Numerical dynamics of a nonstandard finite-difference-θ method for a red blood cell survival model
- Yuanyuan Wang^{1}Email author
https://doi.org/10.1186/s13662-015-0432-8
© Wang; licensee Springer. 2015
Received: 26 October 2014
Accepted: 2 March 2015
Published: 14 March 2015
Abstract
In this article, by a nonstandard finite-difference-θ (NSFD-θ) method we study the dynamics of a discrete red blood cell survival model. Firstly, the linear stability of the model is discussed. It is found that the Neimark-Sacker bifurcation exists when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Neimark-Sacker bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form method and center manifold theorem. Our results show the NSFD-θ method could inherit the Hopf bifurcation and the asymptotically stability for sufficiently small step-size \(h=1/m\), where m is a positive integer. In particular, for \(\theta=0,1/2,1\) the results hold for any step-size \(h=1/m\). Finally, numerical examples are provided to illustrate the theoretical results.
Keywords
1 Introduction
The bifurcations of continuous-time model have been discussed in [2–5]. But due to scientific computation and simulation, our interest is focused on the behavior of discrete dynamical system corresponding to (1.1). It is desired that the discrete-time model is ‘dynamically consistent’ with the continuous-time model. In [6–12], for many numerical methods, e.g. Runge-Kutta methods and linear multistep methods, it has been proved that they could retain the local stability and the Hopf bifurcation for some delay differential equations and integro-differential equations.
In [13, 14], Wulf and Ford showed that, if applying the Euler forward method to solve the delay differential equation, then the discrete scheme is ‘dynamically consistent.’ It means that for all sufficiently small step-sizes the discrete model undergoes a Hopf bifurcation of the same type as the original model. The NSFD scheme [15–18] tries to preserve the significant properties of their continuous analogs and consequently gives reliable numerical results. In [19], by the θ-method Tian investigated the stability properties for the solution of delay differential equations. In [6] by using the Euler method a discrete red blood cell survival model has been discussed. In this paper, we apply a nonstandard finite-difference-θ (NSFD-θ) method to discretize the red blood cell survival model (1.1) with delay. The NSFD-θ scheme is a combination of the NSFD scheme and the θ method. So we construct a more general NSFD scheme for model (1.1). We obtain the consistent dynamical results of the corresponding continuous-time model by the NSFD-θ method for sufficiently small step-size. In particular, for \(\theta=0,1/2,1\) the results hold for any step-size.
The paper is organized as follows. In Section 2, we analyze the distribution of the characteristic equation associated with the discrete red blood cell survival model, and we obtain the existence of the Neimark-Sacker bifurcation. In Section 3, the direction and stability of periodic solutions bifurcating from the Neimark-Sacker bifurcation of the discrete red blood cell model are determined by using the theories of discrete systems. In the final section, some computer simulations are performed to illustrate the analytical results.
2 Stability analysis
Lemma 1
All roots of (2.10) have modulus less than one for sufficiently small \(\tau>0\).
Proof
Lemma 2
For any step-size h, if \(cu_{\ast}<1\), then (2.10) has no root with modulus one for all \(\tau>0\).
Proof
Let \(\lambda_{i}(\tau)=r_{i}(\tau)e^{\mathrm{i}w_{i}(\tau)}\) be a root of (2.10) near \(\tau=\tau_{i}\) satisfying \(r_{i}(\tau_{i})=1\) and \(w_{i}(\tau_{i})=w_{i}\). We have the following result.
Lemma 3
Proof
Theorem 1
- (i)
If \(cu_{\ast}<1\), then \(u=u_{\ast}\) is asymptotically stable for any \(\tau>0\).
- (ii)
If \(cu_{\ast}>1\), then \(u=u_{\ast}\) is asymptotically stable for \(\tau\in(0,\tau_{0}) \), and unstable for \(\tau>\tau_{0}\). Equation (2.6) undergoes a Neimark-Sacker bifurcation at \(u_{\ast }\) when \(\tau=\tau_{i}\), for \(i=0,1,2,\ldots,[\frac{m-1}{2}]\).
Proof
(i) If \(cu_{\ast}<1\), from Lemmas 1 and 2, we know that (2.10) has no root with modulus one for all \(\tau>0\). Applying Corollary 2.4 in [20], all roots of (2.10) have modulus less than one for all \(\tau>0\). The conclusion follows.
(ii) If \(cu_{\ast}>1\), applying Lemma 3, we know that all roots of (2.10) have modulus less than one when \(\tau\in(0,\tau_{0}) \), and (2.10) has at least a couple of roots with modulus greater than one when \(\tau>\tau_{0}\). The conclusion follows. □
3 Direction and stability of the Neimark-Sacker bifurcation in discrete model
In the previous section, we obtained conditions for Neimark-Sacker bifurcation to occur when \(\tau=\tau_{i}\), for \(i=0,1,2,\ldots,[\frac{m-1}{2}]\). In this section we study the direction of the Neimark-Sacker bifurcation and the stability of the bifurcating periodic solutions when \(\tau=\tau_{0}\), using techniques from normal form and center manifold theory [21–23].
Lemma 4
Lemma 5
Proof
Let \(T_{\mathrm{center}}\) denote a real eigenspace corresponding to \(e^{\pm \mathrm{i}w_{0}}\), which is two-dimensional and is spanned by \(\{ \operatorname{Re}(q),\operatorname{Im}(\bar{q})\}\), and \(T_{\mathrm{stable}}\) be a real eigenspace corresponding to all eigenvalues of \(A^{T}\), other than \(e^{\pm\mathrm{i}w_{0}}\), which is \((m-1) \)-dimensional [23].
Theorem 2
If \(cu_{\ast}>1\), then \(u=u_{\ast}\) is asymptotically stable for any \(\tau\in[0,\tau_{0}) \) and unstable for \(\tau>\tau_{0}\). An attracting (repelling) invariant closed curve exists for \(\tau>\tau_{0}\) if \(\Re[e^{-\mathrm{i}w_{0}}C_{1}(\tau_{0})]<0\) (>0).
4 Numerical simulations
Firstly, let us see \(\theta=0\). We obtain \(h=1/2\), \(\tau_{0}=1.8229\); \(h=1/10\), \(\tau_{0}=2.2950\); \(h=1/40\), \(\tau_{0}=2.3879\). The numerical solution refers to Figure 1.
Secondly, let \(\theta=1/4\). We obtain \(h=1/2\), \(\tau_{0}=2.2519\); \(h=1/10\), \(\tau_{0}=2.3653\); \(h=1/40\), \(\tau_{0}=2.4038\). The numerical solution is shown in Figure 2.
Thirdly, we test \(\theta=1/2\). We obtain \(h=1/2\), \(\tau_{0}=2.7722\); \(h=1/10\), \(\tau_{0}=2.4302\); \(h=1/40\), \(\tau_{0}=2.4191\). The numerical solution refers to Figure 3.
Finally, let \(\theta=1\). We have \(h=1/2\), \(\tau_{0}=2.7725\); \(h=1/10\), \(\tau _{0}=2.5346\); \(h=1/40\), \(\tau_{0}=2.4483\). The numerical solution is in Figure 4.
We see that there exists a sequence of \(\tau_{i}\), and with the increasing of m, \(\tau_{0}\) asymptotically converges to \(\tau_{0}=2.4184\), which is the true value.
When \(\theta=0,1/4,1/2,1\), we obtain Figures 1-4. From the above analysis and Figures 1-4, one comes to a better conclusion for \(\theta=1/2\) than the other values by means of describing approximately the dynamics of the original system with the same step-size. Through Figure 5 we could argue that the NSFD-θ method is better than the Euler method by means of describing approximately the dynamics of the original system with the same step-size.
5 Conclusions
From the above analysis we could draw the biological conclusions. We can find that the delay does not influence the system’s stability when the coefficients of the system satisfy the condition \(cu_{\ast}<1\). But when the coefficients of system satisfy the condition \(cu_{\ast}>1\), for a small delay the positive fixed point of system is stable, the number of red blood cells reaches an equilibrium. With the increasing of the delay (the critical point \(\tau_{0}\)), the positive fixed point loses its stability and a family of periodic solutions occurs, the number of red blood cells oscillates around the unstable equilibrium. In real life, we will try to control τ so that it does not exceed the critical point \(\tau_{0}\). Therefore it can produce a stable system. These results are very useful to the biologists. The existence of a Neimark-Sacker bifurcation shows the periodic oscillatory behavior of the discrete red blood cell survival system.
It is noted that system (1.1) is a delay differential equation, making it an impossible task to obtain its analytical solutions to study its qualitative properties; therefore it is necessary to solve numerical solutions or approximate solutions of system (1.1) according to different discrete difference schemes. It is common to change a continuous dynamical system into a discrete-time dynamical system. However, the derived difference equation will be acceptable only if it preserves the dynamical feature of the continuous-time models. In this paper, through the NSFD-θ method, we obtain general results. Our results show the NSFD-θ method could inherit the Hopf bifurcation and the asymptotically stability for sufficiently small step-size. In particular, for \(\theta=0,1/2,1\) the results hold for any step-size.
Declarations
Acknowledgements
The author is grateful to the referees for their helpful comments and constructive suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 11401586) and by the Fundamental Research Funds for the Central Universities of China (14CX02159A) and by the NNSF Shandong Province (Nos. ZR2014AL008, ZR2014AQ004, ZR2014AQ014).
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Authors’ Affiliations
References
- Wazewska-Czyzewska, M, Lasota, A: Mathematical problems of the dynamics of the red blood cells system. Rocz. Pol. Tow. Mat., 3 Mat. Stosow. 17, 23-40 (1976) MathSciNetGoogle Scholar
- Wei, J, Li, MY: Hopf bifurcation analysis in a delayed Nicholson blowflies equation. Nonlinear Anal. 60, 1351-1367 (2005) View ArticleMATHMathSciNetGoogle Scholar
- Wu, J: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799-4838 (1998) View ArticleMATHGoogle Scholar
- Song, Y, Wei, J, Han, M: Local and global Hopf bifurcation in a delayed hematopoiesis model. Int. J. Bifurc. Chaos 14, 3909-3919 (2004) View ArticleMATHMathSciNetGoogle Scholar
- Song, YL, Wei, JJ, Yuan, Y: Bifurcation analysis on a survival red blood cells model. J. Math. Anal. Appl. 316(2), 459-471 (2006) View ArticleMATHMathSciNetGoogle Scholar
- Zhang, C, Zu, Y, Zheng, B: Stability and bifurcation of a discrete red blood cell survival model. Chaos Solitons Fractals 28, 386-394 (2006) View ArticleMATHMathSciNetGoogle Scholar
- Ding, X, Fan, D, Liu, M: Stability and bifurcation of a numerical discretization Mackey-Glass system. Chaos Solitons Fractals 34, 383-393 (2007) View ArticleMATHMathSciNetGoogle Scholar
- Ding, X, Su, H: Dynamics of a discretization physiological control system. Discrete Dyn. Nat. Soc. 2007, 51406 (2007) View ArticleMathSciNetGoogle Scholar
- Wang, QB, Li, DS, Liu, MZ: Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations. Chaos Solitons Fractals 42, 3087-3099 (2009) View ArticleMATHMathSciNetGoogle Scholar
- Liu, MZ, Wang, QB: Numerical Hopf bifurcation of linear multistep methods for a class of delay differential equations. Appl. Math. Comput. 208, 462-474 (2009) View ArticleMATHMathSciNetGoogle Scholar
- Wang, Y: Dynamics of a nonstandard finite-difference scheme for delay differential equations with unimodal feedback. Commun. Nonlinear Sci. Numer. Simul. 17, 3967-3978 (2012) View ArticleMATHMathSciNetGoogle Scholar
- Zhang, L, Zhang, CJ, Zhao, DM: Hopf bifurcation analysis of integro-differential equation with unbounded delay. Appl. Math. Comput. 217, 4972-4979 (2011) View ArticleMATHMathSciNetGoogle Scholar
- Wulf, V: Numerical analysis of delay differential equations undergoing a Hopf bifurcation. Ph.D. thesis, University of Liverpool, Liverpool (1999) Google Scholar
- Wulf, V, Ford, NJ: Numerical Hopf bifurcation for a class of delay differential equation. J. Comput. Appl. Math. 115, 601-616 (2000) View ArticleMATHMathSciNetGoogle Scholar
- Mickens, RE: A nonstandard finite-difference scheme for the Lotka-Volterra system. Appl. Numer. Math. 45, 309-314 (2003) View ArticleMATHMathSciNetGoogle Scholar
- Patidar, KC: On the use of nonstandard finite difference methods. J. Differ. Equ. Appl. 11(8), 735-758 (2005) View ArticleMATHMathSciNetGoogle Scholar
- Roeger, LW, Lahodny, G Jr: Dynamically consistent discrete Lotka-Volterra competition systems. J. Differ. Equ. Appl. 19(2), 191-200 (2013) View ArticleMATHMathSciNetGoogle Scholar
- Liao, C, Ding, X: Nonstandard finite difference variational integrators for nonlinear Schrödinger equation with variable coefficients. Adv. Differ. Equ. 2013, 12 (2013) View ArticleMathSciNetGoogle Scholar
- Tian, HJ, Kuang, JX: The stability of the θ-methods in the numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58, 171-181 (1995) View ArticleMATHMathSciNetGoogle Scholar
- Ruan, S, Wei, J: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 10, 863-874 (2003) MATHMathSciNetGoogle Scholar
- Hale, J: Theory of Functional Differential Equations. Springer, Berlin (1977) View ArticleMATHGoogle Scholar
- Hassard, B, Kazarinoff, N, Wan, Y: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) MATHGoogle Scholar
- Kuznetsov, YA: Elements of Applied Bifurcation Theory. Springer, New York (1995) View ArticleMATHGoogle Scholar
- Wiggins, S: Introduction to Applied Nonlinear Dynamical System and Chaos. Springer, New York (1990) View ArticleGoogle Scholar