Skip to main content

Theory and Modern Applications

On \((h,q)\)-Daehee numbers and polynomials

Abstract

The p-adic q-integral (sometimes called q-Volkenborn integration) was defined by Kim. From p-adic q-integral equations, we can derive various q-extensions of Bernoulli polynomials and numbers. DS Kim and T Kim studied Daehee polynomials and numbers and their applications. Kim et al. introduced the q-analogue of Daehee numbers and polynomials which are called q-Daehee numbers and polynomials. Lim considered the modified q-Daehee numbers and polynomials which are different from the q-Daehee numbers and polynomials of Kim et al. In this paper, we consider \((h,q)\)-Daehee numbers and polynomials and give some interesting identities. In case \(h=0\), we cover the q-analogue of Daehee numbers and polynomials of Kim et al. In case \(h=1\), we modify q-Daehee numbers and polynomials. We can find out various \((h,q)\)-related numbers and polynomials which are studied by many authors.

1 Introduction

Let p be a fixed prime number. Throughout this paper, \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\) and \(\mathbb{C}_{p}\) will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of algebraic closure of \(\mathbb{Q}_{p}\). The p-adic norm is defined \(|p|_{p}=\frac{1}{p}\).

When one talks of q-extension, q is variously considered as an indeterminate, complex \(q\in\mathbb{C}\), or p-adic number \(q\in\mathbb {C}_{p}\). If \(q\in\mathbb{C}\), one normally assumes that \(|q|<1\). If \(q\in \mathbb{C}_{p}\), then we assume that \(|q-1|_{p}< p^{-\frac{1}{p-1}}\) so that \(q^{x}=\exp(x\log q)\) for each \(x\in\mathbb{Z}_{p}\). Throughout this paper, we use the notation

$$ [x]_{q}=\frac{1-q^{x}}{1-q}. $$

Note that \(\lim_{q\rightarrow1}[x]_{q}=x\) for each \(x\in\mathbb{Z}_{p}\).

Let \(UD(\mathbb{Z}_{p})\) be the space of a uniformly differentiable function on \(\mathbb{Z}_{p}\). For \(f\in UD(\mathbb{Z}_{p})\), the p-adic q-integral on \(\mathbb{Z}_{p}\) is defined by Kim as follows:

$$ I_{q}(f)=\int_{\mathbb{Z}_{p}}f(x)\,d\mu_{q}(x)=\lim_{N\rightarrow\infty }\frac{1}{[p^{N}]_{q}}\sum _{x=0}^{p^{N}-1}f(x)q^{x} \quad(\mbox{see [1, 2]}). $$
(1)

Using this integration, the q-Daehee polynomials \(D_{n,q}(x)\) are defined and studied by Kim et al. (see [3]), their generating function is as follows:

$$ \frac{1-q+\frac{1-q}{\log q}\log(1+t)}{1-q-qt}(1+t)^{x}=\sum _{n=0}^{\infty}D_{n,q}(x)\frac{t^{n}}{n!}. $$
(2)

The generating function of the modified q-Daehee polynomials are defined and studied by Lim (see [4]).

$$ F_{q}(x,t)=\frac{q-1}{\log q}\frac{\log(1+t)}{t}(1+t)^{x}= \sum_{n=0}^{\infty}D_{n}(x|q) \frac{t^{n}}{n!} \quad(\mbox{see [1--16]}). $$
(3)

From (1), we have the following integral identity:

$$ qI_{q}(f_{1})-I_{q}(f)= \frac{q-1}{\log q}f'(0)+(q-1)f(0), $$
(4)

where \(f_{1}(x)=f(x+1)\) and \(\frac{d}{dx}f(x)=f'(x)\).

In a special case, for \(h\in\mathbb{Z}_{+}\) (\(=\mathbb{N}\cup\{0\}\)), we apply \(f(x)=q^{-hx}e^{tx}\) on (4), we have

$$ \int_{\mathbb{Z}_{p}}q^{-hx}e^{xt}\,d\mu_{q}(x)=\frac{q^{h-1}(q-1)}{\log q}\frac{t-(h-1)\log{q}}{e^{t}-q^{h-1}}. $$
(5)

For \(h\in\mathbb{Z}_{+}\), we define the \((h,q)\)-Bernoulli number \(B^{(h)}_{n}(q)\) as follows:

$$ \sum_{n=0}^{\infty}B^{(h)}_{n}(q) \frac{t^{n}}{n!}=\frac {q^{h-1}(q-1)}{\log q}\frac{t-(h-1)\log{q}}{e^{t}-q^{h-1}}. $$
(6)

Indeed if \(q\rightarrow1\), we have \(\lim_{q\rightarrow 1}B^{(h)}_{n}(q)=B_{n}\). So we call this \(B^{(h)}_{n}(q)\) the nth \((h,q)\)-Bernoulli number. And we define \((h,q)\)-Bernoulli polynomials and the generating function to be

$$ \frac{q^{h-1}(q-1)}{\log q}\frac{t-(h-1)\log{q}}{e^{t}-q^{h-1}}e^{xt}=\sum _{n=0}^{\infty}B^{(h)}_{n}(x|q) \frac{t^{n}}{n!}. $$
(7)

When \(x=0\), \(B^{(h)}_{n}(0|q)=B^{(h)}_{n}(q)\) are the nth \((h,q)\)-Bernoulli numbers.

From (4) and (7), we have

$$ B^{(h)}_{n}(x|q)=\int_{\mathbb{Z}_{p}}q^{-hy}(x+y)^{n}\,d \mu_{q}(y). $$

From (7) we note that

$$ B^{(h)}_{n}(x|q)=\sum _{l=0}^{n}\binom{n}{l}B^{(h)}_{l}(q)x^{n-l}. $$
(8)

For the case \(|t|_{p}\leq p^{-\frac{1}{p-1}}\), the Daehee polynomials are defined as follows (see [3]):

$$ \sum_{n=0}^{\infty}D_{n}(x) \frac{t^{n}}{n!}=\frac{\log(1+t)}{t}(1+t)^{x}. $$
(9)

From (2) and (3), if \(q\rightarrow1\), we have

$$ \lim_{q\rightarrow1}D_{n,q}(x)=D_{n}(x) $$

and

$$ \lim_{q\rightarrow1}D_{n}(x|q)=D_{n}(x). $$

The p-adic q-integral (or q-Volkenborn integration) was defined by Kim (see [1, 2]). From p-adic q-integral equations, we can derive various q-extensions of Bernoulli polynomials and numbers (see [1–24]). In [20], DS Kim and T Kim studied Daehee polynomials and numbers and their applications. In [3], Kim et al. introduced the q-analogue of Daehee numbers and polynomials which are called q-Daehee numbers and polynomials. Lim considered in [4] the modified q-Daehee numbers and polynomials which are different from the q-Daehee numbers and polynomials of Kim et al. In this paper, we consider \((h,q)\)-Daehee numbers and polynomials and give some interesting identities. In case \(h=0\), we cover the q-analogue of Daehee numbers and polynomials of Kim et al. (see [3]). In case \(h=1\), we have modified q-Daehee numbers and polynomials in [4]. We can find out various \((h,q)\)-related numbers and polynomials in [10, 13, 14].

2 \((h,q)\)-Daehee numbers and polynomials

Let us now consider the p-adic q-integral representation as follows: for each \(h\in\mathbb{Z}_{+}\),

$$ \int_{\mathbb{Z}_{p}}q^{-hy}(x+y)_{n}\,d \mu_{q}(y)\quad \bigl(n\in\mathbb{Z}_{+}=\mathbb {N}\cup\{0\} \bigr), $$
(10)

where \((x)_{n}\) is known as the Pochhammer symbol (or decreasing factorial) defined by

$$ (x)_{n}=x(x-1)\cdots(x-n+1)=\sum _{k=0}^{n}S_{1}(n,k)x^{k}, $$
(11)

and here \(S_{1}(n,k)\) is the Stirling number of the first kind (see [3, 20]).

From (10) we have

$$ \begin{aligned}[b] \sum_{n=0}^{\infty} \biggl(\int_{\mathbb{Z}_{p}}q^{-hy}(y)_{n}\,d\mu _{q}(y) \biggr)\frac{t^{n}}{n!}&=\int_{\mathbb{Z}_{p}}q^{-hy} \Biggl(\sum_{n=0}^{\infty}\binom{y}{n}t^{n} \Biggr)\,d\mu_{q}(y) \\ &=\int_{\mathbb{Z}_{p}}q^{-hy}(1+t)^{y}\,d\mu_{q}(y), \end{aligned} $$
(12)

where \(t\in\mathbb{C}_{p}\) with \(|t|_{p}< p^{-\frac{1}{p-1}}\).

For \(|t|_{p}< p^{-\frac{1}{p-1}}\), from (4) we have

$$ \int_{\mathbb{Z}_{p}}q^{-hy}(1+t)^{y}\,d\mu_{q}(y)=\frac{q^{h-1}(q-1)}{\log q}\frac{\log{\frac{1+t}{q^{h-1}}}}{1+t-q^{h-1}}. $$
(13)

Let

$$ F^{(h)}_{q}(t)=\frac{q^{h-1}(q-1)}{\log q} \frac{\log{\frac {1+t}{q^{h-1}}}}{1+t-q^{h-1}}=\sum_{n=0}^{\infty }D^{(h)}_{n}(q) \frac{t^{n}}{n!}. $$
(14)

Here, the numbers \(D^{(h)}_{n}(q)\) are called the nth \((h,q)\)-Daehee numbers of the first kind. Moreover, we have

$$ D^{(h)}_{n}(q)=\int_{\mathbb{Z}_{p}}q^{-hy}(y)_{n}\,d \mu_{q}(y). $$
(15)

From (14) and (15), if \(h=0\), \(D^{(0)}_{n}(q)\) is just the q-Daehee numbers which are defined by Kim et al. in [3]. If \(h=1\), \(D^{(1)}_{n}(q)\) is just the modified q-Daehee numbers which are studied in [4].

On the other hand, we can derive \((h,q)\)-Daehee polynomials

$$ \begin{aligned}[b] \sum_{n=0}^{\infty} \biggl(\int_{\mathbb{Z}_{p}}q^{-hy}(x+y)_{n}\,d\mu _{q}(y) \biggr)\frac{t^{n}}{n!}&=\int_{\mathbb{Z}_{p}}q^{-hy} \Biggl(\sum_{n=0}^{\infty}\binom{x+y}{n}t^{n} \Biggr)\,d\mu_{q}(y) \\ &=\int_{\mathbb{Z}_{p}}q^{-hy}(1+t)^{x+y}\,d\mu_{q}(y) \\ &=\frac{q^{h-1}(q-1)}{\log q}\frac{\log{(1+t)}-(h-1)\log {q}}{1+t-q^{h-1}}(1+t)^{x} \\ &=\sum_{n=0}^{\infty}D^{(h)}_{n}(x|q) \frac{t^{n}}{n!}, \end{aligned} $$
(16)

where \(t\in\mathbb{C}_{p}\) with \(|t|_{p}< p^{-\frac{1}{p-1}}\).

When \(x=0\), \(D^{(h)}_{n}(0|q)=D^{(h)}_{n}(q)\) is called the nth \((h,q)\)-Daehee number.

Notice that \(F^{(h)}_{q}(0,t)\) seems to be a new q-extension of the generating function for Daehee numbers of the first kind. Therefore, from (9) and the following fact, we get

$$ \lim_{q\rightarrow1}F^{(h)}_{q}(t)= \frac{\log(1+t)}{t}. $$

From (11) and (12), we have

$$ D^{(h)}_{n}(x|q)=\int _{\mathbb{Z}_{p}}q^{-hy}(x+y)_{n}\,d\mu_{q}(y) =\sum_{k=0}^{n}S_{1}(n,k)B^{(h)}_{k}(x|q), $$
(17)

where \(B^{(h)}_{k}(x|q)\) are the \((h,q)\)-Bernoulli polynomials introduced in (7).

Thus we have the following theorem, which relates \((h,q)\)-Bernoulli polynomials and \((h,q)\)-Daehee polynomials.

Theorem 1

For \(n,m\in\mathbb{Z}_{+}\), we have the following equalities:

$$ D^{(h)}_{n}(x|q)=\sum_{k=0}^{n}S_{1}(n,k)B^{(h)}_{k}(x|q) $$

and

$$ D^{(h)}_{n}(q)=\sum_{k=0}^{n}S_{1}(n,k)B^{(h)}_{k}(q). $$

From the generating function of the \((h,q)\)-Daehee polynomials in \(D^{(h)}_{n}(x|q)\) in (14), by replacing t to \(e^{t}-1\), we have

$$ \begin{aligned}[b] \sum_{n=0}^{\infty}D^{(h)}_{n}(x|q) \frac{(e^{t}-1)^{n}}{n!}&=\frac {q^{h-1}(q-1)}{\log q}\frac{t-(h-1)\log{q}}{e^{t}-q^{h-1}}e^{xt} \\ &=\sum_{n=0}^{\infty}B^{(h)}_{n}(x|q) \frac{t^{n}}{n!}. \end{aligned} $$
(18)

On the other hand,

$$ \sum_{n=0}^{\infty}D^{(h)}_{n}(x|q) \frac{(e^{t}-1)^{n}}{n!}=\sum_{m=0}^{\infty}D^{(h)}_{m}(x|q) \sum_{n=0}^{\infty}S_{2}(n,m) \frac{t^{n}}{n!}. $$
(19)

Here, \(S_{2}(n,m)\) is the Stirling number of the second kind defined by the following generating series:

$$ \sum_{n=m}^{\infty}S_{2}(n,m) \frac{t^{n}}{n!}=\frac {(e^{t}-1)^{m}}{m!} \quad\textit{cf. }\mbox{[3, 20]}. $$
(20)

Thus by comparing the coefficients of \(t^{n}\), we have

$$ B^{(h)}_{n}(x|q)=\sum_{m=0}^{n}D^{(h)}_{m}(x|q)S_{2}(n,m). $$

Therefore, we obtain the following theorem.

Theorem 2

For \(n,m\in\mathbb{Z}_{+}\), we have the following identity:

$$ B^{(h)}_{n}(x|q)=\sum_{m=0}^{n}D^{(h)}_{m}(x|q)S_{2}(n,m). $$

The increasing factorial sequence is known as

$$ x^{(n)}=x(x+1) (x+2)\cdots(x+n-1)\quad (n\in\mathbb{Z}_{+}). $$

Let us define the \((h,q)\)-Daehee numbers of the second kind as follows:

$$ \widehat{D}^{(h)}_{n}(q)=\int _{\mathbb{Z}_{p}}q^{-hy}(-y)_{n}\,d\mu_{q}(y) \quad (n\in\mathbb{Z}_{+}). $$
(21)

It is easy to observe that

$$ x^{(n)}=(-1)^{n}(-x)_{n}=\sum _{k=0}^{n}S_{1}(n,k) (-1)^{n-k}x^{k}. $$
(22)

From (21) and (22), we have

$$ \begin{aligned}[b] \widehat{D}^{(h)}_{n}(q)&=\int _{\mathbb{Z}_{p}}q^{-hy}(-y)_{n}\,d\mu_{q}(y) \\ &=\int_{\mathbb{Z}_{p}}q^{-hy}y^{(n)}(-1)^{n}\,d \mu_{q}(y) \\ &=\sum_{k=0}^{n}S_{1}(n,k) (-1)^{k}B^{(h)}_{k}(q). \end{aligned} $$
(23)

Thus, we state the following theorem, which relates \((h,q)\)-Daehee numbers and \((h,q)\)-Bernoulli numbers.

Theorem 3

The following holds true:

$$ \widehat{D}^{(h)}_{n}(q)=\sum_{k=0}^{n}S_{1}(n,k) (-1)^{k}B^{(h)}_{k}(q). $$

Let us now consider the generating function of \((h,q)\)-Daehee numbers of the second kind as follows:

$$ \begin{aligned}[b] \sum_{n=0}^{\infty} \widehat{D}^{(h)}_{n}(q)\frac{t^{n}}{n!}&=\sum _{n=0}^{\infty} \biggl(\int_{\mathbb{Z}_{p}}q^{-hy}(-y)_{n}\,d \mu _{q}(y) \biggr)\frac{t^{n}}{n!} \\ &=\int_{\mathbb{Z}_{p}}q^{-hy} \Biggl(\sum _{n=0}^{\infty}\binom {-y}{n}t^{n} \Biggr)\,d\mu_{q}(y) \\ &=\int_{\mathbb{Z}_{p}}q^{-hy}(1+t)^{-y}\,d\mu_{q}(y). \end{aligned} $$
(24)

From (4) and (24), we have the generating function for \((h,q)\)-Daehee numbers of the second kind as follows:

$$ \int_{\mathbb{Z}_{p}}q^{-hy}(1+t)^{-y}\,d\mu_{q}(y)=\frac{q^{h-1}(q-1)}{\log q}\frac{\log q-\log(1+t)}{1+t-q^{h-1}}. $$
(25)

Let us consider the \((h,q)\)-Daehee polynomials of the second kind as follows:

$$ \begin{aligned}[b] \sum_{n=0}^{\infty} \widehat{D}^{(h)}_{n}(x|q)\frac{t^{n}}{n!}&=\sum _{n=0}^{\infty}\int_{\mathbb{Z}_{p}}q^{-hy}(x-y)_{n}\,d \mu_{q}(y)\frac {t^{n}}{n!} \\ &=\int_{\mathbb{Z}_{p}}q^{-hy}(1+t)^{x-y}\,d\mu_{q}(y) \\ &=\frac{q^{h-1}(q-1)}{\log q}\frac{\log q-\log(1+t)}{1+t-q^{h}}(1+t)^{x}. \end{aligned} $$
(26)

From the \((h,q)\)-Bernoulli polynomials in (7),

$$ \begin{aligned}[b] q^{h}\sum_{n=0}^{\infty}(-1)^{n}B^{(h)}_{n} \bigl(x|q^{-1} \bigr)\frac {t^{n}}{n!}&=q^{h}\frac{q^{1-h}(q^{-1}-1)}{\log q^{-1}} \frac{-t-\log {q^{1-h}}}{e^{-t}-q^{1-h}}e^{-xt} \\ &=\frac{q^{h-1}(q-1)}{\log q}\frac{t-\log {q^{h-1}}}{e^{t}-q^{h-1}}e^{(1-x)t} \\ &=\sum_{n=0}^{\infty}B^{(h)}_{n}(1-x|q) \frac{t^{n}}{n!}. \end{aligned} $$
(27)

Thus, we have

$$ q^{h}(-1)^{n}B^{(h)}_{n} \bigl(x|q^{-1} \bigr)=B^{(h)}_{n}(1-x|q). $$
(28)

From (28), the value at \(x=1\), we have

$$ q^{h}(-1)^{n}B^{(h)}_{n} \bigl(1|q^{-1} \bigr)=B^{(h)}_{n}(q). $$

On the other hand, we note that

$$ \begin{aligned}[b] (-x)_{n}&=(-1)^{n}x^{(n)} =\sum_{l=0}^{n}S_{1}(n,l) (-x)^{l} =(-1)^{n}\sum_{l=0}^{n}\bigl|S_{1}(n,l)\bigr|x^{l}, \end{aligned} $$
(29)

where \(n\geq0\) and \(|S_{1}(n,k)|\) is the unsigned Stirling number of the first kind.

From (28) and (29),

$$ \begin{aligned}[b] \widehat{D}^{(h)}_{n}(x|q)&= \sum_{l=0}^{n}\bigl|S_{1}(n,l)\bigr|(-1)^{l} \int_{\mathbb{Z}_{p}}q^{-hy}(-x+y)^{l}\,d \mu_{q}(y) \\ &=\sum_{l=0}^{n}\bigl|S_{1}(n,l)\bigr|(-1)^{l}B^{(h)}_{l}(-x|q) \\ &=q^{-h}\sum_{l=0}^{n}\bigl|S_{1}(n,l)\bigr|B^{(h)}_{l} \bigl(x+1|q^{-1} \bigr). \end{aligned} $$
(30)

Thus, we have the following identity.

Theorem 4

For \(n\in\mathbb{Z}_{+}\), the following is true:

$$ \widehat{D}^{(h)}_{n}(x|q)=q^{-h}\sum _{l=0}^{n}\bigl|S_{1}(n,l)\bigr|B^{(h)}_{l} \bigl(x+1|q^{-1} \bigr). $$

On the other hand, we can check easily the following:

$$ (x+y)_{n}=(-1)^{n}(-x-y+n-1)_{n} $$
(31)

and

$$ \frac{(x+y)_{n}}{n!}=(-1)^{n}\binom{-x+y+n-1}{n}. $$
(32)

From (14), (26), (31) and (32), we have

$$ \begin{aligned}[b] (-1)^{n}\frac{D^{(h)}_{n}(x|q)}{n!}&=\int _{\mathbb{Z}_{p}}q^{-hy}\binom {-x-y+n-1}{n}\,d\mu_{q}(y) \\ &=\sum_{m=0}^{n}\binom{n-1}{n-m}\int _{\mathbb{Z}_{p}}q^{-hy}\binom {-x-y}{m}\,d\mu_{q}(y) \\ &=\sum_{m=1}^{n}\binom{n-1}{m-1} \frac{\widehat{D}^{(h)}_{m}(-x|q)}{m!} \end{aligned} $$
(33)

and

$$ \begin{aligned}[b] (-1)^{n}\frac{\widehat{D}^{(h)}_{n}(x|q)}{n!}&=(-1)^{n} \int_{\mathbb {Z}_{p}}q^{-hy}\binom{-x+y}{n}\,d\mu_{q}(y) \\ &=\int_{\mathbb{Z}_{p}}q^{-hy}\binom{-x+y+n-1}{n}\,d\mu_{q}(y) \\ &=\sum_{m=0}^{n}\binom{n-1}{n-m}\int _{\mathbb{Z}_{p}}q^{-hy}\binom {-x+y}{m}\,d\mu_{q}(y) \\ &=\sum_{m=1}^{n}\binom{n-1}{m-1} \frac{D^{(h)}_{m}(-x|q)}{m!}. \end{aligned} $$
(34)

Therefore, we get the following theorem, which relates \((h,q)\)-Daehee polynomials of the first and the second kind.

Theorem 5

For \(n\in\mathbb{N}\), the following equalities hold true:

$$ (-1)^{n}\frac{D^{(h)}_{n}(x|q)}{n!}=\sum_{m=1}^{n} \binom {n-1}{m-1}\frac{\widehat{D}^{(h)}_{m}(-x|q)}{m!} $$

and

$$ (-1)^{n}\frac{\widehat{D}^{(h)}_{n}(x|q)}{n!}=\sum_{m=1}^{n} \binom {n-1}{m-1}\frac{D^{(h)}_{m}(-x|q)}{m!}. $$

References

  1. Kim, T: q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288-299 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Kim, T: q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 15(1), 51-57 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kim, T, Lee, S-H, Mansour, T, Seo, J-J: A note on q-Daehee polynomials and numbers. Adv. Stud. Contemp. Math. 24(2), 155-160 (2014)

    MATH  Google Scholar 

  4. Lim, D: Modified q-Daehee numbers and polynomials. J. Comput. Anal. Appl. (2015, submitted)

  5. Kwon, J, Park, J-W, Pyo, S-S, Rim, S-H: A note on the modified q-Euler polynomials. JP J. Algebra Number Theory Appl. 31(2), 107-117 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Moon, E-J, Park, J-W, Rim, S-H: A note on the generalized q-Daehee numbers of higher order. Proc. Jangjeon Math. Soc. 17(4), 557-565 (2014)

    MATH  MathSciNet  Google Scholar 

  7. Ozden, H, Cangul, IN, Simsek, Y: Remarks on q-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. (Kyungshang) 18(1), 41-48 (2009)

    MathSciNet  Google Scholar 

  8. Park, J-W: On the twisted Daehee polynomials with q-parameter. Adv. Differ. Equ. 2014, 304 (2014)

    Article  Google Scholar 

  9. Park, J-W, Rim, S-H, Kwon, J: The twisted Daehee numbers and polynomials. Adv. Differ. Equ. 2014, 1 (2014)

    Article  MathSciNet  Google Scholar 

  10. Ryoo, CS: A note on the \((h,q)\)-Bernoulli polynomials. Far East J. Math. Sci. 41(1), 45-53 (2010)

    MATH  MathSciNet  Google Scholar 

  11. Ryoo, CS, Kim, T: A new identities on the q-Bernoulli numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 21(2), 161-169 (2011)

    MATH  MathSciNet  Google Scholar 

  12. Seo, JJ, Rim, S-H, Kim, T, Lee, SH: Sums products of generalized Daehee numbers. Proc. Jangjeon Math. Soc. 17(1), 1-9 (2014)

    MATH  MathSciNet  Google Scholar 

  13. Simsek, Y: Twisted \((h,q)\)-Bernoulli numbers and polynomials related to twisted \((h,q)\)-zeta function and L-function. J. Math. Anal. Appl. 324(2), 790-804 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Simsek, Y: The behavior of the twisted p-adic \((h,q)\)-L-functions at \(s=0\). J. Korean Math. Soc. 44(4), 915-929 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Simsek, Y, Rim, S-H, Jang, L-C, Kang, D-J, Seo, J-J: A note on q-Daehee sums. J. Anal. Comput. 1(2), 151-160 (2005)

    MathSciNet  Google Scholar 

  16. Srivastava, HM, Kim, T, Jang, L-C, Simsek, Y: q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 12(2), 241-268 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Araci, S, Acikgoz, M, Esi, A: A note on the q-Dedekind-type Daehee-Changhee sums with weight α arising from modified q-Genocchi polynomials with weight α. J. Assam Acad. Math. 5, 47-54 (2012)

    MathSciNet  Google Scholar 

  18. Bayad, A: Modular properties of elliptic Bernoulli and Euler functions. Adv. Stud. Contemp. Math. (Kyungshang) 20(3), 389-401 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Dolgy, DV, Kim, T, Rim, S-H, Lee, SH: Symmetry identities for the generalized higher-order q-Bernoulli polynomials under \(S_{3}\) arising from p-adic Volkenborn integral on \(\Bbb{Z}_{p}\). Proc. Jangjeon Math. Soc. 17(4), 645-650 (2014)

    MATH  MathSciNet  Google Scholar 

  20. Kim, DS, Kim, T: Daehee numbers and polynomials. Appl. Math. Sci. (Ruse) 7(120), 5969-5976 (2013)

    MathSciNet  Google Scholar 

  21. Kim, DS, Kim, T: q-Bernoulli polynomials and q-umbral calculus. Sci. China Math. 57(9), 1867-1874 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kim, DS, Kim, T, Komatsu, T, Lee, S-H: Barnes-type Daehee of the first kind and poly-Cauchy of the first kind mixed-type polynomials. Adv. Differ. Equ. 2014, 140 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kim, DS, Kim, T, Lee, S-H, Seo, J-J: Higher-order Daehee numbers and polynomials. Int. J. Math. Anal. 8(6), 273-283 (2014)

    MathSciNet  Google Scholar 

  24. Kim, DS, Kim, T, Seo, J-J: Higher-order Daehee polynomials of the first kind with umbral calculus. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 5-18 (2014)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors wish to express their sincere gratitude to the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongkyu Lim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, Y., Lim, D. On \((h,q)\)-Daehee numbers and polynomials. Adv Differ Equ 2015, 107 (2015). https://doi.org/10.1186/s13662-015-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-015-0445-3

MSC

Keywords