Skip to main content

Theory and Modern Applications

Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions

Abstract

In this paper, a Lyapunov-type inequality is obtained for a fractional differential equation under fractional boundary conditions. We then use this inequality to obtain an interval where a certain Mittag-Leffler function has no real zeros.

1 Introduction

The Lyapunov inequality [1] has proved to be very useful in various problems related with differential equations; for example, see [2, 3] and the references therein. The Lyapunov inequality states that a necessary condition for the boundary value problem

$$ \left \{ \begin{array}{l} y''(t) + q(t)y(t) = 0,\quad a < t < b, \\ y(a)=0=y(b) \end{array} \right . $$
(1.1)

to have nontrivial solutions is that

$$ \int_{a}^{b} \bigl\vert q(s)\bigr\vert \, ds >\frac{4}{b-a}, $$
(1.2)

where \(q:[ a , b ] \to R\) is a continuous function, and the zeros a and b of every solution \(y(t)\) are consecutive. Since then, many generalizations of the Lyapunov inequality have appeared in the literature (see [4–9] and the references therein).

Recently, the research of Lyapunov-type inequalities for fractional boundary value problem has begun. In [10], Ferreira investigated a Lyapunov-type inequality for the Caputo fractional boundary value problem

$$ \left \{ \begin{array}{l} {}^{\mathrm{C}}_{a} D^{\alpha} y(t) + q(t)y(t) = 0, \quad a < t < b, \\ y(a)=0=y(b), \end{array} \right . $$
(1.3)

where \({}^{\mathrm{C}}_{a} D^{\alpha}\) is the Caputo fractional derivative of order α, \(1 < \alpha\le2\), the zeros a and b are consecutive, and q is a real and continuous function. It was proved that if (1.3) has a nontrivial solution, then

$$ \int_{a}^{b}\bigl\vert q(t)\bigr\vert \, ds\geq\frac{\Gamma(\alpha)\alpha^{\alpha}}{ [(\alpha-1)(b-a)]^{\alpha-1}} . $$
(1.4)

Obviously, if we set \(\alpha= 2\) in (1.4), one can obtain the Lyapunov classical inequality (1.2). In [11], the same author studied a differential equation that depends on the Riemann-Liouville fractional derivative and gave a Lyapunov-type inequality. In both works [10, 11], some interesting applications to the localization of real zeros of certain Mittag-Leffler functions were presented.

In [12], Jleli and Samet considered the fractional differential equation

$$ {}^{\mathrm{C}}_{a} D^{\alpha} y(t) + q(t)y(t) = 0,\quad a < t < b, 1 < \alpha\le2, $$

with the mixed boundary conditions

$$ y(a)=0=y'(b) $$
(1.5)

or

$$ y'(a)=0=y(b). $$
(1.6)

For boundary conditions (1.5) and (1.6), two Lyapunov-type inequalities were established respectively as follows:

$$ \int_{a}^{b} (b-s)^{\alpha-2} \bigl\vert q(s)\bigr\vert \, ds \geq\frac{\Gamma(\alpha)}{\max\{\alpha-1 , 2-\alpha\}(b-a)} $$
(1.7)

and

$$ \int_{a}^{b} (b-s)^{\alpha-1} \bigl\vert q(s)\bigr\vert \, ds \ge\Gamma(\alpha). $$
(1.8)

Motivated by the above works, we consider in this paper a Caputo fractional differential equation under boundary condition involving the Caputo fractional derivative. More precisely, we consider the boundary value problem

$$ \left \{ \begin{array}{l} {}^{\mathrm{C}}_{a} D^{\alpha} y(t) + q(t)y(t) = 0, \quad a < t < b, \\ y(a)=0, \qquad {}^{\mathrm{C}} _{a} D^{\beta} y(b)=0, \end{array} \right . $$
(1.9)

where \(1 < \alpha\leq2\), \(0 < \beta\le1\), and \(q:[a , b]\rightarrow R\) is a continuous function. We write (1.9) as an equivalent integral equation and then, by using some properties of its Green function, we are able to get a corresponding Lyapunov-type inequality. After that, we show that this inequality can be used to obtain a real interval where a certain Mittag-Leffler function has no real zeros. Our results generalize the main results of Jleli and Samet [12].

2 Preliminaries

In this section, we introduce the definitions of the Riemann-Liouville fractional integral and the Caputo fractional derivative and give some lemmas which are used in this article.

Definition 2.1

Let \(\alpha\geq0\) and f be a real function defined on \([a, b]\). The Riemann-Liouville fractional integral of order α is defined by \({}_{a} I^{0} f \equiv f\) and

$$ \bigl({}_{a} I^{\alpha}f\bigr) (t)=\frac{1}{\Gamma(\alpha)} \int _{a}^{t} (t-s)^{\alpha-1}f(s)\, ds,\quad \alpha>0, t \in[a, b]. $$

Definition 2.2

The Caputo derivative of fractional order \(\alpha\ge0\) is defined by \({}_{a}^{\mathrm{C}} D^{0} f \equiv f\) and

$$ \bigl({}_{a}^{\mathrm{C}} D^{\alpha} f\bigr) (t) = \frac{1}{\Gamma(n-\alpha)}\int_{a}^{t} (t-s)^{n-\alpha-1} f^{(n)}(s)\, ds,\quad \alpha> 0, t \in[a, b], $$

where n is the smallest integer greater or equal to α.

The following results are standard within the fractional calculus theory involving the Caputo differential operator.

Lemma 2.1

([13], Chapter 2)

Let \(\gamma> \alpha> 0\), \(f\in C[a , b]\), then

$$ {}_{a}^{\mathrm{C}} D^{\alpha}\bigl({}_{a} I^{\gamma} f(t)\bigr) = {}_{a} I^{\gamma-\alpha}f(t),\quad t \in[a, b]. $$

Lemma 2.2

([14], Section 2)

Let \(y \in C[a , b]\) and \(1 < \alpha\le2\), then

$$ {}_{a} I^{\alpha}\bigl({}_{a}^{\mathrm{C}} D^{\alpha} y\bigr) (t) = y(t) + c_{0}+ c_{1}(t-a) $$

for some real constants \(c_{0}\) and \(c_{1}\).

3 Main results

We begin by writing problem (1.9) in its equivalent integral form.

Lemma 3.1

\(y \in C[a, b]\) is a solution of the boundary value problem (1.9) if and only if y satisfies the integral equation

$$ y = \int_{a}^{b} G(t,s) q(s) y(s)\, ds, $$

where

$$ G(t,s) = H(t,s) (b-s)^{\alpha-\beta-1} $$

and

$$ H(t,s) = \left \{ \begin{array}{l@{\quad}l} \frac{\Gamma(2-\beta)(t-a)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}-\frac {1}{\Gamma(\alpha)} (t-s)^{\alpha-1}(b-s)^{1+\beta-\alpha}, & a\leq s\leq t\leq b, \\ \frac{\Gamma(2-\beta)(t-a)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}, & a \leq t\leq s\leq b. \end{array} \right . $$
(3.1)

Proof

From (1.9) and Lemma 2.2, we obtain

$$ y(t) = c_{0} + c_{1}(t-a) - \frac{1}{\Gamma(\alpha)} \int _{a}^{t} (t-s)^{\alpha-1} q(s) y(s)\, ds, $$

where \(c_{0}\) and \(c_{1}\) are some real constants. By the boundary condition \(y(a)=0\), we can obtain that \(c_{0}=0\). Thus, we have

$$ y(t) = c_{1}(t-a) - \bigl({}_{a} I^{\alpha} q y\bigr) (t). $$
(3.2)

By (3.2), we get

$$ {}_{a}^{\mathrm{C}} D^{\beta} y(t) = \frac{c_{1}}{\Gamma(2-\beta)}(t-a)^{1-\beta}-\frac{1}{ \Gamma(\alpha-\beta)} \int_{a}^{b} (t-s)^{\alpha-\beta-1} q(s) y(s)\, ds. $$
(3.3)

Since \({}_{a}^{\mathrm{C}} D^{\beta} y(b)=0\), we have from (3.3) that

$$ c_{1}=\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \int_{a}^{b} (b-s)^{\alpha-\beta-1} q(s) y(s)\, ds. $$
(3.4)

Substitute (3.4) into (3.2), we obtain

$$ y(t)=\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}\int_{a}^{b}(b-s)^{\alpha-\beta-1}(t-a) q(s) y(s)\, ds -\frac{1}{\Gamma(\alpha)}\int_{a}^{t}(t-s)^{\alpha-1} q(s) y(s)\, ds, $$

which concludes the proof. □

Lemma 3.2

If \(1 < \alpha< 2\) and \(0 < \beta < 1\), then

$$ \Gamma(\alpha) < \frac{\Gamma(\alpha-\beta)}{\Gamma(2-\beta)} < \Gamma(\alpha-1). $$
(3.5)

Proof

Consider the logarithmic derivative of the gamma function

$$ \psi(x) = \frac{d}{dx} \ln\Gamma(x) = \frac{\Gamma^{\prime}(x)}{\Gamma(x)}. $$
(3.6)

We have by [15], p.264, that

$$ \psi(x) = - \gamma- \sum_{k=0}^{\infty} \biggl(\frac{1}{x+k} - \frac{1}{k+1} \biggr), $$
(3.7)

where γ is an Euler constant. From (3.7) we obtain

$$ \frac{d \psi(x)}{dx} = \sum_{k=0}^{\infty} \frac{1}{(x+k)^{2}} > 0. $$
(3.8)

Since \(\alpha< 2\), we get by (3.6) and (3.8) that \(\psi(\alpha- x) < \psi(2 - x)\), that is,

$$ \frac{\Gamma^{\prime}(\alpha-x)}{\Gamma(\alpha-x)} < \frac{\Gamma^{\prime}(2-x)}{\Gamma(2-x)}. $$
(3.9)

Let

$$ f(x) = \frac{\Gamma(\alpha-x)}{\Gamma(2-x)},\quad 0 < x < \alpha. $$

Then we have by (3.9) that

$$ f^{\prime}(x) = \frac{- \Gamma^{\prime}(\alpha-x) \Gamma(2-x) + \Gamma(\alpha-x) \Gamma^{\prime}(2-x)}{(\Gamma(2-x))^{2}} > 0. $$

Thus, \(f(0) < f(\beta) < f(1)\) (\(0 < \beta< 1\)), which implies that (3.5) holds. □

Lemma 3.3

Assume that \(0 < \beta\le1\) and \(1 < \alpha\le1+\beta\) hold. Then

$$ \bigl\vert H(t,s)\bigr\vert \le \left \{ \begin{array}{l@{\quad}l} \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}(b-a)^{\beta}, & a \le t \le s \le b, \\ \max \{\frac{1}{\Gamma(\alpha)} - \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}, \frac{\Gamma(2-\beta )}{\Gamma(\alpha-\beta)}, \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \} (b-a)^{\beta}, & a \le s \le t \le b. \end{array} \right . $$
(3.10)

Proof

Throughout the proof we consider \(\beta< 1\) since when \(\beta= 1\) our study is reduced to the case in [12]. For \(a \le t \le s \le b\), we easily know that

$$ \bigl\vert H(t, s)\bigr\vert \le \frac{\Gamma(2-\beta)(s-a)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \leq\frac{\Gamma(2-\beta)(b-a)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} = \frac{\Gamma(2-\beta)(b-a)^{\beta}}{\Gamma(\alpha-\beta)}. $$

For convenience, let

$$ \psi (t,s)=\frac{\Gamma(2-\beta)(t-a)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta }}-\frac{1}{\Gamma(\alpha)} (t-s)^{\alpha-1}(b-s)^{1+\beta-\alpha}, \quad a \leq s\leq t\leq b. $$

Fixing arbitrary \(s \in[a, b)\) and differentiating \(\psi(t, s)\) with respect to t, we obtain

$$ \psi_{t}(t,s) = \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}-\frac {1}{\Gamma(\alpha-1)} (t-s)^{\alpha-2}(b-s)^{1+\beta-\alpha},\quad s < t. $$
(3.11)

From (3.11) we easily know that \(\psi_{t}(t^{*}, s) = 0\) if and only if

$$ t^{*} = s + \biggl[\frac{\Gamma(2-\beta) \Gamma(\alpha-1)}{\Gamma(\alpha-\beta)} \cdot\frac{(b-s)^{\alpha-\beta-1}}{(b-a)^{1-\beta}} \biggr]^{\frac {1}{\alpha-2}} $$
(3.12)

provided \(t^{*} \le b\), i.e., as long as \(s \le b - l\), where

$$ l = \biggl[\frac{\Gamma(\alpha-\beta)}{\Gamma(2-\beta) \Gamma(\alpha-1)} \biggr]^{\frac{1}{1-\beta}}(b-a) < b-a \quad ( \mbox{by (3.5)}). $$

Hence, if \(s > b - l\), then

$$ \psi_{t}(t, s) < 0,\quad t \in (s, b). $$
(3.13)

On the other hand, we have

$$ \lim_{t \to s^{+}} \psi(t, s) = \frac{\Gamma(2-\beta)(s-a)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}\quad \mbox{and} \quad \psi(b, s) = \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}(b-a)^{\beta}-\frac {1}{\Gamma(\alpha)} (b-s)^{\beta}. $$

Thus, we obtain

$$ \bigl\vert \psi(s, s)\bigr\vert \le \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} (b-a)^{\beta} $$
(3.14)

and

$$\begin{aligned} \bigl\vert \psi(b, s)\bigr\vert =& \biggl\vert \biggl( \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} - \frac{1}{\Gamma(\alpha)} \biggr) (b-s)^{\beta} + \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}\bigl((b-a)^{\beta}-(b-s)^{\beta }\bigr)\biggr\vert \\ \le& \max \biggl\{ \biggl(\frac{1}{\Gamma(\alpha)} -\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \biggr) (b-s)^{\beta}, \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} (s-a)^{\beta} \biggr\} \end{aligned}$$
(3.15)

by \((s-a)^{\beta}+(b-s)^{\beta} \ge(b-a)^{\beta}\) and (3.5). Thus, we have by (3.13)-(3.15) that

$$\begin{aligned} \bigl\vert \psi(t, s)\bigr\vert \le&\max\bigl\{ \bigl\vert \psi(s, s)\bigr\vert , \bigl\vert \psi(b, s)\bigr\vert \bigr\} \\ \le& \max \biggl\{ \biggl(\frac{1}{\Gamma(\alpha)} -\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \biggr), \frac{\Gamma (2-\beta)}{\Gamma(\alpha-\beta)} \biggr\} (b-a)^{\beta}, \\ & a < b-l < s < t \le b. \end{aligned}$$
(3.16)

It remains to verify the result when \(s \le b-l\), i.e., when \(t^{*} \le b\). It is easy to check that

$$ \psi_{t}(t, s) < 0\quad \mbox{for } t < t^{*}\quad \mbox{and}\quad \psi_{t}(t, s) \ge0 \quad \mbox{for } t \ge t^{*}. $$

Hence, we have

$$ \bigl\vert \psi(t, s)\bigr\vert \le\max\bigl\{ \bigl\vert \psi\bigl(t^{*}, s\bigr)\bigr\vert , \bigl\vert \psi(b, s)\bigr\vert , \bigl\vert \psi(s, s)\bigr\vert \bigr\} ,\quad a < s \le b-l, s \le t \le b. $$
(3.17)

By (3.12) we have

$$\begin{aligned} \bigl\vert \psi\bigl(t^{*}, s\bigr)\bigr\vert =& \biggl\vert \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \biggl[s + \biggl(\frac{\Gamma(2-\beta) \Gamma(\alpha-1)}{\Gamma(\alpha-\beta)} \cdot\frac{(b-s)^{\alpha-\beta-1}}{(b-a)^{1-\beta}} \biggr)^{\frac {1}{\alpha-2}}-a \biggr] \\ &{}-\frac{1}{\Gamma(\alpha)} \biggl(\frac{\Gamma(2-\beta) \Gamma(\alpha-1)}{\Gamma(\alpha-\beta)} \cdot\frac{(b-s)^{\alpha-\beta-1}}{(b-a)^{1-\beta}} \biggr)^{\frac {\alpha-1}{\alpha-2}} (b-s)^{1+\beta-\alpha}\biggr\vert \\ =& \biggl\vert \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}(s-a) + \biggl(\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \biggr)^{\frac{\alpha-1}{\alpha-2}} \\ &{}\cdot\bigl(\Gamma(\alpha-1)\bigr)^{\frac{1}{\alpha-2}} (b-s)^{\frac{\alpha-\beta-1}{\alpha-2}} \\ &{} -\frac{1}{\Gamma(\alpha)} \cdot \biggl(\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \biggr)^{\frac{\alpha-1}{\alpha-2}} \cdot\bigl(\Gamma(\alpha-1)\bigr)^{\frac{\alpha-1}{\alpha-2}} (b-s)^{\frac{\alpha-\beta-1}{\alpha-2}} \biggr\vert \\ =& \biggl\vert \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}(s-a) + \frac{\alpha-2}{\alpha-1} \biggl( \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \biggr)^{\frac{\alpha-1}{\alpha-2}} \\ &{}\cdot\bigl(\Gamma(\alpha-1) \bigr)^{\frac{1}{\alpha-2}} (b-s)^{\frac{\alpha-\beta-1}{\alpha-2}}\biggr\vert \\ \le&\max \biggl\{ \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}(s-a), \frac{2-\alpha}{\alpha-1} \biggl( \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \biggr)^{\frac{\alpha-1}{\alpha-2}} \\ &{} \cdot\bigl(\Gamma(\alpha-1) \bigr)^{\frac{1}{\alpha-2}} (b-s)^{\frac{\alpha-\beta-1}{\alpha-2}} \biggr\} . \end{aligned}$$
(3.18)

Obviously, we have

$$ \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}}(s-a) \le\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}(b-a)^{\beta}, $$
(3.19)

and we obtain from Lemma 3.2 and condition \(\alpha - \beta- 1 \le0\) that

$$\begin{aligned}& \frac{2-\alpha}{\alpha-1} \biggl(\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \biggr)^{\frac{\alpha-1}{\alpha-2}} \cdot\bigl(\Gamma(\alpha-1)\bigr)^{\frac{1}{\alpha-2}} (b-s)^{\frac{\alpha-\beta-1}{\alpha-2}} \\& \quad \le\frac{2-\alpha}{\alpha-1} \biggl(\frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)(b-a)^{1-\beta}} \biggr)^{\frac{\alpha-1}{\alpha-2}} \cdot\bigl(\Gamma(\alpha-1)\bigr)^{\frac{1}{\alpha-2}} (b-a)^{\frac{\alpha-\beta-1}{\alpha-2}} \\& \quad = \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \cdot \biggl( \frac{\Gamma(2-\beta) \Gamma(\alpha-1) }{\Gamma(\alpha-\beta)} \biggr)^{\frac{1}{\alpha-2}} \cdot (b-a)^{\beta} \\& \quad < \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}(b-a)^{\beta}. \end{aligned}$$
(3.20)

Thus, from (3.18)-(3.20) we conclude that

$$ \bigl\vert \psi\bigl(t^{*}, s\bigr)\bigr\vert \le\max \biggl\{ 1, \frac{2-\alpha}{\alpha-2} \biggr\} \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} (b-a)^{\beta},\quad s \in[a, b-l] $$
(3.21)

holds. From (3.14), (3.15), (3.21) and (3.17), we know that inequality (3.10) is true. The proof is complete. □

Theorem 3.4

Let \(0 < \beta\le1\) and \(1 < \alpha\le1+\beta\). If a nontrivial continuous solution of the fractional boundary value problem (1.9) exists, then

$$ \int_{a}^{b} (b-s)^{\alpha-\beta-1} \bigl\vert q(s)\bigr\vert \, ds \geq \frac{(b-a)^{-\beta}}{\max \{\frac{1}{\Gamma(\alpha)} - \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}, \frac{\Gamma(2-\beta )}{\Gamma(\alpha-\beta)}, \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \}}. $$
(3.22)

Proof

Let \(B = C[a, b]\) be the Banach space endowed with the norm \(\|y\|_{\infty} = \sup_{t \in[a, b]} |y(t)|\). According to Lemma 3.1, the solution of (1.9) can be written as

$$ y(t) = \int_{a}^{b} (b-s)^{\alpha-\beta-1} H(t, s)q(s) y(s)\, ds. $$

Now, an application of Lemma 3.3 yields

$$\begin{aligned} \|y\|_{\infty} \leq&\max \biggl\{ \frac{1}{\Gamma(\alpha)} - \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}, \frac{\Gamma(2-\beta )}{\Gamma(\alpha-\beta)}, \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \biggr\} \\ &{}\cdot (b-a)^{\beta} \|y\|_{\infty} \int_{a}^{b} (b-s)^{\alpha-\beta-1} \bigl\vert q(s)\bigr\vert \, ds, \end{aligned}$$

which implies that (3.22) holds. □

Remark 3.1

If \(\beta= 1\), then (3.22) reduces to the following Lyapunov-type inequality [12]:

$$ \int_{a}^{b} (b-s)^{\alpha-2} \bigl\vert q(s)\bigr\vert \, ds \geq\frac{\Gamma(\alpha)}{\max\{\alpha-1, 2-\alpha\} (b-a)}. $$

Remark 3.2

If \(\alpha= 2\) and \(0 < \beta< 1\), then we have by Lemma 3.1 that

$$ G(t,s) = \left \{ \begin{array}{l@{\quad}l} (t-a) (\frac{b-s}{b-a} )^{1-\beta} - (t-s), & a\leq s\leq t\leq b, \\ (t-a) (\frac{b-s}{b-a} )^{1-\beta}, & a \leq t\leq s\leq b. \end{array} \right . $$

Similar to the proof of Theorem 3.4, it is easy to obtain that the following Lyapunov-type inequality holds:

$$ \int_{a}^{b} \bigl\vert q(s)\bigr\vert \, ds \geq\frac{1}{ (b-a)^{\beta}}. $$

In the following, we will use Lyapunov-type inequalities (3.22) to obtain intervals where certain Mittag-Leffler functions have no real zeros. Let \(z \in\mathbb{R}\) and consider the real zeros of the Mittag-Leffler functions \(E_{\alpha, \gamma}(z)\), where

$$ E_{\alpha, \gamma}(z) = \sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k\alpha+\gamma)},\quad \alpha>0, \gamma> 0 \mbox{ and } z \in\mathbb{C}. $$

Obviously, \(E_{\alpha, \gamma}(z)>0\) for all \(z \ge 0\). Hence, the real zeros of \(E_{\alpha, \gamma}(z)\), if they exist, must be negative real numbers.

Theorem 3.5

Assume that \(0 < \beta\le1\) and \(1 < \alpha\le1+\beta\) hold. Then the Mittag-Leffler function \(E_{\alpha, 2-\beta}(x)\) has no real zeros for

$$ x \in \biggl(- \frac{\alpha-\beta}{\max \{\frac{1}{\Gamma(\alpha)} - \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}, \frac{\Gamma(2-\beta )}{\Gamma(\alpha-\beta)}, \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \}}, 0 \biggr]. $$

Proof

Let \(a=0\) and \(b=1\). Consider the following fractional Sturm-Liouville eigenvalue problem:

$$\begin{aligned}& {}^{\mathrm{C}}_{0} D^{\alpha}y(t)+ \lambda y(t) = 0,\quad t \in(0, 1), \end{aligned}$$
(3.23)
$$\begin{aligned}& y(0)= {}^{\mathrm{C}}_{0} D^{\beta} y(1)=0. \end{aligned}$$
(3.24)

By the Laplace transform method as in [13, 16, 17], the general solution of the fractional differential equation (3.23) can be given as follows:

$$ y(t) = A E_{\alpha, 1}\bigl(-\lambda t^{\alpha}\bigr) + B t E_{\alpha, 2}\bigl(-\lambda t^{\alpha}\bigr). $$
(3.25)

In the following discussion we will use the general solution (3.25) and its fractional Caputo derivative

$$ {}^{\mathrm{C}}_{0} D^{\beta} y(t) = A t^{-\beta} E_{\alpha, 1-\beta}\bigl(-\lambda t^{\alpha}\bigr) + B t^{1-\beta} E_{\alpha, 2-\beta }\bigl(-\lambda t^{\alpha}\bigr). $$
(3.26)

By (3.25), (3.26) and the boundary conditions (3.24), we obtain that

$$ A = 0,\qquad B E_{\alpha, 2-\beta}(-\lambda) = 0. $$

Thus, the eigenvalues \(\lambda\in\mathbb{R}\) of (3.23) and (3.24) are the solutions of

$$ E_{\alpha, 2-\beta}(-\lambda) = 0, $$
(3.27)

and the corresponding eigenfunctions are given by

$$ y(t) = t E_{\alpha, 2-\beta}\bigl(-\lambda t^{\alpha}\bigr), \quad t \in[0, 1]. $$

By Theorem 3.4, if a real eigenvalue λ of (3.23) and (3.24) exists, i.e., −λ is a zero of (3.27), then

$$ \lambda\int_{0}^{1} (1-s)^{\alpha-\beta-1}\, ds \geq \frac{1}{\max \{\frac{1}{\Gamma(\alpha)} - \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}, \frac{\Gamma(2-\beta )}{\Gamma(\alpha-\beta)}, \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \}}, $$

that is,

$$ \lambda\geq\frac{\alpha-\beta}{\max \{\frac{1}{\Gamma(\alpha)} - \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)}, \frac{\Gamma(2-\beta )}{\Gamma(\alpha-\beta)}, \frac{2-\alpha}{\alpha-1} \cdot \frac{\Gamma(2-\beta)}{\Gamma(\alpha-\beta)} \}}, $$

which concludes the proof. □

Remark 3.3

If \(\beta= 1\), then Theorem 3.5 reduces to Theorem 3 in [12].

References

  1. Lyapunov, AM: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse 2, 203-407 (1907)

    Google Scholar 

  2. Brown, RC, Hinton, DB: Lyapunov inequalities and their applications. In: Rassias, TM (ed.) Survey on Classical Inequalities. Math. Appl., vol. 517, pp. 1-25. Kluwer Academic, Dordrecht (2000)

    Chapter  Google Scholar 

  3. Pachpatte, BG: Mathematical Inequalities. North Holland Mathematical Library. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  4. Tiryaki, A: Recent developments of Lyapunov-type inequalities. Adv. Dyn. Syst. Appl. 5(2), 231-248 (2010)

    MathSciNet  Google Scholar 

  5. Cakmak, D, Tiryaki, A: Lyapunov-type inequality for a class of Dirichlet quasilinear systems involving the \((p_{1}, p_{2},\ldots, p_{n})\)-Laplacian. J. Math. Anal. Appl. 369, 76-81 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Tang, XH, He, X: Lower bounds for generalized eigenvalues of the quasilinear systems. J. Math. Anal. Appl. 385, 72-85 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Yang, X, Kim, Y, Lo, K: Lyapunov-type inequality for a class of linear differential systems. Appl. Math. Comput. 219, 1805-1812 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yang, X, Kim, Y, Lo, K: Lyapunov-type inequality for a class of odd-order differential equations. J. Comput. Appl. Math. 234, 2962-2968 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sanchez, J, Vergara, V: A Lyapunov-type inequality for a ψ-Laplacian operator. Nonlinear Anal. 74, 7071-7077 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ferreira, RAC: On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J. Math. Anal. Appl. 412, 1058-1063 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferreira, RAC: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16(4), 978-984 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jleli, M, Samet, B: Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 18(2), 443-451 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Podlubny, I: Fractional Differential Equations. Academic Press San Diego (1999)

    MATH  Google Scholar 

  14. Zhang, S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Abramowitz, M, Stegun, I: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  16. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  17. Duan, JS, Wang, Z, Liu, YL, Qiu, X: Eigenvalue problems for fractional ordinary differential equations. Chaos Solitons Fractals 46, 46-53 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their important and valuable comments. This work is supported by the Natural Science Foundation of Jiangsu Province (BK2011407) and Natural Science Foundation of China (11271364 and 10771212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhi Bai.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally in drafting this manuscript and giving the main proofs. All authors read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, J., Bai, C. Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv Differ Equ 2015, 82 (2015). https://doi.org/10.1186/s13662-015-0430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-015-0430-x

MSC

Keywords