Skip to main content

Theory and Modern Applications

Table 1 Equations of type (1,2)

From: Local dynamics and global attractivity of a certain second-order quadratic fractional difference equation

Equation

Equilibrium point

Stability of equilibrium point

Period-two solution and stability

Partial derivatives

x n + 1 = β x n 1 x n C x n 1 2 + x n

x ¯ = β 1 C for β>1

no eq. point for β ≤ 1

LAS for β>1

no period-two solution

f u = C v 3 β ( C v 2 + u ) 2

f v = u β ( u C v 2 ) ( C v 2 + u ) 2

x n + 1 = γ x n 1 2 C x n 1 2 + x n

x ¯ = γ 1 C for γ>1

no eq. point for γ ≤ 1

LAS for γ>3

a saddle point for 1<γ<3

a non-hyp. eq. for γ = 3

{0,γ/C}-LAS

{ γ + 1 ( γ 3 ) ( γ + 1 ) 2 C , γ + 1 + ( γ 3 ) ( γ + 1 ) 2 C }

a saddle point for γ>3

a non-hyp. eq. for γ = 3

f u = γ v 2 ( C v 2 + u ) 2

f v = 2 γ u v ( C v 2 + u ) 2

x n + 1 = γ x n 1 2 B x n 1 x n + x n

x ¯ = γ 1 B for γ>1

no eq. point for γ ≤ 1

a saddle point for γ>1

no period-two solution

f u = γ v 2 u 2 ( B v + 1 )

f v = γ v ( B v + 2 ) u ( B v + 1 ) 2

x n + 1 = δ x n B x n x n 1 + x n 1 2

x ¯ = δ B + 1

a repeller for δ>0, B>0

no period-two solution

f u = δ ( B u + v ) 2

f v = u δ ( B u + 2 v ) ( B u v + v 2 ) 2

x n + 1 = δ x n C x n 1 2 + x n

x ¯ = 4 C δ + 1 1 2 C

LAS for <2

a repeller for >2

a non-hyp. eq. for  = 2

no period-two solution

f u = C v 2 δ ( C v 2 + u ) 2

f v = 2 C u v δ ( C v 2 + u ) 2