Skip to content

Advertisement

Open Access

The solutions of one type q-difference functional system

Advances in Difference Equations20142014:3

https://doi.org/10.1186/1687-1847-2014-3

Received: 25 March 2013

Accepted: 1 December 2013

Published: 6 January 2014

Abstract

In this paper, we study the functional system on q-difference equations, our results can give estimates on the proximity functions and the counting functions of the solutions of q-difference equations system. This implies that solutions have a relatively large number of poles. The main results in this paper concern q-difference equations to the system of q-difference equations.

MSC:30D35, 39B32, 39A13, 39B12.

Keywords

functional systemq-difference equationszero orderdifference Nevanlinna theory

1 Introduction and main results

A function f ( z ) is called meromorphic if it is analytic in the complex plane except at isolate poles. In what follows, we assume that the reader is familiar with the basic notion of Nevanlinna’s value distribution theory, see [1] and [2].

Let us consider the q-difference polynomial case. Let d j C for j = 1 , , n , and let I q be a finite set of multi-indexes γ = ( γ 0 , , γ n ) . A q-difference polynomial of a meromorphic function w ( z ) is defined as follows:
P ( z , w ) = P ( z , w ( q z ) , w ( q 2 z ) , , w ( q n z ) ) = γ I q a γ ( z ) w ( z ) γ 0 w ( q z ) γ 1 w ( q n z ) γ n ,
(1.1)
where q C { 0 } , and the coefficients a γ ( z ) are small meromorphic functions with respect to w ( z ) such that T ( r , a γ ) = o ( T ( r , w ) ) on a logarithmic density 1, denoted by S q ( r , w ) . The total degree of P ( z , w ) in w ( z ) and the q-shifts of w ( z ) is denoted by deg w q ( P ) , and the order of zero of P ( z , x 0 , x 1 , , x n ) , as a function of x 0 at x 0 = 0 , is denoted as ord 0 q ( P ) , which can be found, e.g., in [3]. Moreover, the weight of difference polynomial (1.1) is defined by
K q ( P ) = max γ I q { j = 1 n γ j } ,

where γ and I q are the same as in (1.1) above. The q-difference polynomial P ( z , w ) is said to be homogeneous with respect to w ( z ) if the degree d γ = γ 0 + + γ n of each term in the sum (1.1) is non-zero and the same for all γ I q .

We recall the following result of Zhang et al. [[4], Theorem 1].

Theorem A Let w ( z ) be a zero-order meromorphic solution of
H ( z , w ) P ( z , w ) = Q ( z , w ) ,
where P ( z , w ) is a homogeneous q-difference polynomial with polynomial coefficients, and H ( z , w ) and Q ( z , w ) are polynomials in w ( z ) with polynomial coefficients having no common factors. If
max { deg w q ( H ) , deg w q ( Q ) deg w q ( P ) } > min { deg w q ( P ) , ord 0 q ( Q ) } ord 0 q ( P ) ,

then N ( r , w ) S q ( r , w ) , where ord 0 q ( P ) denotes the order of zero of P ( z , x 0 , x 1 , , x n ) , as a function of x 0 at x 0 = 0 .

Now let us introduce some notation. Let q j C { 0 , } for j = 1 , , n , and let I and J be a finite set of multi-indexes I = ( i 0 , , i n ) and J = ( j 0 , , j n ) . Two q-difference polynomials of a meromorphic function w ( z ) are defined as follows:
Ω 1 ( z , w 1 , w 2 ) = Ω 1 ( z , w 1 ( z ) , w 2 ( z ) , w 1 ( q 1 z ) , w 2 ( q 1 z ) , , w 1 ( q n z ) , w 2 ( q n z ) ) = i I a i ( z ) k = 1 2 w k ( z ) k i 0 w k ( q 1 z ) k i 1 w k ( q n z ) k i n
and
Ω 2 ( z , w 1 , w 2 ) = Ω 2 ( z , w 1 ( z ) , w 2 ( z ) , w 1 ( q 1 z ) , w 2 ( q 1 z ) , , w 1 ( q n z ) , w 2 ( q n z ) ) = j J b j ( z ) k = 1 2 w k ( z ) k i 0 w k ( q 1 z ) k i 1 w k ( q n z ) k i n ,
where the coefficients a i ( z ) and b j ( z ) are small with respect to w 1 ( z ) and w 2 ( z ) in the sense that T ( r , a i ) = o ( T ( r , w k ) ) and T ( r , b j ) = o ( T ( r , w k ) ) , k = 1 , 2 , on a set of logarithmic density 1, as r tends to infinity outside of an exceptional set E of finite logarithmic measure
lim r E [ 1 , r ) d t t < .
The weights of Ω 1 ( z , w 1 , w 2 ) and Ω 2 ( z , w 1 , w 2 ) in w 1 ( z ) , w 2 ( z ) are denoted by
λ 11 = max i { l = 0 n i 1 l } , λ 12 = max i { l = 0 n i 2 l }
and
λ 21 = max j { l = 0 n i 1 l } , λ 22 = max j { l = 0 n i 2 l } .
The purpose of this paper is to study the problem of the properties of Nevanlinna counting functions and proximity functions of meromorphic solutions of a type of systems of q-difference equations of the following form:
{ Ω 1 ( z , w 1 , w 2 ) = R 1 ( z , w 1 ) , Ω 2 ( z , w 1 , w 2 ) = R 2 ( z , w 2 ) ,
(1.2)
where
R 1 ( z , w 1 ) = P 1 ( z , w 1 ) Q 1 ( z , w 1 ) = i = 0 p 1 a i ( z ) w 1 i j = 0 q 1 b j ( z ) w 1 j
and
R 2 ( z , w 2 ) = P 2 ( z , w 2 ) Q 2 ( z , w 2 ) = i = 0 p 2 c i ( z ) w 2 i j = 0 q 2 d j ( z ) w 2 j ,
the coefficients { a i ( z ) } , { b i ( z ) } , { c i ( z ) } , { d i ( z ) } are meromorphic functions and small functions. The order of zero of Ω j ( z , x 0 , , x n ) , as a function of x 0 at x 0 = 0 , is denoted by ord 0 ( Ω j ) . The q-difference polynomial Ω k ( z , w 1 , w 2 ) , k = 1 , 2 , is said to be homogeneous with respect to w k ( z ) if the degree d k = i k 0 + + i k n of each term in the sum is non-zero and the same for all i I . Finally, the order of growth of a meromorphic solution ( w 1 , w 2 ) is defined by
ρ ( w 1 , w 2 ) = max { ρ ( w 1 ) , ρ 2 ( w 2 ) } ,
where
ρ ( w k ) = lim sup r log T ( r , w k ) log r , k = 1 , 2 .

In this paper, the main results are as follows.

Theorem 1 Let ( w 1 , w 2 ) be a zero-order meromorphic solution of system (1.2), where Ω k ( z , w 1 , w 2 ) ( k = 1 , 2 ) are homogeneous q-difference polynomials in w 1 and w 2 , respectively, with meromorphic coefficients, and P k ( z , w k ) and Q ( z , w k ) , k = 1 , 2 , are polynomials in w k ( z ) with meromorphic coefficients having no common factors. If
max { q 1 , p 1 λ 11 } > min { λ 11 , ord w 1 ( P 1 ) } ord w 1 ( Ω 1 ) + λ 12
(1.3)
and
max { q 2 , p 2 λ 22 } > min { λ 22 , ord w 2 ( P 2 ) } ord w 2 ( Ω 2 ) + λ 21 ,
(1.4)

then N ( r , w 1 ) = S q ( r , w 1 ) and N ( r , w 2 ) = S q ( r , w 2 ) cannot hold both at the same time, possibly outside of an exceptional set of finite logarithmic measure.

Theorem 2 Let ( w 1 , w 2 ) be a zero-order meromorphic solution of system (1.2), where Ω k ( z , w 1 , w 2 ) ( k = 1 , 2 ) are homogeneous q-difference polynomials in w 1 and w 2 , respectively, with meromorphic coefficients, and P k ( z , w k ) and Q ( z , w k ) , k = 1 , 2 , are polynomials in w k ( z ) with meromorphic coefficients having no common factors,
A = 2 λ 11 ( max { p 1 , q 1 + λ 11 } min { λ 11 , ord w 1 ( Ω 1 ) } )
and
B = 2 λ 22 ( max { p 2 , q 2 + λ 22 } min { λ 22 , ord w 2 ( Ω 2 ) } ) .

If A < 0 , B < 0 and A B > 9 λ 21 λ 12 , then m ( r , w k ) = S q ( r , w k ) ( k = 1 , 2 ), where r runs to infinity outside of an exceptional set of finite logarithmic measure.

2 Some lemmas

Lemma 1 ([5], Theorem 1.2)

Let f ( z ) be a non-constant zero-order meromorphic function, and q C { 0 } . Then
m ( r , f ( q z ) f ( z ) ) = S q ( r , f ) .

Lemma 2 ([6], Lemma 4)

If T : R + R + is a piecewise continuous increasing function such that
lim r log T ( r ) log r = 0 ,
then the set
E : = { r : T ( C 1 r ) C 2 T ( r ) }

has logarithmic density 0 for all C 1 > 1 and C 2 > 1 .

3 Proof of Theorem 1

Since Ω k ( z , w 1 , w 2 ) are homogeneous in w 1 and w 2 , respectively, it follows by Lemma 1 that
m ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) λ 12 m ( r , w 2 ) + S q ( r , w 1 )
(3.1)
and
m ( r , Ω 2 ( z , w 1 , w 2 ) w 2 λ 22 ) λ 21 m ( r , w 1 ) + S q ( r , w 2 )
(3.2)
for all r outside of an exceptional set of finite logarithmic measure. Moreover, from (1.2), we have
T ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) = T ( r , P 1 ( z , w 1 ) Q 1 ( z , w 1 ) w 1 λ 11 ) = ( max { p 1 , q 1 + λ 11 } min { λ 11 , ord w 1 ( P 1 ) } ) T ( r , w 1 ) + S q ( r , w 1 )
(3.3)
and
T ( r , Ω 2 ( z , w 1 , w 2 ) w 2 λ 22 ) = T ( r , P 2 ( z , w 2 ) Q 2 ( z , w 2 ) w 2 λ 22 ) = ( max { p 2 , q 2 + λ 22 } min { λ 22 , ord w 2 ( P 2 ) } ) T ( r , w 2 ) + S q ( r , w 2 ) ,
(3.4)
where r approaches infinity outside of an exceptional set of finite logarithmic measure. By combining (3.1) and (3.3), (3.2) and (3.4), respectively, it follows that
N ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) ( 1 + λ 12 + λ 11 ord w 1 ( Ω 1 ) ) T ( r , w 1 ) λ 12 m ( r , w 2 ) + S q ( r , w 1 )
(3.5)
and
N ( r , Ω 2 ( z , w 1 , w 2 ) w 2 λ 22 ) ( 1 + λ 21 + λ 22 ord w 2 ( Ω 2 ) ) T ( r , w 1 ) λ 21 m ( r , w 1 ) + S q ( r , w 2 ) .
(3.6)
From Lemma 2, we have
N ( r , Ω 1 ( z , w 1 , w 2 ) w 1 ord w 1 ( Ω 1 ( z , w 1 , w 2 ) ) ) ( λ 11 ord w 1 ( Ω 1 ) ) N ( q r , w 1 ) + λ 12 N ( q r , w 2 ) + S q ( r , w 1 ) = ( λ 11 ord w 1 ( Ω 1 ) ) N ( r , w 1 ) + λ 12 N ( r , w 2 ) + S q ( r , w 1 ) + S q ( r , w 2 )
and
N ( r , Ω 2 ( z , w 1 , w 2 ) w 1 ord w 2 ( Ω 2 ( z , w 1 , w 2 ) ) ) ( λ 22 ord w 2 ( Ω 2 ) ) N ( q r , w 2 ) + λ 21 N ( q r , w 1 ) + S q ( r , w 2 ) = ( λ 22 ord w 2 ( Ω 2 ) ) N ( r , w 2 ) + λ 11 N ( r , w 1 ) + S q ( r , w 1 ) + S q ( r , w 2 ) .
Therefore,
N ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) N ( r , Ω 1 ( z , w 1 , w 2 ) w 1 ord w 1 ( Ω 1 ( z , w 1 , w 2 ) ) ) + N ( r , 1 w 1 λ 11 ord w 1 ( Ω 1 ) ) ( λ 11 ord w 1 ( Ω 1 ) ) N ( r , w 1 ) + λ 12 N ( r , w 2 ) + T ( r , 1 w 1 λ 11 ord w 1 ( Ω 1 ) ) + S q ( r , w 1 ) + S q ( r , w 2 ) ( λ 11 ord w 1 ( Ω 1 ) ) N ( r , w 1 ) + λ 12 N ( r , w 2 ) + ( λ 11 ord w 1 ( Ω 1 ) ) T ( r , w 1 ) + S q ( r , w 2 ) + S q ( r , w 2 )
(3.7)
and
N ( r , Ω 2 ( z , w 1 , w 2 ) w 2 λ 22 ) N ( r , Ω 2 ( z , w 1 , w 2 ) w 2 ord w 2 ( Ω 2 ( z , w 1 , w 2 ) ) ) + N ( r , 1 w 2 λ 22 ord w 2 ( Ω 2 ) ) ( λ 22 ord w 2 ( Ω 2 ) ) N ( r , w 2 ) + λ 21 N ( r , w 1 ) + T ( r , 1 w 2 λ 22 ord w 2 ( Ω 2 ) ) + S q ( r , w 1 ) + S q ( r , w 2 ) ( λ 22 ord w 2 ( Ω 2 ) ) N ( r , w 2 ) + λ 21 N ( r , w 1 ) + ( λ 22 ord w 2 ( Ω 2 ) ) T ( r , w 2 ) + S q ( r , w 2 ) + S q ( r , w 2 ) .
(3.8)
Combining (3.5) and (3.7), (3.6) and (3.8), respectively, we have
( 1 + λ 12 + λ 11 ord w 1 ( Ω 1 ) ) T ( r , w 1 ) < ( λ 11 ord w 1 ( Ω 1 ) ) N ( r , w 1 ) + λ 12 T ( r , w 2 ) + ( λ 11 ord w 1 ( Ω 1 ) ) T ( r , w 1 ) + S q ( r , w 1 ) + S q ( r , w 2 )
(3.9)
and
( 1 + λ 21 + λ 22 ord w 2 ( Ω 2 ) ) T ( r , w 2 ) < ( λ 22 ord w 2 ( Ω 2 ) ) N ( r , w 2 ) + λ 21 T ( r , w 1 ) + ( λ 22 ord w 2 ( Ω 2 ) ) T ( r , w 2 ) + S q ( r , w 1 ) + S q ( r , w 2 ) .
(3.10)
Suppose that N ( r , w 1 ) = S q ( r , w 1 ) and N ( r , w 2 ) = S q ( r , w 2 ) , according to (3.9) and (3.10), we have
( 1 + λ 12 ) T ( r , w 1 ) < λ 12 T ( r , w 2 ) + S q ( r , w 1 ) + S q ( r , w 2 )
and
( 1 + λ 21 ) T ( r , w 2 ) < λ 21 T ( r , w 1 ) + S q ( r , w 1 ) + S q ( r , w 2 ) .
That is,
( 1 + λ 12 + o ( 1 ) ) T ( r , w 1 ) < ( λ 12 + o ( 1 ) ) T ( r , w 2 )
(3.11)
and
( 1 + λ 21 + o ( 1 ) ) T ( r , w 2 ) < ( λ 12 + o ( 1 ) ) T ( r , w 1 ) .
(3.12)
By (3.11) and (3.12), we conclude that
1 + λ 12 + 1 + λ 21 + o ( 1 ) < λ 12 + λ 21 ,

which is impossible, we prove the assertion.

4 Proof of Theorem 2

It follows by Lemma 1 that
m ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) λ 12 m ( r , w 2 ) + S q ( r , w 1 )
(4.1)
and
m ( r , Ω 2 ( z , w 1 , w 2 ) w 2 λ 22 ) λ 21 m ( r , w 1 ) + S q ( r , w 2 )
(4.2)

for all r outside of an exceptional set of finite logarithmic measure.

Suppose now that ( w 1 ( z ) , w 2 ( z ) ) is a finite-order meromorphic solution of (1.2). Denoting C = max j = 1 , , n { | c j | } in Ω 1 ( z , w 1 , w 2 ) and Ω 2 ( z , w 1 , w 2 ) , by Lemma 2, we obtain
N ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) λ 11 ( N ( | q | r , w 1 ) + N ( r , 1 w 1 ) ) + λ 12 ( N ( | q | r , w 2 ) + N ( r , 1 w 2 ) ) + λ 12 N ( r , w 2 ) + S q ( r , w 1 ) + S q ( r , w 2 ) = λ 11 ( N ( r , w 1 ) + N ( r , 1 w 1 ) ) + λ 12 ( N ( r , w 2 ) + N ( r , 1 w 2 ) ) + λ 12 N ( r , w 2 ) + S q ( r , w 1 ) + S q ( r , w 2 )
(4.3)
for all r outside of a set E of finite logarithmic measure. By (4.1) and (4.3), we have
N ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) λ 11 ( N ( r , w 1 ) + N ( r , 1 w 1 ) ) + λ 12 ( N ( r , w 2 ) + N ( r , 1 w 2 ) ) + S q ( r , w 1 ) + S q ( r , w 2 ) λ 12 ( 2 T ( r , w 1 ) m ( r , w 1 ) ) + λ 12 ( 3 T ( r , w 2 ) 2 m ( r , w 2 ) ) + S q ( r , w 1 ) + S q ( r , w 2 )
(4.4)
for all r E . On the other hand, by (4.1) and (4.3),
N ( r , Ω 1 ( z , w 1 , w 2 ) w 1 λ 11 ) + λ 12 m ( r , w 2 ) T ( r , P 1 ( r , w 1 ) w 1 λ 11 Q 1 r , w 1 ) = ( max { p 1 , q 1 + λ 11 } min { λ 11 , ord w 1 ( Ω 1 ) } ) T ( r , w 1 ) + S q ( r , w 1 ) ,
(4.5)
where r lies outside of a set F of finite logarithmic measure. Combining inequalities (4.4) and (4.5) with the assumption in Theorem 2, we have
( max { p 1 , q 1 + λ 11 } min { λ 11 , ord w 1 ( Ω 1 ) } ) T ( r , w 1 ) λ 12 m ( r , w 2 ) + S q ( r , w 1 ) + S q ( r , w 2 ) λ 11 ( 2 T ( r , w 1 ) m ( r , w 1 ) ) + λ 12 ( 3 T ( r , w 2 ) 2 m ( r , w 2 ) ) + S q ( r , w 1 ) + S q ( r , w 2 ) .
(4.6)
Similarly, we obtain
( max { p 2 , q 2 + λ 22 } min { λ 22 , ord w 2 ( Ω 2 ) } ) T ( r , w 2 ) λ 21 m ( r , w 1 ) + S q ( r , w 1 ) + S q ( r , w 2 ) λ 22 ( 2 T ( r , w 2 ) m ( r , w 2 ) ) + λ 21 ( 3 T ( r , w 1 ) 2 m ( r , w 1 ) ) + S q ( r , w 1 ) + S q ( r , w 2 ) .
(4.7)
By (4.6) and (4.7), we obtain
λ 11 m ( r , w 1 ) ( 2 λ 11 ( max { p 1 , q 1 + λ 11 } min { λ 11 , ord w 1 ( Ω 1 ) } ) + o ( 1 ) ) T ( r , w 1 ) + ( 3 λ 12 + o ( 1 ) ) T ( r , w 2 )
(4.8)
and
( ( max { p 2 , q 2 + λ 22 } min { λ 22 , ord w 2 ( Ω 2 ) } ) 2 λ 22 + o ( 1 ) ) T ( r , w 2 ) ( 3 λ 21 + o ( 1 ) ) T ( r , w 1 ) 2 λ 21 m ( r , w 2 ) .
(4.9)
Combining (4.8) and (4.9), we have
λ 11 m ( r , w 1 ) ( 2 λ 11 ( max { p 1 , q 1 + λ 11 } min { λ 11 , ord w 1 ( Ω 1 ) } ) + o ( 1 ) ) T ( r , w 1 ) + 3 λ 12 ( 3 λ 21 + o ( 1 ) ) T ( r , w 1 ) 6 λ 12 λ 21 m ( r , w 1 ) ( max { p 2 , q 2 + λ 22 } min { λ 22 , ord w 2 ( Ω 2 ) } ) 2 λ 22 ,
that is,
( λ 11 6 λ 12 λ 21 B ) m ( r , w 1 ) ( A 9 λ 12 λ 21 + o ( 1 ) B ) T ( r , w 1 ) ,
(4.10)
where A = 2 λ 11 ( max { p 1 , q 1 + λ 11 } min { λ 11 , ord w 1 ( Ω 1 ) } ) and B = 2 λ 22 ( max { p 2 , q 2 + λ 22 } min { λ 22 , ord w 2 ( Ω 2 ) } ) . Combining the assumption and (4.10), we have
m ( r , w 1 ) = S q ( r , w 1 )

for all r outside of E F , a set of finite logarithmic measure.

Similarly, we obtain
m ( r , w 2 ) = S q ( r , w 2 )

for all r outside of E F , we have proved the assertion.

Declarations

Acknowledgements

Research was supported by the National Science Foundation of China (11161041), and the Fundamental Research Funds for the Central Universities (No. 31920130006) and Middle-Younger Scientific Research Fund (No. 12XB39).

Authors’ Affiliations

(1)
Mathematics and Computer College, Northwest Minorities University, Lanzhou, China
(2)
Laiwu Vocational and Technical College, Laiwu, China
(3)
Shandong Transport Vocational College, Weifang, China

References

  1. Hayman W-K: Meromorphic Functions. Clarendon, Oxford; 1964.MATHGoogle Scholar
  2. Laine I: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin; 1993.View ArticleGoogle Scholar
  3. Korhonen R: A new Clunie type theorem for difference polynomials. J. Differ. Equ. Appl. 2011, 17(3):387-400. 10.1080/10236190902962244MATHMathSciNetView ArticleGoogle Scholar
  4. Zhang JC, Wang G, Chen JJ, Zhao RX: Some results on q -difference equations. Adv. Differ. Equ. 2012., 2012: Article ID 191Google Scholar
  5. Barnett D, Halburd R-G, Korhonen R-J, Morgan W: Nevanlinna theory for the q -difference operator and meromorphic solutions of q -difference equations. Proc. R. Soc. Edinb. A 2007, 137(3):457-474.MATHMathSciNetView ArticleGoogle Scholar
  6. Hayman W-K: On the characteristic of functions meromorphic in the plane and of their integrals. Proc. Lond. Math. Soc. 1965, 14A: 93-128.MathSciNetView ArticleGoogle Scholar

Copyright

© Xu et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.