Skip to main content

Theory and Modern Applications

Poly-Cauchy and Peters mixed-type polynomials

Abstract

The Peters polynomials are a generalization of Boole polynomials. In this paper, we consider Peters and poly-Cauchy mixed-type polynomials and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give various identities of those polynomials associated with special polynomials.

1 Introduction

The Peters polynomials are defined by the generating function to be

∑ n = 0 ∞ S n (x;λ,μ) t n n ! = ( 1 + ( 1 + t ) λ ) − μ ( 1 + t ) x (see [1]).
(1)

The first few of them are given by

S 0 (x;λ,μ)= 2 − μ , S 1 (x;λ,μ)= 2 − ( μ + 1 ) (2x−λμ),….

If μ=1, then S n (x;λ)= S n (x:λ,1) are called Boole polynomials.

In particular, for μ=1, λ=1, S n (x;1,1)= Ch n (x) are Changhee polynomials which are defined by

∑ n = 0 ∞ Ch n (x) t n n ! = 1 t + 2 ( 1 + t ) x (see [2]).

The generating functions for the poly-Cauchy polynomials of the first kind C n ( k ) (x) and of the second kind C ˆ n ( k ) (x) are, respectively, given by

Lif k ( log ( 1 + t ) ) ( 1 + t ) − x = ∑ n = 0 ∞ C n ( k ) (x) t n n !
(2)

and

Lif k ( − log ( 1 + t ) ) ( 1 + t ) x = ∑ n = 0 ∞ C ˆ n ( k ) (x) t n n ! ,
(3)

where Lif k (t)= ∑ n = 0 ∞ t n n ! ( n + 1 ) k (k∈Z) (see [3, 4]).

In this paper, we consider the poly-Cauchy of the first kind and Peters (respectively the poly-Cauchy of the second kind and Peters) mixed-type polynomials as follows:

( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( 1 + t ) − x = ∑ n = 0 ∞ C P n ( k ) (x;λ,μ) t n n !
(4)

and

( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ( 1 + t ) x = ∑ n = 0 ∞ C ˆ P n ( k ) (x;λ,μ) t n n ! .
(5)

For α∈ Z ≥ 0 , the Bernoulli polynomials of order α are defined by the generating function to be

( t e t − 1 ) α e x t = ∑ n = 0 ∞ B n ( α ) (x) t n n ! (see [2, 5–11]).
(6)

As is well known, the Frobenius-Euler polynomials of order α are given by

( 1 − λ e t − λ ) α e x t = ∑ n = 0 ∞ H n ( α ) (x∣λ) t n n ! (see [2–14]),
(7)

where λ∈C with λ≠1 and α∈ Z ≥ 0 .

When x=0, C P n ( k ) (0;λ,μ) (or C ˆ P n ( k ) (0;λ,μ)) are called the poly-Cauchy of the first kind and Peters (or the poly-Cauchy of the second kind and Peters) mixed-type numbers.

The higher-order Cauchy polynomials of the first kind are defined by the generating function to be

( t log ( 1 + t ) ) α ( 1 + t ) − x = ∑ n = 0 ∞ C n ( α ) (x) t n n ! (α∈ Z ≥ 0 ),
(8)

and the higher-order Cauchy polynomials of the second kind are given by

( t ( 1 + t ) log ( 1 + t ) ) α ( 1 + t ) x = ∑ n = 0 ∞ C ˆ n ( α ) (x) t n n ! (α∈ Z ≥ 0 ).
(9)

The Stirling number of the first kind is given by

( x ) n =x(x−1)⋯(x−n+1)= ∑ l = 0 n S 1 (n,l) x l .
(10)

Thus, by (10), we get

( log ( 1 + t ) ) m =m! ∑ l = m ∞ S 1 (l,m) t l l ! ,m∈ Z ≥ 0  (see [1]).
(11)

It is easy to show that

x ( n ) =x(x+1)⋯(x+n−1)= ( − 1 ) n ( − x ) n = ∑ l = 0 n S 1 (n,l) ( − 1 ) n − l x l .
(12)

Let ℂ be the complex number field and let ℱ be the algebra of all formal power series in the variable t over ℂ as follows:

F= { f ( t ) = ∑ k = 0 ∞ a k t k k ! | a k ∈ C } .
(13)

Let P=C[x] and let P ∗ be the vector space of all linear functionals on ℙ. 〈L∣p(x)〉 denotes the action of the linear functional L on the polynomial p(x), and we recall that the vector space operations on P ∗ are defined by 〈L+M∣p(x)〉=〈L∣p(x)〉+〈M∣p(x)〉, 〈cL∣p(x)〉=c〈L∣p(x)〉, where c is a complex constant in ℂ.

For f(t)∈F, let us define the linear functional on ℙ by setting

〈 f ( t ) ∣ x n 〉 = a n (n≥0).
(14)

Then, by (13) and (14), we get

〈 t k ∣ x n 〉 =n! δ n , k (n,k≥0) (see [1, 15]),
(15)

where δ n , k is the Kronecker symbol.

Let f L (t)= ∑ k = 0 ∞ 〈 L ∣ x k 〉 k ! t k . Then, by (14), we see that 〈 f L (t)∣ x n 〉=〈L∣ x n 〉. The map L↦ f L (t) is a vector space isomorphism from P ∗ onto ℱ. Henceforth, ℱ denotes both the algebra of formal power series in t and the vector space of all linear functionals on ℙ, and so an element f(t) of ℱ will be thought of as both a formal power series and a linear functional. We call ℱ the umbral algebra, and the umbral calculus is the study of umbral algebra. The order O(f) of the power series f(t) (≠0) is the smallest integer for which the coefficient of t k does not vanish. If O(f(t))=1, then f(t) is called a delta series; if O(f(t))=0, then f(t) is called an invertible series. For f(t),g(t)∈F with O(f(t))=1 and O(g(t))=0, there exists a unique sequence s n (x) of polynomials such that 〈g(t)f ( t ) k ∣ s n (x)〉=n! δ n , k (n,k≥0).

The sequence s n (x) is called the Sheffer sequence for (g(t),f(t)) which is denoted by s n (x)∼(g(t),f(t)).

For f(t),g(t)∈F and p(x)∈P, we have

〈 f ( t ) g ( t ) ∣ p ( x ) 〉 = 〈 f ( t ) ∣ g ( t ) p ( x ) 〉 = 〈 g ( t ) ∣ f ( t ) p ( x ) 〉

and

f(t)= ∑ k = 0 ∞ 〈 f ( t ) ∣ x k 〉 t k k ! ,p(x)= ∑ k = 0 ∞ 〈 t k ∣ p ( x ) 〉 x k k ! .
(16)

By (16), we get

p ( k ) (0)= 〈 t k ∣ p ( x ) 〉 = 〈 1 ∣ p ( k ) ( x ) 〉 (k≥0),
(17)

where p ( k ) (0)= d k p ( x ) d x k | x = 0 .

Thus, by (17), we have

t k p(x)= p ( k ) (x)= d k p ( x ) d x k (see [1–3]).
(18)

Let s n (x)∼(g(t),f(t)). Then the following equations are known in [1]:

1 g ( f ¯ ( t ) ) e x f ¯ ( t ) = ∑ n = 0 ∞ s n (x) t n n ! for all x∈C,
(19)

where f ¯ (t) is the compositional inverse for f(t) with f( f ¯ (t))=t,

s n (x)= ∑ j = 0 n 1 j ! 〈 ( f ¯ ( t ) ) j g ( f ¯ ( t ) ) | x n 〉 x j ,
(20)
s n (x+y)= ∑ j = 0 n ( n j ) s j (x) P n − j (y),where  P n (x)=g(t) s n (x),
(21)

and

s n + 1 (x)= ( x − g ′ ( t ) g ( t ) ) 1 f ′ ( t ) s n (x),f(t) s n (x)=n s n − 1 (x)(n≥0),
(22)

and

d d x s n (x)= ∑ l = 0 n − 1 ( n l ) 〈 f ¯ ( t ) ∣ x n − l 〉 s l (x).
(23)

As is well known, the transfer formula for p n (x)∼(1,f(t)), q n (x)∼(1,g(t)) (n≥1) is given by

q n (x)=x ( f ( t ) g ( t ) ) n x − 1 p n (x).
(24)

For s n (x)∼(g(t),f(t)), r n (x)∼(h(t),l(t)), let

s n (x)= ∑ m = 0 ∞ C n , m r n (x),
(25)

where

C n , m = 1 m ! 〈 h ( f ¯ ( t ) ) g ( f ¯ ( t ) ) ( l ( f ¯ ( t ) ) ) m | x n 〉 (see [1]).
(26)

It is known that

〈 f ( t ) ∣ x p ( x ) 〉 = 〈 ∂ t f ( t ) ∣ p ( x ) 〉 , e y t p(x)=p(x+y),
(27)

where f(t)∈F and p(x)∈P (see [1–3]).

In this paper, we consider Peters and poly-Cauchy mixed-type polynomials with umbral calculus viewpoint and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give some interesting identities of those polynomials associated with special polynomials.

2 Poly-Cauchy and Peters mixed-type polynomials

From (2), (3), and (19), we note that

C P n ( k ) (x;λ,μ)∼ ( ( 1 + e − λ t ) μ 1 Lif k ( − t ) , e − t − 1 )
(28)

and

C ˆ P n ( k ) (x;λ,μ)∼ ( ( 1 + e λ t ) μ 1 Lif k ( − t ) , e t − 1 ) .
(29)

It is not difficult to show that

( 1 + e − λ t ) μ = 2 μ ( 1 + 1 2 ∑ j = 1 ∞ ( − λ t ) j j ! ) μ = ∑ i = 0 ∞ ∑ j = 0 ∞ ∑ j 1 + ⋯ + j i = j 2 μ − i ( μ i ) ( j + i j 1 + 1 , … , j i + 1 ) ( − λ t ) j + i ( j + i ) !
(30)

and

( 1 + ( 1 + t ) λ ) − μ = 2 − μ ( 1 + 1 2 ∑ j = 0 ∞ ( λ j + 1 ) t j + 1 ) − μ = ∑ i = 0 ∞ ∑ j = 0 ∞ ∑ j 1 + ⋯ + j i = j 2 − ( μ + i ) ( − μ i ) ( λ j 1 + 1 ) ⋯ ( λ j i + 1 ) t j + i .
(31)

From (14), we have

C P n ( k ) ( y ; λ , μ ) = 〈 ∑ l = 0 ∞ C P l ( k ) ( y ; λ , μ ) t l l ! | x n 〉 = 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( 1 + t ) − y ∣ x n 〉 = 〈 ( 1 + ( 1 + t ) λ ) − μ | ∑ l = 0 n ( n l ) C l ( k ) ( y ) x n − l 〉 = ∑ l = 0 n ( n l ) C l ( k ) ( y ) 〈 ∑ m = 0 ∞ S m ( 0 ; λ , μ ) t m m ! | x n − l 〉 = ∑ l = 0 n ( n l ) S n − l ( 0 ; λ , μ ) C l ( k ) ( y ) .
(32)

Therefore, by (32), we obtain the following theorem.

Theorem 1 For n≥0, we have

C P n ( k ) (x;λ,μ)= ∑ l = 0 n ( n l ) S n − l (0;λ,μ) C l ( k ) (x).

Alternatively,

C P n ( k ) ( y ; λ , μ ) = 〈 ∑ l = 0 ∞ C P l ( k ) ( y ; λ , μ ) t l l ! | x n 〉 = 〈 Lif k ( log ( 1 + t ) ) ∣ ( 1 + ( 1 + t ) λ ) − μ ( 1 + t ) − y x n 〉 = 〈 Lif k ( log ( 1 + t ) ) | ∑ l = 0 n ( n l ) S l ( − y ; λ , μ ) x n − l 〉 = ∑ l = 0 n ( n l ) S l ( − y ; λ , μ ) 〈 Lif k ( log ( 1 + t ) ) ∣ x n − l 〉 = ∑ l = 0 n ( n l ) S l ( − y ; λ , μ ) C n − l ( k ) ( 0 ) .
(33)

Therefore, by (33), we obtain the following theorem.

Theorem 2 For n≥0, let C n − l ( k ) (0)= C n − l ( k ) . Then we have

C P n ( k ) (x;λ,μ)= ∑ l = 0 n ( n l ) C n − l ( k ) S l (−x;λ,μ).

Remark By the same method, we get

C ˆ P n ( k ) (x;λ,μ)= ∑ l = 0 n ( n l ) S n − l (0;λ,μ) C ˆ l ( k ) (x)
(34)

and

C ˆ P n ( k ) (x;λ,μ)= ∑ l = 0 n ( n l ) C ˆ n − l ( k ) S l (x;λ,μ).
(35)

From (20) and (28), we have

C P n ( k ) ( x ; λ , μ ) = ∑ j = 0 n 1 j ! 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( − log ( 1 + t ) ) j ∣ x n 〉 x j .
(36)

From (31), we note that

〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( − log ( 1 + t ) ) j ∣ x n 〉 = ∑ m = 0 n − j ( − 1 ) j m ! ( m + 1 ) k ∑ l = 0 n − j − m ( m + j ) ! ( l + m + j ) ! S 1 ( l + m + j , m + j ) × ( n ) l + m + j 〈 ( 1 + ( 1 + t ) λ ) − μ ∣ x n − l − m − j 〉 = ∑ m = 0 n − j ( − 1 ) j m ! ( m + 1 ) k ∑ l = 0 n − j − m ( m + j ) ! ( l + m + j ) ! × S 1 ( l + m + j , m + j ) ( n ) l + m + j ∑ i = 0 n − j − m − l ∑ r = 0 ∞ ∑ r 1 + ⋯ + r i = r 2 − ( μ + i ) × ( − μ i ) ( λ r 1 + 1 ) ⋯ ( λ r i + 1 ) 〈 t r + i ∣ x n − l − m − j 〉 = 2 − μ n ! ∑ m = 0 n − j ∑ l = 0 n − j − m ∑ i = 0 n − j − m − l ∑ r 1 + ⋯ + r i = n − j − m − l − i 2 − i ( − 1 ) j ( m + j ) ! m ! ( m + 1 ) k ( l + m + j ) ! × ( − μ i ) ( λ r 1 + 1 ) ⋯ ( λ r i + 1 ) S 1 ( l + m + j , m + j ) .
(37)

Therefore, by (36) and (37), we obtain the following theorem.

Theorem 3 For n≥0, we have

C P n ( k ) ( x ; λ , μ ) = 2 − μ n ! ∑ j = 0 n ( − 1 ) j j ! { ∑ m = 0 n − j ∑ l = 0 n − j − m ∑ i = 0 n − j − m − l ∑ r 1 + ⋯ + r i = n − j − m − l − i 2 − i m ! ( m + 1 ) k × ( m + j ) ! ( l + m + j ) ! ( − μ i ) ( λ r 1 + 1 ) ⋯ ( λ r i + 1 ) S 1 ( l + m + j , m + j ) } x j .

Remark By the same method as Theorem 3, we get

C ˆ P n ( k ) ( x ; λ , μ ) = 2 − μ n ! ∑ j = 0 n 1 j ! { ∑ m = 0 n − j ∑ l = 0 n − j − m ∑ i = 0 n − j − m − l ∑ r 1 + ⋯ + r i = n − j − m − l − i 2 − i ( − 1 ) m m ! ( m + 1 ) k × ( m + j ) ! ( l + m + j ) ! ( − μ i ) × ( λ r 1 + 1 ) ⋯ ( λ r i + 1 ) S 1 ( l + m + j , m + j ) } x j .
(38)

From (28), we note that

( 1 + e − λ t ) μ 1 Lif k ( − t ) C P n ( k ) (x;λ,μ)∼ ( 1 , e − t − 1 )
(39)

and

x n ∼(1,t).
(40)

By (24), (39), and (40), we get

( 1 + e − λ t ) μ 1 Lif k ( − t ) C P n ( k ) ( x ; λ , μ ) = x ( t e − t − 1 ) n x n − 1 = ( − 1 ) n x ( − t e − t − 1 ) n x n − 1 = ( − 1 ) n ∑ l = 0 n − 1 ( − 1 ) l B l ( n ) ( n − 1 l ) x n − l .
(41)

Thus, by (41), we see that

C P n ( k ) ( x ; λ , μ ) = ( − 1 ) n ∑ l = 0 n − 1 ( − 1 ) l ( n − 1 l ) B l ( n ) ( 1 + e − λ t ) − μ Lif k ( − t ) x n − l = ( − 1 ) n ∑ l = 0 n − 1 ( − 1 ) l ( n − 1 l ) B l ( n ) ∑ m = 0 n − l ( − 1 ) m ( n − l m ) ( m + 1 ) k ( 1 + e − λ t ) − μ x n − l − m = ( − 1 ) n ∑ l = 0 n − 1 ( − 1 ) l ( n − 1 l ) B l ( n ) ∑ m = 0 n − l ( − 1 ) m ( n − l m ) ( m + 1 ) k ∑ i = 0 ∞ ∑ j = 0 ∞ ∑ j 1 + ⋯ + j n = j 2 − μ − i ( − μ i ) × ( j + i j 1 + 1 , … , j i + 1 ) ( − λ t ) j + i ( j + i ) ! x n − l − m = ( − 1 ) n ∑ l = 0 n ∑ m = 0 n − l ∑ i = 0 n − l − m ∑ j = 0 n − l − m − i ∑ j 1 + ⋯ + j i = n − l − m − i − r ( − 1 ) n − r 2 − μ − i λ n − l − m − r ( m + 1 ) k ( n − 1 l ) × ( n − l m ) ( − μ i ) ( n − l − m − r j 1 + 1 , … , j i + 1 ) ( n − l − m r ) B l ( n ) x r .
(42)

Therefore, by (42), we obtain the following theorem.

Theorem 4 For n≥0, we have

C P n ( k ) ( x ; λ , μ ) = λ n 2 μ ∑ r = 0 n ( − λ − 1 ) r { ∑ l = 0 n − r ∑ m = 0 n − r − l ∑ i = 0 n − r − l − m ∑ j 1 + ⋯ + j i = n − r − l − m − i 2 − i λ − l − m ( m + 1 ) k ( n − 1 l ) × ( n − l m ) ( − μ i ) ( n − r − l − m j 1 + 1 , … , j i + 1 ) ( n − l − m r ) B l ( n ) } x r .

Remark By the same method as Theorem 4, we get

C ˆ P n ( k ) ( x ; λ , μ ) = λ n 2 μ ∑ r = 0 n λ − r { ∑ l = 0 n − r ∑ m = 0 n − l − r ∑ i = 0 n − l − m − r ∑ j 1 + ⋯ + j i = n − r − l − m − i ( − 1 ) m 2 − i λ − l − m ( m + 1 ) k ( n − 1 l ) × ( n − l m ) ( − μ i ) ( n − r − l − m j 1 + 1 , … , j i + 1 ) ( n − l − m r ) B l ( m ) } x r .
(43)

From (12), we note that

x ( n ) =x(x+1)⋯(x+n−1)∼ ( 1 , 1 − e − t ) .
(44)

Thus, by (44), we see that

( − 1 ) n x ( n ) = ( − x ) n = ∑ m = 0 n S 1 (n,m) ( − x ) m ∼ ( 1 , e − t − 1 )
(45)

and

( 1 + e − λ t ) μ 1 Lif k ( − t ) C P n ( k ) (x;λ,μ)∼ ( 1 , e − t − 1 ) .
(46)

From (45) and (46), we have

( 1 + e − λ t ) μ 1 Lif k ( − t ) C P n ( k ) ( x ; λ , μ ) = ( − 1 ) n x ( n ) = ∑ l = 0 n S 1 ( n , l ) ( − x ) l .
(47)

Thus, by (47), we get

C P n ( k ) ( x ; λ , μ ) = ∑ l = 0 n S 1 ( n , l ) ( − 1 ) l ( 1 + e − λ t ) − μ Lif k ( − t ) x l = ∑ l = 0 n S 1 ( n , l ) ( − 1 ) l ∑ m = 0 l ( − 1 ) m ( l m ) ( m + 1 ) k ( 1 + e − λ t ) − μ x l − m = ∑ l = 0 n S 1 ( n , l ) ( − 1 ) l ∑ m = 0 l ( − 1 ) m ( l m ) ( m + 1 ) k ∑ i = 0 ∞ ∑ j = 0 ∞ ∑ j 1 + ⋯ + j i = j 2 − μ − i × ( − μ i ) ( j + i j 1 + 1 , … , j i + 1 ) ( − λ ) j + i ( j + i ) ! t j + i x l − m = ∑ l = 0 n ∑ m = 0 l ∑ i = 0 l − m ∑ r = 0 l − m − i ∑ j 1 + ⋯ + j i = l − m − i − r ( − 1 ) r 2 − μ − i λ l − m − r ( m + 1 ) k × ( l m ) ( − μ i ) ( l − m − r j 1 + 1 , … , j i + 1 ) ( l − m r ) S 1 ( n , l ) x r = 2 − μ ∑ r = 0 n ( − λ − 1 ) r { ∑ l = r n ∑ m = 0 l − r ∑ i = 0 l − r − m ∑ j 1 + ⋯ + j i = l − r − m − i 2 − i λ l − m ( m + 1 ) k × ( l m ) ( − μ i ) ( l − m − r j 1 + 1 , … , j i + 1 ) ( l − m r ) S 1 ( n , l ) } x r .
(48)

Therefore, by (48), we obtain the following theorem.

Theorem 5 For n≥0, we have

C P n ( k ) ( x ; λ , μ ) = 2 − μ ∑ r = 0 n ( − λ − 1 ) r { ∑ l = r n ∑ m = 0 l − r ∑ i = 0 l − r − m ∑ j 1 + ⋯ + j i = l − r − m − i 2 − i λ l − m ( m + 1 ) k × ( l m ) ( − μ i ) ( l − m − r j 1 + 1 , … , j i + 1 ) ( l − m r ) S 1 ( n , l ) } x r .

It is easy to see that

( 1 + e λ t ) μ 1 Lif k ( − t ) C ˆ P n ( k ) (x;λ,μ)∼ ( 1 , e t − 1 )
(49)

and

( x ) n =x(x−1)⋯(x−n+1)= ∑ l = 0 n S 1 (n,l) x l ∼ ( 1 , e t − 1 ) .
(50)

By the same method as Theorem 5, we get

C ˆ P n ( k ) ( x ; λ , μ ) = 2 − μ ∑ r = 0 n λ − r { ∑ l = r n ∑ m = 0 l − r ∑ i = 0 l − r − m ∑ j 1 + ⋯ + j i = l − r − m − i ( − 1 ) m 2 − i λ l − m ( m + 1 ) k × ( l m ) ( − μ i ) ( l − m − r j 1 + 1 , … , j i + 1 ) ( l − m r ) S 1 ( n , l ) } x r .
(51)

From (20) and (28), we have

C P n ( k ) ( x ; λ , μ ) = ∑ j = 0 n 1 j ! 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( − log ( 1 + t ) ) j ∣ x n 〉 x j .
(52)

Now, we observe that

〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( − log ( 1 + t ) ) j ∣ x n 〉 = ( − 1 ) j 〈 log ( 1 + t ) j | ∑ m = 0 ∞ C P m ( k ) ( 0 ; λ , μ ) t m m ! x n 〉 = ( − 1 ) j ∑ m = 0 n ( n m ) C P m ( k ) ( 0 ; λ , μ ) 〈 ( log ( 1 + t ) ) j ∣ x n − m 〉 = ( − 1 ) j ∑ m = 0 n ( n m ) C P m ( k ) ( 0 ; λ , μ ) j ! S 1 ( n − m , j ) .
(53)

Therefore, by (52) and (53), we obtain the following theorem.

Theorem 6 For n≥0, we have

C P n ( k ) (x;λ,μ)= ∑ j = 0 n ( − 1 ) j { ∑ m = 0 n ( n m ) S 1 ( n − m , j ) C P m ( k ) ( 0 ; λ , μ ) } x j .

Remark By the same method as Theorem 6, we get

C ˆ P n ( k ) (x;λ,μ)= ∑ j = 0 n { ∑ m = 0 n ( n m ) S 1 ( n − m , j ) C ˆ P n ( k ) ( 0 ; λ , μ ) } x j .
(54)

From (21), we have

C P n ( k ) (x+y;λ,μ)= ∑ j = 0 n ( − 1 ) j ( n j ) C P n − j ( k ) (x;λ,μ) y ( j )
(55)

and

C ˆ P n ( k ) (x+y;λ,μ)= ∑ j = 0 n ( n j ) C ˆ P n − j ( k ) (x;λ,μ) ( y ) j .
(56)

By (22) and (28), we get

( e − t − 1 ) C P n ( k ) (x;λ,μ)=nC P n − 1 ( k ) (x;λ,μ)
(57)

and

( e − t − 1 ) C P n ( k ) (x;λ,μ)=C P n ( k ) (x−1;λ,μ)−C P n ( k ) (x;λ,μ).
(58)

Therefore, by (57) and (58), we obtain the following theorem.

Theorem 7 For n≥0, we have

C P n ( k ) (x−1;λ,μ)−C P n ( k ) (x;λ,μ)=nC P n − 1 ( k ) (x;λ,μ).

Remark By the same method as Theorem 7, we get

C ˆ P n ( k ) (x+1;λ,μ)− C ˆ P n ( k ) (x;λ,μ)=n C ˆ P n − 1 ( k ) (x;λ,μ).
(59)

From (22), (28), and (29), we have

C P n + 1 ( k ) ( x ; 1 , μ ) = − x C P n ( k ) ( x + 1 ; 1 , μ ) + μ ∑ m = 0 n ( − 1 2 ) m + 1 ( n ) m C P n − m ( k ) ( x ; 1 , μ ) + 2 − μ ∑ r = 0 n ( − 1 ) r { ∑ m = r n ∑ l = r m ∑ i = 0 l − r ∑ j 1 + ⋯ + j i = l − i − r 2 − i ( m − l + 2 ) k ( m l ) × ( − μ i ) ( l − r j 1 + 1 , … , j i + 1 ) ( l r ) S 1 ( n , m ) } ( x + 1 ) r
(60)

and

C ˆ P n + 1 ( k ) ( x ; 1 , μ ) = x C ˆ P n ( k ) ( x − 1 ; 1 , μ ) + μ ∑ m = 0 n ( − 1 2 ) m + 1 ( n ) m C ˆ P n − m ( k ) ( x ; 1 , μ ) − 2 − μ ∑ r = 0 n { ∑ m = r n ∑ l = r m ∑ i = 0 l − r ∑ j 1 + ⋯ + j i = l − i − r ( − 1 ) m − l 2 − i ( m − l + 2 ) k ( m l ) ( − μ i ) × ( l − r j 1 + 1 , … , j i + 1 ) ( l r ) S 1 ( n , m ) } ( x − 1 ) r .
(61)

By (14) and (27), we get

C P n ( k ) ( y ; λ , μ ) = 〈 ∑ l = 0 ∞ C P l ( k ) ( y ; λ , μ ) t l l ! | x n 〉 = 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( 1 + t ) − y ∣ x ⋅ x n − 1 〉 = 〈 ∂ t ( ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( 1 + t ) − y ) ∣ x n − 1 〉 = 〈 ( ∂ t ( 1 + ( 1 + t ) λ ) − μ ) Lif k ( log ( 1 + t ) ) ( 1 + t ) − y ∣ x n − 1 〉 + 〈 ( 1 + ( 1 + t ) λ ) − μ ( ∂ t Lif k ( log ( 1 + t ) ) ) ( 1 + t ) − y ∣ x n − 1 〉 + 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( ∂ t ( 1 + t ) − y ) ∣ x n − 1 〉 = − μ λ 〈 ( 1 + ( 1 + t ) λ ) − μ − 1 Lif k ( log ( 1 + t ) ) ( 1 + t ) − ( y − λ + 1 ) ∣ x n − 1 〉 − y 〈 ( 1 + ( 1 + t ) λ ) − μ ( Lif k ( log ( 1 + t ) ) ) ( 1 + t ) − y − 1 ∣ x n − 1 〉 + 〈 ( 1 + ( 1 + t ) λ ) − μ ( ∂ t Lif k ( log ( 1 + t ) ) ) ( 1 + t ) − y ∣ x n − 1 〉 = − μ λ C P n − 1 ( k ) ( y − λ + 1 ; λ , μ + 1 ) − y C P n − 1 ( k ) ( y + 1 ; λ , μ ) + 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k − 1 ( log ( 1 + t ) ) − Lif k ( log ( 1 + t ) ) ( 1 + t ) log ( 1 + t ) ( 1 + t ) − y ∣ x n − 1 〉 .
(62)

Now, we observe that

〈 ( 1 + ( 1 + t ) λ ) − μ Lif k − 1 ( log ( 1 + t ) ) − Lif k ( log ( 1 + t ) ) ( 1 + t ) log ( 1 + t ) ( 1 + t ) − y | x n − 1 〉 = 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k − 1 ( log ( 1 + t ) ) − Lif k ( log ( 1 + t ) ) t ( 1 + t ) − y | t ( 1 + t ) log ( 1 + t ) x n − 1 〉 = ∑ l = 0 n − 1 ( n − 1 l ) C ˆ n − 1 − l ( 1 ) ( 0 ) × 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k − 1 ( log ( 1 + t ) ) − Lif k ( log ( 1 + t ) ) t ( 1 + t ) − y | x l 〉 = ∑ l = 0 n − 1 ( n − 1 l ) C ˆ n − 1 − l ( 1 ) ( 0 ) × 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k − 1 ( log ( 1 + t ) ) − Lif k ( log ( 1 + t ) ) t ( 1 + t ) − y | t x l + 1 l + 1 〉 = 1 n ∑ l = 0 n − 1 ( n l + 1 ) C ˆ n − 1 − l ( 1 ) ( 0 ) { C P l + 1 ( k − 1 ) ( y ; λ , μ ) − C P l + 1 ( k ) ( y ; λ , μ ) } .
(63)

Therefore, by (62) and (63), we obtain the following theorem.

Theorem 8 For n≥0, we have

C P n ( k ) ( x ; λ , μ ) = − μ λ C P n − 1 ( k ) ( x − λ + 1 ; λ , μ + 1 ) − x C P n − 1 ( k ) ( x + 1 ; λ , μ ) + 1 n ∑ l = 0 n − 1 ( n l + 1 ) C ˆ n − 1 − l { C P l + 1 ( k − 1 ) ( x ; λ , μ ) − C P l + 1 ( k ) ( x ; λ , μ ) } ,

where C ˆ n − 1 − l = C ˆ n − 1 − l ( 1 ) (0).

Remark By the same method as Theorem 8, we get

C ˆ P n ( k ) ( x ; λ , μ ) = − μ λ C ˆ P n − 1 ( k ) ( x + λ − 1 ; λ , μ + 1 ) + x C ˆ P n − 1 ( k ) ( x − 1 ; λ , μ ) + 1 n ∑ l = 0 n − 1 ( n l + 1 ) C ˆ n − 1 − l ( C ˆ P l + 1 ( k − 1 ) ( x ; λ , μ ) − C ˆ P l + 1 ( k ) ( x ; λ , μ ) ) .
(64)

By (23), we get

d d x C P n ( k ) ( x ; λ , μ ) = ∑ l = 0 n − 1 ( n l ) 〈 − log ( 1 + t ) ∣ x n − l 〉 C P l ( k ) ( x ; λ , μ ) = ∑ l = 0 n − 1 ( n l ) 〈 ∑ m = 1 ∞ ( − 1 ) m m t m | x n − l 〉 C P l ( k ) ( x ; λ , μ ) = ∑ l = 0 n − 1 ( n l ) ∑ m = 1 ∞ ( − 1 ) m m 〈 t m ∣ x n − l 〉 C P l ( k ) ( x ; λ , μ ) = ∑ l = 0 n − 1 ( n l ) ( − 1 ) n − l C P l ( k ) ( x ; λ , μ ) ( n − l − 1 ) ! = n ! ∑ l = 0 n − 1 ( − 1 ) n − l ( n − l ) l ! C P l ( k ) ( x ; λ , μ ) .
(65)

By the same method as (65), we get

d d x C ˆ P n ( k ) ( x ; λ , μ ) = n ! ∑ l = 0 n − 1 ( − 1 ) n − l − 1 ( n − l ) l ! C ˆ P l ( k ) ( x ; λ , μ ) .
(66)

Now, we compute the following equation in two different ways:

〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ( log ( 1 + t ) ) m ∣ x n 〉 .

On the one hand,

〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ( log ( 1 + t ) ) m ∣ x n 〉 = 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ∣ ( log ( 1 + t ) ) m x n 〉 = ∑ l = 0 n − m m ! ( n l + m ) S 1 ( l + m , m ) 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ∣ x n − l − m 〉 = ∑ l = 0 n − m m ! ( n l ) S 1 ( n − l , m ) C ˆ P l ( k ) ( 0 ; λ , μ ) .
(67)

On the other hand,

〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ( log ( 1 + t ) ) m ∣ x n 〉 = 〈 ∂ t ( ( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ( log ( 1 + t ) ) m ) ∣ x n − 1 〉 = 〈 ( ∂ t ( 1 + ( 1 + t ) λ ) − μ ) Lif k ( − log ( 1 + t ) ) ( log ( 1 + t ) ) m ∣ x n − 1 〉 + 〈 ( 1 + ( 1 + t ) λ ) − μ ( ∂ t Lif k ( − log ( 1 + t ) ) ) ( log ( 1 + t ) ) m ∣ x n − 1 〉 + 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( − log ( 1 + t ) ) ( ∂ t ( log ( 1 + t ) ) m ) ∣ x n − 1 〉 .
(68)

Therefore, by (67) and (68), we obtain the following theorem.

Theorem 9 For n∈N with n≥2, let n−1≥m≥1. Then we have

m ∑ l = 0 n − m ( n l ) S 1 ( n − l , m ) C ˆ P l ( k ) ( 0 ; λ , μ ) = − μ λ m ∑ l = 0 n − 1 − m ( n − 1 l ) S 1 ( n − 1 − l , m ) C ˆ P l ( k ) ( λ − 1 ; λ , μ + 1 ) + ∑ l = 0 n − m ( n − 1 l ) S 1 ( n − 1 − l , m − 1 ) C ˆ P l ( k − 1 ) ( − 1 ; λ , μ ) + ( m − 1 ) ∑ l = 0 n − m ( n − 1 l ) S 1 ( n − 1 − l , m − 1 ) C ˆ P l ( k ) ( − 1 ; λ , μ ) .

Remark By the same method as Theorem 9, we get

m ∑ l = 0 n − m ( n l ) S 1 ( n − l , m ) C P l ( k ) ( 0 ; λ , μ ) = − μ λ m ∑ l = 0 n − 1 − m ( n − 1 l ) S 1 ( n − 1 − l , m ) C P l ( k ) ( 1 − λ ; λ , μ + 1 ) + ∑ l = 0 n − m ( n − 1 l ) S 1 ( n − 1 − l , m − 1 ) C P l ( k − 1 ) ( 1 ; λ , μ ) + ( m − 1 ) ∑ l = 0 n − m ( n − 1 l ) S 1 ( n − 1 − l , m − 1 ) C P l ( k ) ( − 1 ; λ , μ ) ,

where n−1≥m≥1.

Let us consider the following two Sheffer sequences:

C P n ( k ) (x;λ,μ)∼ ( ( 1 + e − λ t ) μ 1 Lif k ( − t ) , e − t − 1 )
(69)

and

B n ( s ) (x)∼ ( ( e t − 1 t ) s , t ) (s∈ Z ≥ 0 ).
(70)

Let

C P n ( k ) (x;λ,μ)= ∑ m = 0 n C n , m B m ( s ) (x).
(71)

Then, by (26), we get

C n , m = 1 m ! 〈 ( e − log ( 1 + t ) − 1 − log ( 1 + t ) ) s ( 1 + e λ log ( 1 + t ) ) μ Lif k ( log ( 1 + t ) ) ( − log ( 1 + t ) ) m | x n 〉 = ( − 1 ) m m ! 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) × ( 1 + t ) − s ( t log ( 1 + t ) ) s | ( log ( 1 + t ) ) m x n 〉 = ( − 1 ) m m ! ∑ l = 0 n − m m ! ( n l + m ) S 1 ( l + m , m ) ∑ i = 0 n − l − m ( n − l − m i ) C i ( s ) × 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( 1 + t ) − s ∣ x n − l − m − i 〉 = ( − 1 ) m ∑ l = 0 n − m ( n l ) S 1 ( n − l , m ) ∑ i = 0 l ( l i ) C i ( s ) C P l − i ( k ) ( s ; λ , μ ) .
(72)

Therefore, by (71) and (72), we obtain the following theorem.

Theorem 10 For n≥0, we have

C P n ( k ) (x;λ,μ)= ∑ m = 0 n ( − 1 ) m { ∑ l = 0 n − m ∑ i = 0 l ( n l ) ( l i ) S 1 ( n − l , m ) C i ( s ) C P l − i ( k ) ( s ; λ , μ ) } B n ( s ) (x).

Remark By the same method as Theorem 10, we have

C ˆ P n ( k ) ( x ; λ , μ ) = ∑ m = 0 n { ∑ l = 0 n − m ∑ i = 0 l ( n l ) ( l i ) S 1 ( n − l , m ) C ˆ i ( s ) C ˆ P l − i ( k ) ( s ; λ , μ ) } B m ( s ) ( x ) .
(73)

For C P n ( k ) (x;λ,μ)∼( ( 1 + e − λ t ) μ 1 Lif k ( − t ) , e − t −1), H n ( s ) (x∣λ)∼( ( e t − λ 1 − λ ) s ,t), s∈ Z ≥ 0 , λ∈C with λ≠1, let us assume that

C P n ( k ) (x;λ,μ)= ∑ m = 0 n C n , m H m ( s ) (x;λ).
(74)

From (26), we have

C n , m = ( − 1 ) m m ! 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) × ( 1 + t ) − s ( 1 + λ λ − 1 t ) s | ( log ( 1 + t ) ) m x n 〉 = ( − 1 ) m m ! ∑ l = 0 n − m m ! ( n l + m ) S 1 ( l + m , m ) ∑ i = 0 min { s , n − l − m } ( s i ) ( λ λ − 1 ) i × 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( 1 + t ) − s ∣ t i x n − l − m 〉 = ( − 1 ) m ∑ l = 0 n − m ∑ i = 0 min { s , n − l − m } ( n l + m ) ( s i ) × ( n − l − m ) i ( λ λ − 1 ) i S 1 ( l + m , m ) C P n − l − m − i ( k ) ( s ; λ , μ ) = ( − 1 ) m ∑ l = 0 n − m ∑ i = 0 min { s , l } ( n l ) ( s i ) ( l ) i ( λ λ − 1 ) i S 1 ( n − l , m ) C P l − i ( k ) ( s ; λ , μ ) .
(75)

Therefore, by (75) and (76), we obtain the following theorem.

Theorem 11 For λ∈C with λ≠1, n≥0, we have

C P n ( k ) ( x ; λ , μ ) = ∑ m = 0 n ( − 1 ) m { ∑ l = 0 n − m ∑ i = 0 min { s , l } ( n l ) ( s i ) ( l ) i ⋅ ( λ λ − 1 ) i S 1 ( n − l , m ) C P l − i ( k ) ( s ; λ , μ ) } H m ( s ) ( x ; λ ) .

Remark By the same method as Theorem 11, we get

C ˆ P n ( k ) ( x ; λ , μ ) = ∑ m = 0 n { ∑ l = 0 n − m ∑ i = 0 min { s , l } ( n l ) ( s i ) ( l ) i ⋅ ( 1 1 − λ ) i S 1 ( n − l , m ) C ˆ P l − i ( k ) ( 0 ; λ , μ ) } H m ( s ) ( x ; λ ) .

For C P n ( k ) (x;λ,μ)∼( ( 1 + e − λ t ) μ 1 Lif k ( − t ) , e − t −1) and x ( n ) ∼(1,1− e − t ), let us assume that

C P n ( k ) (x;λ,μ)= ∑ m = 0 ∞ C n , m x ( m ) .
(76)

By (26), we get

C n , m = 1 m ! 〈 1 ( 1 + e λ log ( 1 + t ) ) μ Lif k ( log ( 1 + t ) ) ( 1 − e log ( 1 + t ) ) m | x n 〉 = 1 m ! 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ( − t ) m ∣ x n 〉 = ( − 1 ) m m ! 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ∣ t m x n 〉 = ( − 1 ) m ( n m ) 〈 ( 1 + ( 1 + t ) λ ) − μ Lif k ( log ( 1 + t ) ) ∣ x n − m 〉 = ( − 1 ) m ( n m ) C P n − m ( k ) ( 0 ; λ , μ ) .
(77)

Therefore, by (77) and (78), we obtain the following theorem.

Theorem 12 For n≥0, we have

C P n ( k ) (x;λ,μ)= ∑ m = 0 n ( − 1 ) m ( n m ) C P n − m ( k ) (0;λ,μ) x ( m ) .

Remark By the same method as Theorem 12, we get

C ˆ P n ( k ) (x;λ,μ)= ∑ m = 0 n ( n m ) C ˆ P n − m ( k ) (0;λ,μ) ( x ) m .
(78)

References

  1. Ozden H, Cangul IN, Simsek Y: Remarks on q -Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 2009, 18(1):41-48.

    MathSciNet  Google Scholar 

  2. Kim T, Kim DS, Mansour T, Rim S-H, Schork M: Umbral calculus and Sheffer sequences of polynomials. J. Math. Phys. 2013., 54: Article ID 083504

    Google Scholar 

  3. Kim T: Some identities on the q -Euler polynomials of higher order and q -Stirling numbers by the fermonic p -adic integral on Z p . Russ. J. Math. Phys. 2009, 16(4):484-491. 10.1134/S1061920809040037

    Article  MATH  MathSciNet  Google Scholar 

  4. Kim DS, Kim T, Lee S-H: Poly-Cauchy numbers and polynomials with umbral calculus viewpoint. Int. J. Math. Anal. 2013, 7(45):2235-2253.

    MathSciNet  Google Scholar 

  5. Can M, Cenkci M, Kurt V, Simsek Y: Twisted Dedekind type sums associated with Barnes’ type multiple Frobenius-Euler L -functions. Adv. Stud. Contemp. Math. 2009, 18(2):135-160.

    MATH  MathSciNet  Google Scholar 

  6. Carlitz L: A note on Bernoulli and Euler polynomials of the second kind. Scr. Math. 1961, 25: 323-330.

    MATH  Google Scholar 

  7. Comtet L: Advanced Combinatorics. Reidel, Dordrecht; 1974.

    Book  MATH  Google Scholar 

  8. Dere R, Simsek Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 2012, 22(3):433-438.

    MATH  MathSciNet  Google Scholar 

  9. Gould HW: Explicit formulas for Bernoulli numbers. Am. Math. Mon. 1972, 79: 44-51. 10.2307/2978125

    Article  MATH  Google Scholar 

  10. Kim DS, Kim T: Some identities of Bernoulli and Euler polynomials arising from umbral calculus. Adv. Stud. Contemp. Math. 2013, 23(1):159-171.

    MATH  MathSciNet  Google Scholar 

  11. Kim DS, Kim T, Kim YH, Dolgy DV: A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials. Adv. Stud. Contemp. Math. 2012, 22(3):379-389.

    MATH  MathSciNet  Google Scholar 

  12. Kim DS, Kim T, Dolgy DV, Rim SH: Some new identities of Bernoulli, Euler and Hermite polynomials arising from umbral calculus. Adv. Differ. Equ. 2013., 2013: Article ID 73

    Google Scholar 

  13. Komatsu, T: On poly-Cauchy numbers and polynomials. Available at http://carma.newcastle.edu.au/alfcon/pdfs/Takao_Komatsu-alfcon.pdf

  14. Merlini D, Sprugnoli R, Verri MC: The Cauchy numbers. Discrete Math. 2006, 306: 1906-1920. 10.1016/j.disc.2006.03.065

    Article  MATH  MathSciNet  Google Scholar 

  15. Roman S Pure and Applied Mathematics 111. In The Umbral Calculus. Academic Press, New York; 1984. x+193 pp.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Kwangwoon University 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kim, D.S., Kim, T. Poly-Cauchy and Peters mixed-type polynomials. Adv Differ Equ 2014, 4 (2014). https://doi.org/10.1186/1687-1847-2014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-4

Keywords