^{k}\bigr]_{z=0} \\& \quad =2^{\mu{l}}\sum_{s=\nu{l}}^{n}{n \choose s}x^{n-s}(\nu{l})!{s \choose \nu{l}}\sum _{k=0}^{s-\nu{l}}{l+k-1 \choose k}(-\lambda)^{k}( \lambda +1)^{-l-k}k!S(s-\nu{l},k). \end{aligned}$$
Noting (see [2], p.58, Eq. (20))
$$ S(n,k)=\frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j} \binom{k}{j}j^{n} $$
and the well-known combinatorial identity
$$ \binom{n}{k}\binom{k}{s}=\binom{n}{s}\binom{n-s}{n-k}, $$
we readily obtain
$$\begin{aligned}& {\mathcal{F}}_{n}^{(l)}(x;\lambda;\mu;\nu) \\& \quad = 2^{\mu{l}}\sum_{s=\nu{l}}^{n}{n \choose s}x^{n-s}(\nu{l})!{s \choose \nu{l}}\sum_{k=0}^{s-\nu{l}}{l+k-1 \choose k} \\& \qquad {}\times(-\lambda)^{k}(\lambda +1)^{-l-k}\sum _{m=0}^{k}(-1)^{k-m}{k \choose m}m^{s-\nu{l}} \\& \quad = 2^{\mu{l}}(\nu{l})!{n \choose \nu{l}}\sum_{k=0}^{n-\nu{l}} \sum_{s=k+\nu{l}}^{n}{n-\nu{l} \choose n-s} {l+k-1 \choose k}\frac{(-\lambda)^{k}x^{n-s}}{(\lambda +1)^{l+k}}\sum_{m=0}^{k}(-1)^{k-m}{k \choose m}m^{s-\nu{l}} \\& \quad = 2^{\mu{l}}(\nu{l})!{n \choose \nu{l}}\sum_{k=0}^{n-\nu{l}} \sum_{s=0}^{n-k-\nu{l}}{n-\nu{l} \choose n-s- \nu{l}-k} {l+k-1 \choose k} \\& \qquad {}\times\frac{(-\lambda)^{k}x^{n-s-k-\nu{l}}}{(\lambda +1)^{l+k}}\sum_{m=0}^{k}(-1)^{k-m}{k \choose m}m^{s+k} \\& \quad = 2^{\mu{l}}(\nu{l})!{n \choose \nu{l}}\sum_{k=0}^{n-\nu{l}}{l+k-1 \choose k}\frac{(-\lambda)^{k}x^{n-k-\nu{l}}}{(\lambda +1)^{l+k}}\sum_{m=0}^{k}(-1)^{k-m}{k \choose m}m^{k} \\& \qquad {}\times\sum_{s=0}^{n-k-\nu {l}}{n- \nu{l} \choose n-s-\nu{l}-k} \biggl(\frac{m}{x} \biggr)^{s}. \end{aligned}$$
Noting that (in view of \(\binom{n}{k}=0\) when \(k>n\) or \(k<0\))
$$\sum_{k=0}^{n}\binom{n}{k}=\sum _{k=0}^{\infty}\binom{n}{k}, $$
and combining the definition of the Gaussian hypergeometric function
$$ {}_{2}F_{1}(a,b;c;z):= \sum _{n=0}^{\infty}\frac {(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}, $$
we obtain
$$\begin{aligned} {\mathcal{F}}_{n}^{(l)}(x;\lambda;\mu;\nu) =&2^{\mu{l}}(\nu{l})!{n \choose \nu{l}}\sum_{k=0}^{n-\nu{l}}{l+k-1 \choose k} {n-\nu{l} \choose k} \\ &{}\times\frac{(-\lambda)^{k}x^{n-k-\nu{l}}}{(\lambda+1)^{l+k}}\sum _{m=0}^{k}(-1)^{m}{k \choose m}m^{k} \\ &{} \times{ {}_{2}F_{1}} \biggl(-n+\nu{l}+k,1;k+1;- \frac {m}{x} \biggr). \end{aligned}$$
(3.4)
Applying the Pfaff-Kummer hypergeometric transformation [25], p.559, Eq. (15.3.4),
$$ { {}_{2}F_{1}}(a,b;c;z)=(1-z)^{-a}{ {}_{2}F_{1}} \biggl(a,c-b;c;\frac {z}{z-1} \biggr)\quad \bigl(c \notin{\mathbb{Z}}_{0}^{-}:\bigl\vert \operatorname{arg}(1-z) \bigr\vert \leq\pi -\epsilon\ (0< \epsilon <\pi)\bigr), $$
to (3.4), we arrive at the desired equation, (3.1). This completes our proof. □

Below we show some special cases of (3.1).

Letting \(\lambda\longmapsto-\lambda\), taking \(\mu=0\) and \(\nu=1\) in (3.1) and noting (1.19), we easily obtain the following explicit formula for the Apostol-Bernoulli polynomials:
$$\begin{aligned} {\mathcal{B}}_{n}^{(l)}(x;\lambda) =&l!{n \choose l}\sum _{k=0}^{n-l}{l+k-1 \choose k} {n-l \choose k} \frac{{\lambda}^{k}}{(\lambda-1)^{k}} \\ &{}\times\sum_{m=0}^{k}(-1)^{m}{k \choose m}m^{k} (x+m)^{n-l-k}{ {}_{2}F_{1}} \biggl(-n+l+k,k;k+1;\frac{m}{m+x} \biggr), \end{aligned}$$
(3.5)
with \(n, l \in{\mathbb{N}}_{0}\), \(\lambda\in\mathbb{C}\setminus\{1\} \), which is just the main result of Luo and Srivastava (see [5], p.294, Theorem 1).
Taking \(\mu=1\) and \(\nu=0\) in (3.1) and noting (1.20), we can obtain the following explicit formula for the Apostol-Euler polynomials:
$$\begin{aligned} {\mathcal{E}}_{n}^{(l)}(x;\lambda) =&2^{l}\sum _{k=0}^{n}{l+k-1 \choose k} {n \choose k} \frac{(-\lambda)^{k}}{(\lambda+1)^{l+k}} \\ &{}\times\sum_{m=0}^{k}(-1)^{m}{k \choose m}m^{k} (x+m)^{n-k}{ {}_{2}F_{1}} \biggl(-n+k,k;k+1;\frac{m}{m+x} \biggr), \end{aligned}$$
(3.6)
with \(n,l\in{\mathbb{N}}_{0}\), \(\lambda\in\mathbb{C}\setminus\{-1\} \), which is just the main result of Luo (see [6], p.920, Theorem 1).
Taking \(\mu=\nu=1\) in (3.1), and noting (1.21), we can obtain the following explicit representation of the generalized Apostol-Genocchi polynomials:
$$\begin{aligned} {\mathcal{G}}_{n}^{(l)}(x;\lambda) =&2^{l}l!{n \choose l}\sum_{k=0}^{n-l}{l+k-1 \choose k} {n-l \choose k}\frac{(-\lambda)^{k}}{(\lambda+1)^{l+k}} \\ &{}\times\sum_{m=0}^{k}(-1)^{m}{k \choose m}m^{k} (x+m)^{n-l-k}{ {}_{2}F_{1}} \biggl(-n+l+k,k;k+1;\frac{m}{m+x} \biggr), \end{aligned}$$
(3.7)
with \(n,l\in{\mathbb{N}}_{0}\), \(\lambda\in\mathbb{C}\setminus\{-1\} \), which is just one of the results of Luo and Srivastava (see [15], p.5708, Theorem 1).
Taking \(\lambda=- (\frac{\beta}{a} )^{b}\), \(\mu=1-\kappa\), \(\nu=\kappa\) in (3.1), and noting (1.23), we deduce the following well-known formula:
$$\begin{aligned} {\mathcal{Y}}^{(l)}_{n,\beta}(x; \kappa,a,b) =&2^{l(1-\kappa)}(l \kappa)! \binom{l+k-1}{k}{n \choose l \kappa} \sum_{k=0}^{n-l \kappa}{n-l \kappa\choose k} \frac{{\beta}^{bk}}{({\beta}^{b}-a^{b})^{k+1}} \\ &{}\times\sum_{m=0}^{k}(-1)^{m}{k \choose m} m^{k}(x+m)^{n-k-l \kappa} \\ &{}\times{ {}_{2}F_{1}} \biggl(-n+l \kappa+k,k;k+1;\frac {m}{m+x} \biggr), \end{aligned}$$
(3.8)
with \(n,l,\kappa\in{\mathbb{N}}_{0}\), \(\beta\in\mathbb{C}\), \(a,b \in \mathbb{C}\setminus\{0\}\), \(\beta\neq a\), which is just main result of Özarslan (see [14], p.2454, Theorem 2.1).
Further setting \(l=1\) in (3.8) we deduce the following formula for \({\mathcal{Y}}_{n,\beta}(x;\kappa,a,b)\):
$$\begin{aligned} {\mathcal{Y}}_{n,\beta}(x;\kappa,a,b) =&2^{1-\kappa}\kappa!{n \choose \kappa}\sum_{k=0}^{n-\kappa}{n-\kappa\choose k} \frac{{\beta}^{bk}}{({\beta}^{b}-a^{b})^{k+1}} \\ &{}\times\sum_{m=0}^{k}(-1)^{m}{k \choose m} m^{k}(x+m)^{n-k-\kappa} \\ &{}\times{ {}_{2}F_{1}} \biggl(-n+\kappa+k,k;k+1;\frac {m}{m+x} \biggr). \end{aligned}$$
(3.9)

4 Some explicit relationships between the generalized Apostol-type polynomials and generalized Hurwitz-Lerch zeta function

A general Hurwitz-Lerch zeta function \(\Phi(z,s,a)\) defined by (cf., e.g., [2], p.121, et seq.)
$$\begin{aligned}& \Phi(z,s,a):=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} \\& \quad \bigl( a\in\mathbb{C} \setminus\mathbb{Z}_{0}^{-}; s\in \mathbb{C}\text{ when }\vert z\vert < 1; \mathfrak{R}(s)>1\text{ when }\vert z\vert =1 \bigr) \end{aligned}$$
(4.1)
contains, as special cases, not only the Hurwitz (or generalized) zeta function \(\zeta(s,a)\) defined by (cf. [26], p.249 and [4], p.88)
$$ \zeta(s,a):=\Phi(1,s,a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}} \quad \bigl(\Re(s)>1;a \in\notin\mathbb{Z}_{0}^{-} \bigr) $$
(4.2)
and the Riemann zeta function \(\zeta(s)\),
$$ \zeta(s):=\Phi(1,s,1)=\zeta(s,1)=\frac{1}{2^{s}-1}\zeta \biggl(s, \frac{1}{2} \biggr) \quad \bigl(\Re(s)>1;a \notin\mathbb{Z}_{0}^{-} \bigr), $$
(4.3)
and the Lerch zeta function:
$$ \ell_{s}(\xi):=\sum_{n=1}^{\infty} \frac{e^{2n\pi i\xi }}{n^{s}}=e^{2\pi i\xi} \Phi \bigl( e^{2\pi i\xi},s,1 \bigr)\quad \bigl( \xi\in\mathbb{R}; \mathfrak{R}(s)>1 \bigr), $$
(4.4)
but also such other functions as the polylogarithm function:
$$\begin{aligned}& \operatorname{Li}_{s}(z):=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}=z \Phi (z,s,1) \\& \quad \bigl(s\in\mathbb{C }\text{ when } \vert z \vert < 1; \mathfrak{R}(s)>1 \text{ when } \vert z\vert =1 \bigr) \end{aligned}$$
(4.5)
and the Lipschitz-Lerch zeta function (cf. [2], p.122, Eq. 2.5(11)):
$$\begin{aligned}& \phi(\xi,a,s):=\sum_{n=0}^{\infty} \frac{e^{2n\pi i\xi }}{(n+a)^{s}}=\Phi \bigl( e^{2\pi i\xi},s,a \bigr) =:L ( \xi,s,a ) \\& \quad \bigl(a\in\mathbb{C} \setminus\mathbb{Z}_{0}^{-}; \mathfrak{R}(s)>0 \text{ when }\xi\in\mathbb{R }\setminus \mathbb{Z}; \mathfrak{R}(s)>1 \text{ when }\xi\in \mathbb{Z} \bigr), \end{aligned}$$
(4.6)
which was first studied by Rudolf Lipschitz (1832-1903) and Matyáš Lerch (1860-1922) in connection with Dirichlet’s famous theorem on primes in arithmetic progressions.
A family of the Hurwitz-Lerch zeta functions \(\Phi_{\mu,\nu}^{(\rho ,\sigma)} (z,s,a)\) defined by (see e.g. [27], p.727, Eq. (8))
$$\begin{aligned}& \Phi_{\mu,\nu}^{(\rho,\sigma)} (z,s,a):=\sum _{n=0}^{\infty}\frac {(\mu)_{\rho{n}}}{(\nu)_{\sigma{n}}}\frac{z^{n}}{(n+a)^{s}} \\& \quad \bigl( \mu\in\mathbb{C}; a, \nu\in\mathbb{C}\setminus \mathbb{Z}_{0}^{-}; \rho, \sigma\in\mathbb{R}^{+}; \rho< \sigma \text{ when } s, z \in\mathbb{C}; \\& \quad \rho =\sigma \text{ and } s \in\mathbb{C} \text{ when } \vert z \vert<1; \rho= \sigma \text{ and } \Re(s-\mu+\nu)>1 \text { when } \vert z \vert= 1\bigr), \end{aligned}$$
(4.7)
contains, as special cases, not only the Hurwitz-Lerch zeta function
$$ \Phi_{\nu,\nu}^{(\sigma,\sigma)} (z,s,a)=\Phi_{\mu,\nu}^{(0,0)} (z,s,a)=\Phi(z,s,a)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} $$
(4.8)
and the Lipschitz-Lerch zeta function \(\phi(\xi,a,s):=\Phi ( e^{2\pi i\xi},s,a )\), but also the following generalized Hurwitz-Lerch zeta functions introduced and studied earlier by Goyal and Laddha [28], p.100, Eq. (1.5):
$$ \Phi_{\mu,1}^{(1,1)} (z,s,a)=\Phi_{\mu} (z,s,a):=\sum_{n=0}^{\infty}\frac{(\mu)_{n}}{n!} \frac{z^{n}}{(n+a)^{s}}, $$
(4.9)
which, are called the Goyal-Laddha-Hurwitz-Lerch zeta functions.

Below we give an explicit relationship between the Apostol-type polynomials \({\mathcal{F}}_{n}^{(\alpha)}(x;\lambda; \mu;\nu)\) and the Hurwitz-Lerch zeta function \(\Phi_{\mu} (z,s,a)\).

Theorem 4.1

For \(n, \nu, \alpha\in\mathbb{N}_{0}\); \(-1<\lambda\leqq1\); \(n \geqq\nu\alpha\); \(x \in\mathbb{C} \setminus \mathbb{Z}_{0}^{-}\), \(\mu\in\mathbb{C}\), the relationship
$$ {\mathcal {F}}_{n}^{(\alpha)}(x;\lambda;\mu;\nu) =2^{\mu\alpha}(\nu\alpha)! \binom{n}{\nu\alpha} \Phi_{\alpha}(-\lambda,\nu \alpha-n,x) $$
(4.10)
holds true.

Proof

Applying the generalized binomial theorem
$$ (1+w)^{-\alpha}=\sum_{r=0}^{\infty} \binom{\alpha +r-1}{r}(-w)^{r} \quad \bigl( \vert w\vert < 1 \bigr) $$
in (1.18), we have
$$\begin{aligned} \sum_{n=0}^{\infty}{\mathcal {F}}_{n}^{(\alpha)}(x;\lambda;\mu;\nu)\frac{z^{n}}{n!} &={ \biggl(\frac{2^{\mu}z^{\nu}}{\lambda e^{z}+1} \biggr)}^{\alpha} e^{xz} \\ &= 2^{\mu\alpha}z^{\nu\alpha} \bigl(1 +\lambda e^{z} \bigr)^{-\alpha} e^{xz} \\ &= 2^{\mu\alpha}z^{\nu\alpha}\sum_{k=0}^{\infty} \frac{(\alpha )_{k}}{k!} (-\lambda)^{k} e^{(k+x)z} \\ &= \sum_{n=0}^{\infty} \Biggl[2^{\mu\alpha} \sum_{k=0}^{\infty }\frac{(\alpha)_{k}}{k!} (- \lambda)^{k} (k+x)^{n} \Biggr] \frac {z^{n+\nu\alpha}}{n!} \\ &= \sum_{n=\nu\alpha}^{\infty} \Biggl[2^{\mu\alpha}( \nu\alpha)! \binom{n}{\nu\alpha}\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{k!} \frac{(-\lambda)^{k}}{(k+x)^{\nu\alpha-n}} \Biggr] \frac{z^{n}}{n!}. \end{aligned}$$
(4.11)
Noting (4.9), (4.10) follows. □

Below we see that (4.10) implies some well-known results.

Let \(\lambda\longmapsto-\lambda\), taking \(\mu=0\) and \(\nu=1\) in (4.10) and noting (1.19), we can obtain an explicit relation between the Apostol-Bernoulli polynomials and the Hurwitz-Lerch zeta function:
$$ \mathcal{B}_{n}^{ ( l ) } (x;\lambda ) = (-n)_{l} \Phi_{l}(\lambda,l-n,x)\quad \bigl(n, l \in\mathbb{N}; n \geqq l; \vert \lambda \vert < 1; x \in\mathbb{C} \setminus\mathbb{Z}_{0}^{-} \bigr). $$
(4.12)
The above result is just one of the main results of Garg et al. (see [29], p.809).
Clearly, we have the following relation between the Apostol-Bernoulli polynomials and the Hurwitz-Lerch zeta function:
$$ \mathcal{B}_{n} (x;\lambda ) = -n \Phi(\lambda,1-n,x) \quad \bigl(n \in\mathbb{N}; \vert \lambda \vert \leqq1; x \in\mathbb{C} \setminus\mathbb{Z}_{0}^{-}\bigr), $$
(4.13)
which is just the result of Apostol (see [3]).
Taking \(\lambda=1\) in (4.13), we obtain the following well-known relationship between the Bernoulli polynomials and Hurwitz zeta function (see [26], p.264, Theorem 12.13):
$$ B_{n}(x) =- n \zeta(1-n,x) \quad (n \in\mathbb{N}). $$
(4.14)
Taking \(x=0\) in (4.14), we obtain the following the well-known relationship between the Bernoulli numbers and the Riemann zeta function (see [26], p.266, Theorem 12.16):
$$ B_{n} =- n \zeta(1-n)\quad (n \in\mathbb{N}). $$
(4.15)
Taking \(\mu=1\) and \(\nu=0\) in (4.10) and noting (1.20), we can obtain the following result of Luo (see [30], p.339, Theorem 2.1):
$$ \mathcal{E}_{n}^{(\alpha)} (x;\lambda ) =2^{\alpha}\Phi _{\alpha}(-\lambda,-n,x) . $$
(4.16)
Further taking \(\alpha=1\) in (4.16), we have the following relation between the Apostol-Euler polynomials and the Hurwitz-Lerch zeta function:
$$ \mathcal{E}_{n} (x;\lambda ) = 2 \Phi(-\lambda,-n,x) \quad \bigl(n \in\mathbb{N}; -1< {\lambda} \leqq1; x \in\mathbb{C} \setminus \mathbb{Z}_{0}^{-}\bigr). $$
(4.17)
Taking \(\lambda=1\) in (4.17), we can obtain the following well-known relation between the Euler polynomials and the L-function:
$$ E_{n} (x ) = 2 L(-n,x), $$
(4.18)
where the L-function is defined by
$$ L(s,x):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{ ( n+x )^{s}}\quad \bigl( \Re ( s ) >1; x \in\mathbb{C} \setminus \mathbb{Z}_{0}^{-} \bigr). $$
(4.19)
From (4.19), we further obtain the following well-known relation between the Euler numbers and the l-function:
$$ E_{n} = 2 l(-n), $$
(4.20)
where the l-function is defined by
$$ l(s):=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}}, \quad \Re(s) >0. $$
(4.21)
Taking \(\mu=\nu=1\) in (4.10), and noting (1.21), we can deduce the following relation between the Apostol-Genocchi polynomials and Hurwitz-Lerch zeta function (see [31], p.124, Corollary 4.2):
$$ \mathcal{G}_{n}^{ ( l ) } (x;\lambda ) = \{n\} _{l} 2^{l} \Phi_{l}(-\lambda,l-n,x)\quad \bigl(n, l \in\mathbb{N}; n \geqq l; \vert \lambda \vert \leqq1; \text { } x \in \mathbb{C} \setminus\mathbb{Z}_{0}^{-}\bigr) $$
(4.22)
and
$$ \mathcal{G}_{n} (x;\lambda ) = 2n \Phi(-\lambda,1-n,x) \quad \bigl(n \in\mathbb{N}; \vert \lambda \vert \leqq1; x \in\mathbb{C} \setminus\mathbb{Z}_{0}^{-}\bigr). $$
(4.23)
Taking \(\lambda=- (\frac{\beta}{a} )^{b}\), \(\mu=1-\kappa\), \(\nu=\kappa\) in (4.10), and noting (1.23), we can deduce the following relations between the polynomials \({\mathcal {Y}}^{(\alpha)}_{n,\beta}(x;\kappa,a,b)\), \({\mathcal{Y}}_{n,\beta }(x;\kappa,a,b)\), and the (generalized) Hurwitz zeta functions [13, 14, 18]:
$$ {\mathcal{Y}}^{(\alpha)}_{n,\beta}(x;\kappa,a,b) =(-1)^{\alpha } \frac{2^{(1-\kappa) \alpha}(\kappa\alpha)!}{a^{b \alpha}} \binom {n}{\kappa\alpha} \Phi_{\alpha} \biggl( \biggl( \frac{\beta}{a} \biggr)^{b},\kappa\alpha-n,x \biggr) $$
(4.24)
and
$$ {\mathcal{Y}}_{n,\beta}(x;\kappa,a,b) =-\frac{2^{(1-\kappa )}(\kappa)!}{a^{b}} \binom{n}{\kappa} \Phi \biggl( \biggl(\frac {\beta}{a} \biggr)^{b}, \kappa-n,x \biggr). $$
(4.25)

Declarations

Acknowledgements

The authors sincerely thank the referees for their valuable suggestions and comments. The present investigation was supported by Natural Science Foundation Project of Chongqing, China under Grant CSTC2011JJA00024, Research Project of Science and Technology of Chongqing Education Commission, China under Grant KJ120625, Fund of Chongqing Normal University, China under Grants 10XLR017 and 2011XLZ07.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics and Information, Taizhou University
(2)
Department of Mathematics, Chongqing Normal University

References

  1. Sándor, J, Crstici, B: Handbook of Number Theory, vol. II. Kluwer Academic, Dordrecht (2004) View ArticleMATHGoogle Scholar
  2. Srivastava, HM, Choi, J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001) View ArticleMATHGoogle Scholar
  3. Apostol, TM: On the Lerch zeta function. Pac. J. Math. 1, 161-167 (1951) View ArticleMATHMathSciNetGoogle Scholar
  4. Srivastava, HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 129, 77-84 (2000) View ArticleMATHMathSciNetGoogle Scholar
  5. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308, 290-320 (2005) View ArticleMATHMathSciNetGoogle Scholar
  6. Luo, Q-M: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 10, 917-925 (2006) MATHMathSciNetGoogle Scholar
  7. Horadam, AF: Genocchi polynomials. In: Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications, pp. 145-166. Kluwer Academic, Dordrecht (1991) View ArticleGoogle Scholar
  8. Horadam, AF: Negative order Genocchi polynomials. Fibonacci Q. 30, 21-34 (1992) MATHMathSciNetGoogle Scholar
  9. Horadam, AF: Generation of Genocchi polynomials of first order by recurrence relations. Fibonacci Q. 30, 239-243 (1992) MATHMathSciNetGoogle Scholar
  10. Jang, L-C, Kim, T: On the distribution of the q-Euler polynomials and the q-Genocchi polynomials of higher order. J. Inequal. Appl. 2008, Article ID 723615 (2008) View ArticleMathSciNetMATHGoogle Scholar
  11. Kim, T, Jang, L-C, Pak, HK: A note on q-Euler numbers and Genocchi numbers. Proc. Jpn. Acad., Ser. A, Math. Sci. 77, 139-141 (2001) View ArticleMATHMathSciNetGoogle Scholar
  12. Luo, Q-M: Extension for the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291-309 (2011) MATHMathSciNetGoogle Scholar
  13. Ozden, H, Simsek, Y, Srivastava, HM: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 60, 2779-2787 (2010) View ArticleMathSciNetMATHGoogle Scholar
  14. Özarslan, MA: Unified Apostol-Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 62, 2452-2462 (2011) View ArticleMATHMathSciNetGoogle Scholar
  15. Luo, Q-M, Srivastava, HM: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 217, 5702-5728 (2011) View ArticleMATHMathSciNetGoogle Scholar
  16. Luo, Q-M: Elliptic extensions of the Apostol-Bernoulli and Apostol-Euler polynomials. Appl. Math. Comput. 261, 156-166 (2015) View ArticleMathSciNetGoogle Scholar
  17. Mansour, T, Ozden, H, Simsek, Y: Modified Apostol-type polynomials arising from umbral calculus. Adv. Stud. Contemp. Math. 24, 175-182 (2014) MATHGoogle Scholar
  18. Ozden, H: Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials. AIP Conf. Proc. 1281, 1125-1128 (2010) View ArticleGoogle Scholar
  19. Tremblay, R, Gaboury, S, Fugére, B-J: Some new classes of generalized Apostol-Euler and Apostol-Genocchi polynomials. Int. J. Math. Math. Sci. 2012, Article ID 182785 (2012) View ArticleMATHMathSciNetGoogle Scholar
  20. Lin, S-D, Srivastava, HM, Wang, P-Y: Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 17(11), 817-827 (2006) View ArticleMATHMathSciNetGoogle Scholar
  21. Lu, D-Q, Srivastava, HM: Some series identities involving the generalized Apostol-type and related polynomials. Comput. Math. Appl. 62, 3591-3602 (2011) View ArticleMATHMathSciNetGoogle Scholar
  22. Luo, Q-M, Srivastava, HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51, 631-642 (2006) View ArticleMATHMathSciNetGoogle Scholar
  23. Comtet, L: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974) (Translated from the French by JW Nienhuys) View ArticleMATHGoogle Scholar
  24. Luo, Q-M: The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transforms Spec. Funct. 20, 377-391 (2009) View ArticleMATHMathSciNetGoogle Scholar
  25. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 4th edn. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1965) MATHGoogle Scholar
  26. Apostol, TM: Introduction to Analytic Number Theory. Springer, New York (1976) MATHGoogle Scholar
  27. Lin, S-D, Srivastava, HM: Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 154, 725-733 (2004) View ArticleMATHMathSciNetGoogle Scholar
  28. Goyal, SP, Laddha, RK: On the generalized Riemann zeta functions and the generalized Lambert transform. Ganita Sandesh 11, 99-108 (1997) MATHMathSciNetGoogle Scholar
  29. Garg, M, Jain, K, Srivastava, HM: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 17, 803-815 (2006) View ArticleMATHMathSciNetGoogle Scholar
  30. Luo, Q-M: Some formulas for Apostol-Euler polynomials associated with Hurwitz zeta function at rational arguments. Appl. Anal. Discrete Math. 3, 336-346 (2009) View ArticleMATHMathSciNetGoogle Scholar
  31. Luo, Q-M: q-Extensions for the Apostol-Genocchi polynomials. Gen. Math. 17(2), 113-125 (2009) MATHMathSciNetGoogle Scholar

Copyright

© Lu and Luo; licensee Springer. 2015