Skip to main content

Theory and Modern Applications

Positive solutions for a class of higher-order singular semipositone fractional differential systems with coupled integral boundary conditions and parameters

Abstract

In this paper, we study the existence of a class of higher-order singular semipositone fractional differential systems with coupled integral boundary conditions and parameters. By using the properties of the Green’s function and the Guo-Krasnosel’skii fixed point theorem, we obtain some existence results of positive solutions under some conditions concerning the nonlinear functions. The method of this paper is a unified method for establishing the existence of positive solutions for a large number of nonlinear differential equations with coupled boundary conditions. In the end, examples are given to demonstrate the validity of our main results.

MSC:34B16, 34B18.

1 Introduction

Coupled boundary conditions arise in the study of reaction-diffusion equations, Sturm-Liouville problems, mathematical biology and so on; see [14]. Leung [5] studied the following reaction-diffusion system for prey-predator interaction:

u t ( t , x ) = σ 1 u + u ( a + f ( u , v ) ) , t 0 , x Ω R n , v t ( t , x ) = σ 2 v + v ( r + g ( u , v ) ) , t 0 , x Ω R n ,

subject to the coupled boundary conditions

u η =0, v η p(u)q(v)=0on Ω,

where = i = 1 n 2 x i 2 , a, r, σ 1 , σ 2 are positive constants, f,g: R 2 R have Hölder continuous partial derivatives up to second order in compact sets, η is a unit outward normal at Ω and p and q have Hölder continuous first derivatives in compact subsets of [0,+). The functions u(t,x), v(t,x) respectively represent the density of prey and predator at time t0 and at position x=( x 1 ,, x n ). Similar coupled boundary conditions are also studied in [6] for a biochemical system.

Existence theory for boundary value problems of ordinary differential equations is well studied. However, differential equations with fractional order are a generalization of the ordinary differential equations to non-integer order. This generalization is not a mere mathematical curiosity but rather has interesting applications in many areas of science and engineering such as electrochemistry, control, porous media, electromagnetism, etc. There has been a significant development in the study of fractional differential equations in recent years; see, for example, [713]. Wang et al. [14] researched a coupled system of nonlinear fractional differential equations

{ D 0 + α u ( t ) + f ( t , v ( t ) ) = 0 , D 0 + β v ( t ) + g ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = v ( 0 ) = 0 , u ( 1 ) = a u ( ξ ) , v ( 1 ) = b v ( ξ ) ,

where 1<α,β<2, 0a,b<1, 0<ξ<1, f,g:[0,1]×[0,+)[0,+) are continuous functions, D 0 + α , D 0 + β are also two standard Riemann-Liouville fractional derivatives. By using the Banach fixed point theorem and nonlinear differentiation of Leray-Schauder type, the existence and uniqueness of positive solutions are obtained.

In [15], Yang considered the positive solutions to boundary values problem for a coupled system of nonlinear fractional differential equations as follows:

{ D α u ( t ) + a ( t ) f ( t , v ( t ) ) = 0 , D β v ( t ) + b ( t ) g ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , u ( 1 ) = 0 1 κ ( t ) u ( t ) d t , v ( 0 ) = 0 , v ( 1 ) = 0 1 μ ( t ) v ( t ) d t ,

where 1<α,β2, a,b:(0,1)[0,+) are continuous, κ,μ:[0,1][0,+) are nonnegative and integrable functions, f,g:[0,1]×[0,+)[0,+) are continuous, and D α , D β are standard Riemann-Liouville fractional derivatives. By applying the Banach fixed point theorem, nonlinear differentiation of Leray-Schauder type and the fixed point theorems of cone expansion and compression of norm type, sufficient conditions for the existence and nonexistence of positive solutions to a general class of integral boundary value problems for a coupled system of fractional differential equations are obtained.

Inspired by the above mentioned work and wide applications of coupled boundary conditions in various fields of sciences and engineering, in this paper, we research the existence result to a class of singular semipositone fractional differential systems with coupled integral boundary conditions of the type

{ D 0 + α 1 u ( t ) + λ 1 f 1 ( t , u ( t ) , v ( t ) ) = 0 , D 0 + α 2 v ( t ) + λ 2 f 2 ( t , u ( t ) , v ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = = u ( n 2 ) ( 0 ) = 0 , u ( 1 ) = μ 1 0 1 v ( s ) d A 1 ( s ) , v ( 0 ) = v ( 0 ) = = v ( n 2 ) ( 0 ) = 0 , v ( 1 ) = μ 2 0 1 u ( s ) d A 2 ( s ) ,
(1.1)

where λ i >0 is a parameter, n1< α i n, n2, D 0 + α i is the standard Riemann-Liouville derivative. μ i >0 is a constant, A i is right continuous on [0,1), left continuous at t=1, and nondecreasing on [0,1], A i (0)=0, 0 1 x(s)d A i (s) denotes the Riemann-Stieltjes integrals of x with respect to A i , f i :(0,1)×[0,+)×[0,+)(,+) is a continuous function and may be singular at t=0,1 for i=1,2. By a positive solution of system (1.1), we mean that (u,v)C[0,1]×C[0,1], (u,v) satisfies (1.1) and u(t)>0, v(t)>0 for all t(0,1].

To the best knowledge of the authors, there is seldom earlier literature studying fractional differential system with coupled integral boundary conditions like system (1.1), especially when f i (t,u,v) (i=1,2) may be sign-changing, and may be singular at t=0 and t=1. Motivated by the results mentioned above, this paper attempts to fill part of this gap in the literature.

2 Preliminaries and lemmas

For convenience of the reader, we present some necessary definitions about fractional calculus theory.

Definition 2.1 [16, 17]

Let α>0 and let u be piecewise continuous on (0,+) and integrable on any finite subinterval of [0,+). Then, for t>0, we call

I 0 + α u(t)= 1 Γ ( α ) 0 t ( t s ) α 1 u(s)ds

the Riemann-Liouville fractional integral of u of order α.

Definition 2.2 [16, 17]

The Riemann-Liouville fractional derivative of order α>0, n1α<n, nN is defined as

D 0 + α u(t)= 1 Γ ( n α ) ( d d t ) n 0 t ( t s ) n α 1 u(s)ds,

where denotes the natural number set, the function u(t) is n times continuously differentiable on [0,+).

Lemma 2.1 [16, 17]

Let α>0, if the fractional derivatives D 0 + α 1 u(t) and D 0 + α u(t) are continuous on [0,+), then

I 0 + α D 0 + α u(t)=u(t)+ c 1 t α 1 + c 2 t α 2 ++ c n t α n ,

where c 1 , c 2 ,, c n (,+), n is the smallest integer greater than or equal to α.

Lemma 2.2 Assume that the following condition ( H 0 ) holds.

( H 0 )

k 1 = 0 1 t α 2 1 d A 1 (t)>0, k 2 = 0 1 t α 1 1 d A 2 (t)>0,1 μ 1 μ 2 k 1 k 2 >0.

Let h i C(0,1)L(0,1) (i=1,2), then the system with the coupled boundary conditions

{ D 0 + α 1 u ( t ) + h 1 ( t ) = 0 , D 0 + α 2 v ( t ) + h 2 ( t ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = = u ( n 2 ) ( 0 ) = 0 , u ( 1 ) = μ 1 0 1 v ( s ) d A 1 ( s ) , v ( 0 ) = v ( 0 ) = = v ( n 2 ) ( 0 ) = 0 , v ( 1 ) = μ 2 0 1 u ( s ) d A 2 ( s )
(2.1)

has a unique integral representation

{ u ( t ) = 0 1 K 1 ( t , s ) h 1 ( s ) d s + 0 1 H 1 ( t , s ) h 2 ( s ) d s , v ( t ) = 0 1 K 2 ( t , s ) h 2 ( s ) d s + 0 1 H 2 ( t , s ) h 1 ( s ) d s ,
(2.2)

where

K 1 ( t , s ) = μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) + G 1 ( t , s ) , H 1 ( t , s ) = μ 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 G 2 ( t , s ) d A 1 ( t ) , K 2 ( t , s ) = μ 2 μ 1 k 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 G 2 ( t , s ) d A 1 ( t ) + G 2 ( t , s ) , H 2 ( t , s ) = μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) ,
(2.3)

and

G i (t,s)= 1 Γ ( α i ) { [ t ( 1 s ) ] α i 1 ( t s ) α i 1 , 0 s t 1 , [ t ( 1 s ) ] α i 1 , 0 t s 1 , i=1,2.

Proof System (2.1) is equivalent to the system of integral equations

u(t)=u(1) t α 1 1 + 0 1 G 1 (t,s) h 1 (s)ds,
(2.4)
v(t)=v(1) t α 2 1 + 0 1 G 2 (t,s) h 2 (s)ds.
(2.5)

Integrating (2.4) and (2.5) with respect to d A 2 (t) and d A 1 (t) respectively, we have

0 1 u ( t ) d A 2 ( t ) = u ( 1 ) 0 1 t α 1 1 d A 2 ( t ) + 0 1 0 1 G 1 ( t , s ) h 1 ( s ) d s d A 2 ( t ) , 0 1 v ( t ) d A 1 ( t ) = v ( 1 ) 0 1 t α 2 1 d A 1 ( t ) + 0 1 0 1 G 2 ( t , s ) h 2 ( s ) d s d A 1 ( t ) .

Therefore, we can get

1 μ 1 u(1) k 1 v(1)= 0 1 0 1 G 2 (t,s) h 2 (s)dsd A 1 (t),
(2.6)
k 2 u(1)+ 1 μ 2 v(1)= 0 1 0 1 G 1 (t,s) h 1 (s)dsd A 2 (t).
(2.7)

Note that

| 1 μ 1 k 1 k 2 1 μ 2 |= 1 μ 1 μ 2 k 1 k 2 μ 1 μ 2 0.

Thus, system (2.6) and (2.7) has a unique solution for u(1) and v(1). By Cramer’s rule and simple calculations, it follows that

u ( 1 ) = μ 1 1 μ 1 μ 2 k 1 k 2 ( 0 1 0 1 G 2 ( t , s ) h 2 ( s ) d s d A 1 ( t ) + μ 2 k 1 0 1 0 1 G 1 ( t , s ) h 1 ( s ) d s d A 2 ( t ) ) ,
(2.8)
v ( 1 ) = μ 2 1 μ 1 μ 2 k 1 k 2 ( 0 1 0 1 G 1 ( t , s ) h 1 ( s ) d s d A 2 ( t ) + μ 1 k 2 0 1 0 1 G 2 ( t , s ) h 2 ( s ) d s d A 1 ( t ) ) .
(2.9)

Substituting (2.8) and (2.9) into (2.4) and (2.5), we have

u ( t ) = μ 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 ( 0 1 0 1 G 2 ( t , s ) h 2 ( s ) d s d A 1 ( t ) + μ 2 k 1 0 1 0 1 G 1 ( t , s ) h 1 ( s ) d s d A 2 ( t ) ) + 0 1 G 1 ( t , s ) h 1 ( s ) d s = 0 1 K 1 ( t , s ) h 1 ( s ) d s + 0 1 H 1 ( t , s ) h 2 ( s ) d s , v ( t ) = μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 ( 0 1 0 1 G 1 ( t , s ) h 1 ( s ) d s d A 2 ( t ) + μ 1 k 2 0 1 0 1 G 2 ( t , s ) h 2 ( s ) d s d A 1 ( t ) ) + 0 1 G 2 ( t , s ) h 2 ( s ) d s = 0 1 K 2 ( t , s ) h 2 ( s ) d s + 0 1 H 2 ( t , s ) h 1 ( s ) d s .

So (2.2) holds. The proof is completed. □

Lemma 2.3 For t,s[0,1], the functions K i (t,s) and H i (t,s) (i=1,2) defined as (2.3) satisfy

K 1 (t,s), H 2 (t,s)ρs ( 1 s ) α 1 1 , K 2 (t,s), H 1 (t,s)ρs ( 1 s ) α 2 1 ,
(2.10)
K 1 (t,s), H 1 (t,s)ρ t α 1 1 , K 2 (t,s), H 2 (t,s)ρ t α 2 1 ,
(2.11)
K 1 (t,s)ϱ t α 1 1 s ( 1 s ) α 1 1 , H 2 (t,s)ϱ t α 2 1 s ( 1 s ) α 1 1 ,
(2.12)
K 2 (t,s)ϱ t α 2 1 s ( 1 s ) α 2 1 , H 1 (t,s)ϱ t α 1 1 s ( 1 s ) α 2 1 ,
(2.13)

where

ρ = max { 1 Γ ( α 1 1 ) ( μ 1 μ 2 k 1 1 μ 1 μ 2 k 1 k 2 0 1 d A 2 ( t ) + 1 ) , μ 1 Γ ( α 2 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 A 1 ( t ) , 1 Γ ( α 2 1 ) ( μ 2 μ 1 k 2 1 μ 1 μ 2 k 1 k 2 0 1 d A 1 ( t ) + 1 ) , μ 2 Γ ( α 1 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 d A 2 ( t ) } , ϱ = min { μ 1 μ 2 k 1 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 ( 1 t ) t α 1 1 d A 2 ( t ) , μ 1 Γ ( α 2 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 ( 1 t ) t α 2 1 d A 1 ( t ) , μ 2 μ 1 k 2 Γ ( α 2 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 ( 1 t ) t α 2 1 d A 1 ( t ) , μ 2 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 ( 1 t ) t α 1 1 d A 2 ( t ) } .

Proof By [[18], Lemma 3.2], for any t,s[0,1], we have

( 1 t ) t α i 1 s ( 1 s ) α i 1 Γ ( α i ) G i (t,s) s ( 1 s ) α i 1 Γ ( α i 1 ) ,i=1,2.
(2.14)

So, by (2.3) and (2.14), we have

K 1 ( t , s ) = μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) + G 1 ( t , s ) μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 s ( 1 s ) α 1 1 Γ ( α 1 1 ) d A 2 ( t ) + s ( 1 s ) α 1 1 Γ ( α 1 1 ) 1 Γ ( α 1 1 ) ( μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 d A 2 ( t ) + 1 ) s ( 1 s ) α 1 1 1 Γ ( α 1 1 ) ( μ 1 μ 2 k 1 1 μ 1 μ 2 k 1 k 2 0 1 d A 2 ( t ) + 1 ) s ( 1 s ) α 1 1 ρ s ( 1 s ) α 1 1 ,
(2.15)
H 2 ( t , s ) = μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) s ( 1 s ) α 1 1 Γ ( α 1 1 ) μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 d A 2 ( t ) ( μ 2 Γ ( α 1 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 d A 2 ( t ) ) s ( 1 s ) α 1 1 ρ s ( 1 s ) α 1 1 .
(2.16)

By a similar proof as (2.15) and (2.16), we also obtain

K 2 (t,s), H 1 (t,s)ρs ( 1 s ) α 2 1 ,t,s[0,1],

then we know that (2.10) holds.

By [[18], Lemma 3.2], for any t,s[0,1], we also have

( 1 t ) t α i 1 s ( 1 s ) α i 1 Γ ( α i ) G i (t,s) t α i 1 ( 1 t ) Γ ( α i 1 ) ,i=1,2.
(2.17)

So, by (2.3) and (2.17), we have

K 1 ( t , s ) = μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) + G 1 ( t , s ) μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 t α 1 1 ( 1 t ) Γ ( α 1 1 ) d A 2 ( t ) + t α 1 1 ( 1 t ) Γ ( α 1 1 ) μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 1 Γ ( α 1 1 ) d A 2 ( t ) + t α 1 1 Γ ( α 1 1 ) 1 Γ ( α 1 1 ) ( μ 1 μ 2 k 1 1 μ 1 μ 2 k 1 k 2 0 1 d A 2 ( t ) + 1 ) t α 1 1 ρ t α 1 1 ,
(2.18)
H 2 ( t , s ) = μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 t α 1 1 ( 1 t ) Γ ( α 1 1 ) d A 2 ( t ) μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 1 Γ ( α 1 1 ) d A 2 ( t ) ρ t α 2 1 .
(2.19)

By a similar proof as (2.18) and (2.19), we also obtain

K 2 (t,s)ρ t α 2 1 , H 1 (t,s)ρ t α 1 1 ,t[0,1],

then we know that (2.11) holds.

On the other hand, by (2.3) and (2.14), we also have

K 1 ( t , s ) = μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) + G 1 ( t , s ) μ 1 μ 2 k 1 t α 1 1 1 μ 1 μ 2 k 1 k 2 0 1 ( 1 t ) t α 1 1 s ( 1 s ) α 1 1 Γ ( α 1 ) d A 2 ( t ) ( μ 1 μ 2 k 1 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 ( 1 t ) t α 1 1 d A 2 ( t ) ) t α 1 1 s ( 1 s ) α 1 1 ϱ t α 1 1 s ( 1 s ) α 1 1 ,
(2.20)
H 2 ( t , s ) = μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 G 1 ( t , s ) d A 2 ( t ) μ 2 t α 2 1 1 μ 1 μ 2 k 1 k 2 0 1 ( 1 t ) t α 1 1 s ( 1 s ) α 1 1 Γ ( α 1 ) d A 2 ( t ) ( μ 2 Γ ( α 1 ) ( 1 μ 1 μ 2 k 1 k 2 ) 0 1 ( 1 t ) t α 1 1 d A 2 ( t ) ) t α 2 1 s ( 1 s ) α 1 1 ϱ t α 2 1 s ( 1 s ) α 1 1 .
(2.21)

So, we can get that (2.12) holds. By a similar proof as (2.20) and (2.21), we also obtain

K 2 (t,s)ϱ t α 2 1 s ( 1 s ) α 2 1 , H 1 (t,s)ϱ t α 1 1 s ( 1 s ) α 2 1 ,t[0,1],

which implies that (2.13) holds. The proof is completed. □

Remark 2.1 From Lemma 2.3, for t,τ,s[0,1], we have

K i ( t , s ) ω t α i 1 K i ( τ , s ) , H i ( t , s ) ω t α i 1 H i ( τ , s ) , i = 1 , 2 , K 1 ( t , s ) ω t α 1 1 H 2 ( τ , s ) , H 2 ( t , s ) ω t α 2 1 K 1 ( τ , s ) , K 2 ( t , s ) ω t α 2 1 H 1 ( τ , s ) , H 1 ( t , s ) ω t α 1 1 K 2 ( τ , s ) ,

where ω= ϱ ρ , ϱ, ρ are defined as Lemma 2.3, 0<ω<1.

In the rest of the paper, we always suppose that the following assumption holds:

( H 1 ) f i :(0,1)×[0,+)×[0,+)(,+) is continuous and satisfies

q i ( t ) f i ( t , x , y ) a i ( t ) p i ( t , x , y ) , ( t , x , y ) ( 0 , 1 ) × [ 0 , + ) × [ 0 , + ) , i = 1 , 2 ,

where a i , q i :(0,1)[0,+) are continuous and may be singular at t=0,1, p i :[0,1]×[0,+)×[0,+)[0,+) is continuous and

0< 0 1 q i (s)ds<+,0< 0 1 a i (s)ds<+,i=1,2.

Lemma 2.4 Assume that ( H 0 ), ( H 1 ) hold. Then the system with the coupled boundary conditions

{ D 0 + α 1 ϖ 1 ( t ) + λ 1 q 1 ( t ) = 0 , D 0 + α 2 ϖ 2 ( t ) + λ 2 q 2 ( t ) = 0 , 0 < t < 1 , ϖ 1 ( 0 ) = ϖ 1 ( 0 ) = = ϖ 1 ( n 2 ) ( 0 ) = 0 , ϖ 1 ( 1 ) = μ 1 0 1 ϖ 2 ( s ) d A 1 ( s ) , ϖ 2 ( 0 ) = ϖ 2 ( 0 ) = = ϖ 2 ( n 2 ) ( 0 ) = 0 , ϖ 2 ( 1 ) = μ 2 0 1 ϖ 1 ( s ) d A 2 ( s )

has a unique solution

{ ϖ 1 ( t ) = λ 1 0 1 K 1 ( t , s ) q 1 ( s ) d s + λ 2 0 1 H 1 ( t , s ) q 2 ( s ) d s , ϖ 2 ( t ) = λ 2 0 1 K 2 ( t , s ) q 2 ( s ) d s + λ 1 0 1 H 2 ( t , s ) q 1 ( s ) d s ,
(2.22)

which satisfies

ϖ i (t) λ 1 ρ t α i 1 0 1 q 1 (s)ds+ λ 2 ρ t α i 1 0 1 q 2 (s)ds,0t1,i=1,2.
(2.23)

Proof It follows from Lemmas 2.2, 2.3 and conditions ( H 0 ), ( H 1 ) that (2.22) and (2.23) hold. The proof is completed. □

Next we consider the following singular nonlinear system:

{ D 0 + α 1 u ( t ) + λ 1 ( f 1 ( t , [ u ( t ) ϖ 1 ( t ) ] , [ v ( t ) ϖ 2 ( t ) ] ) + q 1 ( t ) ) = 0 , D 0 + α 2 v ( t ) + λ 2 ( f 2 ( t , [ u ( t ) ϖ 1 ( t ) ] , [ v ( t ) ϖ 2 ( t ) ] ) + q 2 ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = = u ( n 2 ) ( 0 ) = 0 , u ( 1 ) = μ 1 0 1 v ( s ) d A 1 ( s ) , v ( 0 ) = v ( 0 ) = = v ( n 2 ) ( 0 ) = 0 , v ( 1 ) = μ 2 0 1 u ( s ) d A 2 ( s ) ,
(2.24)

where λ i >0, ϖ i (t) is defined as (2.22), [ z ( t ) ] =max{z(t),0} (i=1,2).

Lemma 2.5 If (u,v) is a solution of system (2.24) with u(t)> ϖ 1 (t), v(t)> ϖ 2 (t) for any t(0,1], then (u ϖ 1 ,v ϖ 2 ) is a positive solution of system (1.1).

Proof In fact, if (u,v) is a positive solution of system (2.24) such that u(t)> ϖ 1 (t), v(t)> ϖ 2 (t) for any t(0,1], then from system (2.24) and the definition of [ z ( t ) ] , we have

{ D 0 + α 1 u ( t ) + λ 1 ( f 1 ( t , u ( t ) ϖ 1 ( t ) , v ( t ) ϖ 2 ( t ) ) + q 1 ( t ) ) = 0 , D 0 + α 2 v ( t ) + λ 2 ( f 2 ( t , u ( t ) ϖ 1 ( t ) , v ( t ) ϖ 2 ( t ) ) + q 2 ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = = u ( n 2 ) ( 0 ) = 0 , u ( 1 ) = μ 1 0 1 v ( s ) d A 1 ( s ) , v ( 0 ) = v ( 0 ) = = v ( n 2 ) ( 0 ) = 0 , v ( 1 ) = μ 2 0 1 u ( s ) d A 2 ( s ) .
(2.25)

Let x(t)=u(t) ϖ 1 (t), y(t)=v(t) ϖ 2 (t), t(0,1), then

D 0 + α 1 x(t)= D 0 + α 1 u(t) D 0 + α 1 ϖ 1 (t), D 0 + α 2 y(t)= D 0 + α 2 v(t) D 0 + α 2 ϖ 2 (t),

which implies that

D 0 + α 1 u(t)= D 0 + α 1 x(t) λ 1 q 1 (t), D 0 + α 2 v(t)= D 0 + α 2 y(t) λ 2 q 2 (t).

Thus, system (2.25) becomes

{ D 0 + α 1 x ( t ) + λ 1 f 1 ( t , x ( t ) , y ( t ) ) = 0 , D 0 + α 2 y ( t ) + λ 2 f 2 ( t , x ( t ) , y ( t ) ) = 0 , 0 < t < 1 , x ( 0 ) = x ( 0 ) = = x ( n 2 ) ( 0 ) = 0 , x ( 1 ) = μ 1 0 1 y ( s ) d A 1 ( s ) , y ( 0 ) = y ( 0 ) = = y ( n 2 ) ( 0 ) = 0 , y ( 1 ) = μ 2 0 1 x ( s ) d A 2 ( s ) .
(2.26)

Then, by (2.26), (u ϖ 1 ,v ϖ 2 ) is a positive solution of system (1.1). The proof is completed. □

Let X=C[0,1]×C[0,1], then X is a Banach space with the norm

( u , v ) =max { u , v } ,u= max t [ 0 , 1 ] | u ( t ) | ,v= max t [ 0 , 1 ] | v ( t ) | .

Let

K= { ( u , v ) X : u ( t ) ω t α 1 1 ( u , v ) , v ( t ) ω t α 2 1 ( u , v ) , t [ 0 , 1 ] } ,

where ω is defined as Remark 2.1. It is easy to see that K is a positive cone in X. Under the above conditions ( H 0 ), ( H 1 ), for any (u,v)K, we can define an integral operator T:KX by

T(u,v)(t)= ( T 1 ( u , v ) ( t ) , T 2 ( u , v ) ( t ) ) ,0t1,
(2.27)
T i ( u , v ) ( t ) = λ i 0 1 K i ( t , s ) ( f i ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q i ( s ) ) d s + λ j 0 1 H i ( t , s ) ( f j ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q j ( s ) ) d s , 0 t 1 , i = 1 , 2 , i + j = 3 .
(2.28)

We know that (u,v) is a positive solutions of system (1.1) if and only if (u,v) is a fixed point of T in K.

Lemma 2.6 Assume that ( H 0 ), ( H 1 ) hold. Then T:KK is a completely continuous operator.

Proof By a routine discussion, we know that T:KX is well defined, so we only prove T(K)K. For any (u,v)K, 0t,τ1, by Remark 2.1, we have

T 1 ( u , v ) ( t ) = λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s λ 1 0 1 ω t α 1 1 K 1 ( τ , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 ω t α 1 1 H 1 ( τ , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s ω t α 1 1 ( λ 1 0 1 K 1 ( τ , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( τ , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s ) ω t α 1 1 T 1 ( u , v ) ( τ ) .
(2.29)

On the other hand,

T 1 ( u , v ) ( t ) = λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s λ 1 0 1 ω t α 1 1 H 2 ( τ , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 ω t α 1 1 K 2 ( τ , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s ω t α 1 1 ( λ 1 0 1 H 2 ( τ , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 K 2 ( τ , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s ) ω t α 1 1 T 2 ( u , v ) ( τ ) .
(2.30)

Then we have

T 1 (u,v)(t)ω t α 1 1 T 1 ( u , v ) , T 1 (u,v)(t)ω t α 1 1 T 2 ( u , v ) ,

i.e.,

T 1 (u,v)(t)ω t α 1 1 ( T 1 ( u , v ) , T 2 ( u , v ) ) .

In the same way as (2.29) and (2.30), we can prove that

T 2 (u,v)(t)ω t α 2 1 ( T 1 ( u , v ) , T 2 ( u , v ) ) .

Therefore, we have T(K)K.

According to the Ascoli-Arzela theorem, we can easily get that T:KK is completely continuous. The proof is completed. □

In order to obtain the existence of the positive solutions of system (1.1), we will use the following cone compression and expansion fixed point theorem.

Lemma 2.7 [19]

Let P be a positive cone in a Banach space E, Ω 1 and Ω 2 are bounded open sets in E, θ Ω 1 , Ω ¯ 1 Ω 2 , A:P Ω ¯ 2 Ω 1 P is a completely continuous operator. If the following conditions are satisfied:

Axx,xP Ω 1 ,Axx,xP Ω 2 ,

or

Axx,xP Ω 1 ,Axx,xP Ω 2 ,

then A has at least one fixed point in P( Ω ¯ 2 Ω 1 ).

3 Main results

Theorem 3.1 Assume that ( H 0 ), ( H 1 ) hold and that for any fixed λ 1 , λ 2 (0,+), the following conditions are satisfied:

( H 2 ) There exists a constant

r 1 >max { L 1 , L 2 , ω 1 ρ ( λ 1 0 1 q 1 ( s ) d s + λ 2 0 1 q 2 ( s ) d s ) }

such that

p i (t,x,y) r 1 L i 1,(t,x,y)[0,1]×[0, r 1 ]×[0, r 1 ],i=1,2.

( H 3 )

0 < l 1 < lim inf x + inf t [ a , b ] ( 0 , 1 ) y [ 0 , + ) f 1 ( t , x , y ) x + , or 0 < l 1 < lim inf y + inf t [ a , b ] ( 0 , 1 ) x [ 0 , + ) f 1 ( t , x , y ) y + ,

where ω is defined as Remark  2.1, ρ is defined as Lemma  2.3,

L i = 3 ( λ i ρ 0 1 ( a i ( s ) + q i ( s ) ) d s ) 1 , i = 1 , 2 , l 1 = 3 2 ( λ 1 ϱ θ 2 ω a b s ( 1 s ) α 1 1 d s ) 1 , θ = min t [ a , b ] { t α 1 1 , t α 2 1 } .

Then system (1.1) has at least one positive solution ( u ¯ , v ¯ ). Moreover, ( u ¯ , v ¯ ) satisfies u ¯ (t) l ¯ t α 1 1 , v ¯ (t) l ¯ t α 2 1 , t[0,1] for some positive constant l ¯ .

Proof Let K r 1 ={(u,v)K:(u,v)< r 1 }. For any (u,v) K r 1 , t[0,1], by the definition of , we know that

[ u ( t ) ϖ 1 ( t ) ] | u ( t ) | u ( u , v ) r 1 , [ v ( t ) ϖ 2 ( t ) ] | v ( t ) | v ( u , v ) r 1 .

So, for any (u,v) K r 1 , by condition ( H 2 ) and Lemma 2.3, we have

T 1 ( u , v ) = max t [ 0 , 1 ] | λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | max t [ 0 , 1 ] | λ 1 0 1 ρ t α 1 1 ( a 1 ( s ) p 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 ρ t α 1 1 ( a 2 ( s ) p 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | λ 1 ρ 0 1 ( a 1 ( s ) ( r 1 L 1 1 ) + q 1 ( s ) ) d s + λ 2 ρ 0 1 ( a 2 ( s ) ( r 1 L 2 1 ) + q 2 ( s ) ) d s ( r 1 L 1 1 + 1 ) λ 1 ρ 0 1 ( a 1 ( s ) + q 1 ( s ) ) d s + ( r 1 L 2 1 + 1 ) λ 2 ρ 0 1 ( a 2 ( s ) + q 2 ( s ) ) d s = 2 r 1 3 < r 1 = ( u , v ) .
(3.1)

Similarly as (3.1), for any (u,v) K r 1 , by condition ( H 2 ), we also have

T 2 ( u , v ) < r 1 = ( u , v ) .

Consequently, we have

T ( u , v ) =max { T 1 ( u , v ) , T 2 ( u , v ) } < r 1 = ( u , v ) for any (u,v) K r 1 .
(3.2)

On the other hand, by the first inequality in ( H 3 ), there exists ε 0 >0 such that l 1 + ε 0 >0, and also there exists r 0 >0 such that

| f 1 ( t , x , y ) | ( l 1 + ε 0 )x,x r 0 ,y0,t[a,b].
(3.3)

Choose r 2 =max{3 r 1 , 3 r 0 2 ω θ }. Let K r 2 ={(u,v)K:(u,v)< r 2 }. For any (u,v) K r 2 , by the definition of and (2.23), we have

u ( t ) ϖ 1 ( t ) ω t α 1 1 r 2 ( λ 1 ρ t α 1 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 1 1 0 1 q 2 ( s ) d s ) = t α 1 1 ( ω r 2 ( λ 1 ρ 0 1 q 1 ( s ) d s + λ 2 ρ 0 1 q 2 ( s ) d s ) ) θ ( ω r 2 ρ ( λ 1 0 1 q 1 ( s ) d s + λ 2 0 1 q 2 ( s ) d s ) ) ω θ ( r 2 r 1 ) 2 ω θ r 2 3 r 0 , t [ a , b ] ,
(3.4)
v ( t ) ϖ 2 ( t ) ω t α 2 1 r 2 ( λ 1 ρ t α 2 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 2 1 0 1 q 2 ( s ) d s ) = t α 2 1 ( ω r 2 ( λ 1 ρ 0 1 q 1 ( s ) d s + λ 2 ρ 0 1 q 2 ( s ) d s ) ) θ ( ω r 2 ρ ( λ 1 0 1 q 1 ( s ) d s + λ 2 0 1 q 2 ( s ) d s ) ) ω θ ( r 2 r 1 ) 2 ω θ r 2 3 r 0 > 0 , t [ a , b ] .
(3.5)

Thus, for any (u,v) K r 2 , by (3.3)-(3.5), we have

f 1 ( t , [ u ( t ) ϖ 1 ( t ) ] , [ v ( t ) ϖ 2 ( t ) ] ) ( l 1 + ε 0 ) [ u ( t ) ϖ 1 ( t ) ] ,t[a,b].
(3.6)

Hence, for any (u,v) K r 2 , by (3.6) and Lemma 2.3, we conclude that

T 1 ( u , v ) = max t [ 0 , 1 ] | λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | max t [ 0 , 1 ] λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s max t [ 0 , 1 ] λ 1 a b K 1 ( t , s ) f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) d s min t [ a , b ] λ 1 a b ϱ t α 1 1 s ( 1 s ) α 1 1 ( l 1 + ε 0 ) [ u ( s ) ϖ 1 ( s ) ] d s 2 λ 1 ϱ θ 2 ( l 1 + ε 0 ) ω r 2 3 a b s ( 1 s ) α 1 1 d s r 2 = ( u , v ) .

Consequently,

T ( u , v ) =max { T 1 ( u , v ) , T 2 ( u , v ) } r 2 = ( u , v ) for any (u,v) K r 2 .
(3.7)

Obviously, by the second inequality in ( H 3 ), (3.7) is still valid.

It follows from the above discussion, (3.2), (3.7), Lemmas 2.6 and 2.7, that for any fixed λ 1 , λ 2 (0,+), T has a fixed point (u,v) K ¯ r 2 K r 1 and r 1 (u,v) r 2 . Since (u,v) r 1 , we have

u ( t ) ϖ 1 ( t ) u ( t ) ( λ 1 ρ t α 1 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 1 1 0 1 q 2 ( s ) d s ) ω t α 1 1 r 1 ( λ 1 ρ t α 1 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 1 1 0 1 q 2 ( s ) d s ) t α 1 1 ( ω r 1 λ 1 ρ 0 1 q 1 ( s ) d s λ 2 ρ 0 1 q 2 ( s ) d s ) > 0 , t ( 0 , 1 ] , v ( t ) ϖ 2 ( t ) v ( t ) ( λ 1 ρ t α 2 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 2 1 0 1 q 2 ( s ) d s ) ω t α 2 1 r 1 ( λ 1 ρ t α 2 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 2 1 0 1 q 2 ( s ) d s ) t α 2 1 ( ω r 1 λ 1 ρ 0 1 q 1 ( s ) d s λ 2 ρ 0 1 q 2 ( s ) d s ) > 0 , t ( 0 , 1 ] .

Let l ¯ =ω r 1 λ 1 ρ 0 1 q 1 (s)ds λ 2 ρ 0 1 q 2 (s)ds, u ¯ (t)=u(t) ϖ 1 (t), v ¯ (t)=v(t) ϖ 2 (t), then we have

u ¯ (t) l ¯ t α 1 1 >0, v ¯ (t) l ¯ t α 2 1 >0,t(0,1].

By Lemma 2.5, we know that for any fixed λ 1 , λ 2 (0,+), system (1.1) has at least one positive solution ( u ¯ , v ¯ ); moreover, ( u ¯ , v ¯ ) satisfies u ¯ (t) l ¯ t α 1 1 , v ¯ (t) l ¯ t α 2 1 , t[0,1]. The proof is completed. □

Remark 3.1 From the proof of Theorem 3.1, we know that the conclusion of Theorem 3.1 is valid if condition ( H 3 ) is replaced by

0 < l 2 < lim inf x + inf t [ a , b ] ( 0 , 1 ) y [ 0 , + ) f 2 ( t , x , y ) x + , or 0 < l 2 < lim inf y + inf t [ a , b ] ( 0 , 1 ) x [ 0 , + ) f 2 ( t , x , y ) y + ,

where

l 2 = 3 2 ( λ 2 ϱ θ 2 ω a b s ( 1 s ) α 2 1 d s ) 1 .

Theorem 3.2 Assume that ( H 0 ), ( H 1 ) hold and that for any fixed λ 1 , λ 2 (0,+), the following conditions are satisfied:

( H 4 ) There exists a constant

R 1 > ω 1 ρ ( λ 1 0 1 q 1 ( s ) d s + λ 2 0 1 q 2 ( s ) d s )

such that

f 1 (t,x,y) R 1 l 1 ,(t,x,y)[a,b]×[0, R 1 ]×[0, R 1 ].
(3.8)

( H 5 )

0 lim sup x + sup t [ 0 , 1 ] y [ 0 , + ) p i ( t , x , y ) x < L i ,or0 lim sup y + sup t [ 0 , 1 ] x [ 0 , + ) p i ( t , x , y ) y < L i ,i=1,2,

where [a,b](0,1), L i (i=1,2), l 1 are defined in Theorem  3.1. Then system (1.1) has at least one positive solution ( u ¯ 0 , v ¯ 0 ). Moreover, ( u ¯ 0 , v ¯ 0 ) satisfies u ¯ 0 (t) l ¯ 0 t α 1 1 , v ¯ 0 (t) l ¯ 0 t α 2 1 , t[0,1] for some positive constant l ¯ 0 .

The proof of Theorem 3.2 is similar to that of Theorem 3.1, and so we omit it.

Remark 3.2 The conclusion of Theorem 3.2 is valid if inequality (3.8) in condition ( H 6 ) is replaced by

f 2 (t,x,y) R 1 l 2 ,(t,x,y)[a,b]×[0, R 1 ]×[0, R 1 ],

where l 2 is defined in Remark 3.1.

Theorem 3.3 Assume that ( H 0 ), ( H 1 ) hold and that the following is satisfied:

( H 6 )

lim x + inf t [ c , d ] ( 0 , 1 ) y [ 0 , + ) f 1 ( t , x , y ) x =+,or lim y + inf t [ c , d ] ( 0 , 1 ) x [ 0 , + ) f 1 ( t , x , y ) y =+.

Then there exist λ ¯ 1 >0, λ ¯ 2 >0 such that system (1.1) has at least one positive solution ( u ¯ , v ¯ ) provided λ 1 (0, λ ¯ 1 ), λ 2 (0, λ ¯ 2 ). Moreover, ( u ¯ , v ¯ ) satisfies u ¯ (t) l ¯ t α 1 1 , v ¯ (t) l ¯ t α 2 1 , t[0,1] for some positive constant l ¯ .

Proof Choose R> ω 1 ρ( 0 1 q 1 (s)ds+ 0 1 q 2 (s)ds). Let

λ ¯ i =min { 1 , R 2 ρ 0 1 ( a i ( s ) S i , R + q i ( s ) ) d s } ,i=1,2,

where ω is defined as Remark 2.1, ρ is defined as Lemma 2.3, S i , R :=sup{ p i (t,x,y):0t1,0x,yR} (i=1,2).

Let K R ={(u,v)K:(u,v)<R}. For any (u,v) K R , t[0,1], by the definition of , we know that

[ u ( t ) ϖ 1 ( t ) ] | u ( t ) | u ( u , v ) R , [ v ( t ) ϖ 2 ( t ) ] | v ( t ) | v ( u , v ) R .

So, for λ i (0, λ ¯ i ), (u,v) K R , by Lemma 2.3, we have

T 1 ( u , v ) = max t [ 0 , 1 ] | λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | max t [ 0 , 1 ] | λ 1 0 1 ρ t α 1 1 ( a 1 ( s ) p 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 ρ t α 1 1 ( a 2 ( s ) p 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | λ 1 ρ 0 1 ( a 1 ( s ) S 1 , R + q 1 ( s ) ) d s + λ 2 ρ 0 1 ( a 2 ( s ) S 2 , R + q 2 ( s ) ) d s R = ( u , v ) .
(3.9)

Similarly as (3.9), for any (u,v) K R , by condition ( H 2 ), we also have

T 2 ( u , v ) R= ( u , v ) .

Consequently, we have

T ( u , v ) =max { T 1 ( u , v ) , T 2 ( u , v ) } R= ( u , v ) for any (u,v) K R .
(3.10)

On the other hand, by the first inequality in ( H 6 ), choose M 1 such that

λ 1 ϱ θ 2 M 1 ω c d s ( 1 s ) α 1 1 ds>2, θ = min t [ c , d ] { t α 1 1 , t α 2 1 } ,

where ω is defined as Remark 2.1, ϱ is defined as Lemma 2.3. Then there exists N >0 such that

f 1 (t,x,y) M 1 x,x N ,y0,t[c,d].
(3.11)

Let

K R = { ( x , y ) K : ( x , y ) < R } , R >max { 2 R , 2 N ω θ } .

For any (x,y) K R , by (2.23), we have

u ( t ) ϖ 1 ( t ) ω t α 1 1 R ( λ 1 ρ t α 1 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 1 1 0 1 q 2 ( s ) d s ) = t α 1 1 ( ω R ρ ( λ 1 0 1 q 1 ( s ) d s + λ 2 0 1 q 2 ( s ) d s ) ) θ ( ω R ρ ( 0 1 q 1 ( s ) d s + 0 1 q 2 ( s ) d s ) ) ω θ ( R R ) ω θ R 2 N , t [ c , d ] ,
(3.12)
v ( t ) ϖ 2 ( t ) ω t α 2 1 R ( λ 1 ρ t α 2 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 2 1 0 1 q 2 ( s ) d s ) = t α 2 1 ( ω R ( λ 1 ρ 0 1 q 1 ( s ) d s + λ 2 ρ 0 1 q 2 ( s ) d s ) ) θ ( ω R ρ ( 0 1 q 1 ( s ) d s + 0 1 q 2 ( s ) d s ) ) ω θ ( R R ) ω θ R 2 N > 0 , t [ c , d ] .
(3.13)

Thus, for any (u,v) K R , by (3.11)-(3.13), we have

f 1 ( t , [ u ( t ) ϖ 1 ( t ) ] , [ v ( t ) ϖ 2 ( t ) ] ) M 1 [ u ( t ) ϖ 1 ( t ) ] ,t[a,b].
(3.14)

Hence, for any (u,v) K R , by (3.14) and Lemma 2.3, we have

T 1 ( u , v ) = max t [ 0 , 1 ] | λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | max t [ 0 , 1 ] λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s max t [ 0 , 1 ] λ 1 c d K 1 ( t , s ) f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) d s min t [ c , d ] λ 1 c d ϱ t α 1 1 s ( 1 s ) α 1 1 M 1 [ u ( s ) ϖ 1 ( s ) ] d s λ 1 ϱ θ 2 M 1 ω R 2 c d s ( 1 s ) α 1 1 d s R = ( u , v ) .

Consequently,

T ( u , v ) =max { T 1 ( u , v ) , T 2 ( u , v ) } R = ( u , v ) for any (u,v) K R .
(3.15)

Obviously, by the second inequality in ( H 6 ), (3.15) is still valid.

It follows from the above discussion, (3.10), (3.15), Lemmas 2.6 and 2.7, that for any λ 1 (0, λ ¯ 1 ), λ 2 (0, λ ¯ 2 ), T has a fixed point (u,v) K ¯ R K R and R(u,v) R . Since (u,v)R, we have

u ( t ) ϖ 1 ( t ) u ( t ) ( λ 1 ρ t α 1 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 1 1 0 1 q 2 ( s ) d s ) ω t α 1 1 R ( λ 1 ρ t α 1 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 1 1 0 1 q 2 ( s ) d s ) t α 1 1 ( ω R ρ 0 1 q 1 ( s ) d s ρ 0 1 q 2 ( s ) d s ) > 0 , t ( 0 , 1 ] , v ( t ) ϖ 2 ( t ) v ( t ) ( λ 1 ρ t α 2 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 2 1 0 1 q 2 ( s ) d s ) ω t α 2 1 R ( λ 1 ρ t α 2 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 2 1 0 1 q 2 ( s ) d s ) t α 2 1 ( ω R ρ 0 1 q 1 ( s ) d s ρ 0 1 q 2 ( s ) d s ) > 0 , t ( 0 , 1 ] .

Let l ¯ =ωRρ 0 1 q 1 (s)dsρ 0 1 q 2 (s)ds, u ¯ (t)=u(t) ϖ 1 (t), v ¯ (t)=v(t) ϖ 2 (t), then we have

u ¯ (t) l ¯ t α 1 1 >0, v ¯ (t) l ¯ t α 2 1 >0,t[0,1].

By Lemma 2.5 we know that for any λ 1 (0, λ ¯ 1 ), λ 2 (0, λ ¯ 2 ), system (1.1) has at least one positive solution ( u ¯ , v ¯ ); moreover, ( u ¯ , v ¯ ) satisfies u ¯ (t) l ¯ t α 1 1 , v ¯ (t) l ¯ t α 2 1 , t[0,1]. The proof is completed. □

Remark 3.3 From the proof of Theorem 3.3, we know that the conclusion of Theorem 3.3 is valid if condition ( H 6 ) is replaced by

lim x + inf t [ c , d ] ( 0 , 1 ) y [ 0 , + ) f 2 ( t , x , y ) x =+,or lim y + inf t [ c , d ] ( 0 , 1 ) x [ 0 , + ) f 2 ( t , x , y ) y =+.

Theorem 3.4 Assume that ( H 0 ), ( H 1 ) hold and that the following condition is satisfied:

( H 7 )

lim sup x + sup t [ 0 , 1 ] y [ 0 , + ) p i ( t , x , y ) x =0,i=1,2,

and

lim inf x + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) y [ 0 , + ) f 1 (t,x,y)>,or lim inf y + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) x [ 0 , + ) f 1 (t,x,y)>,

where = 4 0 1 ( q 1 ( s ) + q 2 ( s ) ) d s ω 2 θ ˜ a ˜ b ˜ s ( 1 s ) α 0 1 d s , α 0 =max{ α 1 , α 2 }. Then there exist λ ˜ 1 , λ ˜ 2 >0 such that system (1.1) has at least one positive solution ( u ˜ , v ˜ ) provided λ 1 ( λ ˜ 1 ,+), λ 2 ( λ ˜ 2 ,+). Moreover, ( u ˜ , v ˜ ) satisfies u ˜ (t) l ˜ t α 1 1 , v ˜ (t) l ˜ t α 2 1 , t[0,1] for some positive constant l ˜ .

Proof It follows from

lim inf x + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) y [ 0 , + ) f 1 (t,x,y)>

of ( H 7 ), there exists N ˜ >0 such that

f 1 (t,x,y),x N ˜ ,y0,t[ a ˜ , b ˜ ].
(3.16)

Select

λ ˜ i = N ˜ 2 ρ θ ˜ 0 1 q i ( s ) d s ,i=1,2.

In proving the theorem, we assume

R 1 =max { { λ 1 + λ 2 , 2 λ 1 , 2 λ 2 } 2 ω 1 ρ 0 1 ( q 1 ( s ) + q 2 ( s ) ) d s }

and

K R 1 = { ( u , v ) K : ( u , v ) < R 1 } ,

where θ ˜ = min t [ a ˜ , b ˜ ] { t α 1 1 , t α 2 1 }. For any (u,v) K R 1 , by (2.23), we have

u ( t ) ϖ 1 ( t ) ω t α 1 1 R 1 ( λ 1 ρ t α 1 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 1 1 0 1 q 2 ( s ) d s ) = t α 1 1 ( ω R 1 ( λ 1 ρ 0 1 q 1 ( s ) d s + λ 2 ρ 0 1 q 2 ( s ) d s ) ) θ ˜ ( ω R 1 ( λ 1 ρ 0 1 q 1 ( s ) d s + λ 2 ρ 0 1 q 2 ( s ) d s ) ) λ 1 ρ θ ˜ 0 1 q 1 ( s ) d s + λ 2 ρ θ ˜ 0 1 q 2 ( s ) d s N ˜ , t [ a ˜ , b ˜ ] ,
(3.17)
v ( t ) ϖ 2 ( t ) ω t α 2 1 R 1 ( λ 1 ρ t α 2 1 0 1 q 1 ( s ) d s + λ 2 ρ t α 2 1 0 1 q 2 ( s ) d s ) = t α 2 1 ( ω R 1 ( λ 1 ρ 0 1 q 1 ( s ) d s + λ 2 ρ 0 1 q 2 ( s ) d s ) ) θ ˜ ( ω R 1 ( λ 1 ρ 0 1 q 1 ( s ) d s + λ 2 ρ 0 1 q 2 ( s ) d s ) ) λ 1 ρ θ ˜ 0 1 q 1 ( s ) d s + λ 2 ρ θ ˜ 0 1 q 2 ( s ) d s N ˜ , t [ a ˜ , b ˜ ] .
(3.18)

Thus, for any (u,v) K R 1 , by (3.16)-(3.18), we have

f 1 ( t , [ u ( t ) ϖ 1 ( t ) ] , [ v ( t ) ϖ 2 ( t ) ] ) ,t[ a ˜ , b ˜ ].
(3.19)

Hence, for any (u,v) K R 1 , by (3.19) and Lemma 2.3, we have

T 1 ( u , v ) = max t [ 0 , 1 ] | λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | max t [ 0 , 1 ] λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s min t [ a ˜ , b ˜ ] λ 1 a ˜ b ˜ ϱ t α 1 1 s ( 1 s ) α 1 1 f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) d s λ 1 θ ˜ a ˜ b ˜ ϱ s ( 1 s ) α 0 1 d s R 1 = ( u , v ) .

Consequently,

T ( u , v ) =max { T 1 ( u , v ) , T 2 ( u , v ) } R 1 = ( u , v ) for any (u,v) K R 1 .
(3.20)

Obviously, by the inequality

lim inf y + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) x [ 0 , + ) f 1 (t,x,y)>

in ( H 7 ), (3.20) is still valid.

On the other hand, choose ε i >0 such that

ε i = ( 3 λ i ρ 0 1 a i ( s ) d s ) 1 ,i=1,2.

Then, for the above ε i , by the first inequality in ( H 7 ), there exists N >0 such that for any t[0,1], we have

p i (t,x,y) ε i x,x N ,y0,i=1,2.

Then we have

p i (t,x,y)Φ+ ε i x,t[0,1],x0,y0,i=1,2,
(3.21)

where Φ=max{ p i (t,x,y):t[0,1],0x N ,0y N ,i=1,2}. Select

R 2 max { 2 R 1 , ( Φ + 1 ) ( λ 1 ρ 0 1 ( a 1 ( s ) + q 1 ( s ) ) d s + λ 2 ρ 0 1 ( a 2 ( s ) + q 2 ( s ) ) d s ) } .

Assume

K R 2 = { ( u , v ) K : ( u , v ) < R 2 } .

For any (u,v) K R 2 , by (3.21) and Lemma 2.3, we have

T 1 ( u , v ) = max t [ 0 , 1 ] | λ 1 0 1 K 1 ( t , s ) ( f 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 H 1 ( t , s ) ( f 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | max t [ 0 , 1 ] | λ 1 0 1 ρ t α 1 1 ( a 1 ( s ) p 1 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 0 1 ρ t α 1 1 ( a 2 ( s ) p 2 ( s , [ u ( s ) ϖ 1 ( s ) ] , [ v ( s ) ϖ 2 ( s ) ] ) + q 2 ( s ) ) d s | λ 1 ρ 0 1 ( a 1 ( s ) ( Φ + ε 1 [ u ( s ) ϖ 1 ( s ) ] ) + q 1 ( s ) ) d s + λ 2 ρ 0 1 ( a 2 ( s ) ( Φ + ε 2 [ u ( s ) ϖ 1 ( s ) ] ) + q 2 ( s ) ) d s ( Φ + 1 ) ( λ 1 ρ 0 1 ( a 1 ( s ) + q 1 ( s ) ) d s + λ 2 ρ 0 1 ( a 2 ( s ) + q 2 ( s ) ) d s ) + λ 1 ρ ε 1 u 0 1 a 1 ( s ) d s + λ 2 ρ ε 2 u 0 1 a 2 ( s ) d s R 2 = ( u , v ) .
(3.22)

Similarly as (3.22), for any (u,v) K R 2 , by (3.21) and Lemma 2.3, we also have

T 2 ( u , v ) R 2 = ( u , v ) .

Consequently, we have

T ( u , v ) =max { T 1 ( u , v ) , T 2 ( u , v ) } R 2 = ( u , v ) for any (u,v) K R 2 .
(3.23)

It follows from the above discussion, (3.20), (3.23), Lemmas 2.6 and 2.7, that for any λ 1 ( λ ˜ 1 ,+), λ 2 ( λ ˜ 2 ,+), T has a fixed point (u,v) K ¯ R 2 K R 1 and R 1 (u,v) R 2 . Since (u,v) R 1 , by the same method as Theorem 3.3, we know that for any λ 1 ( λ ˜ 1 ,+), λ 2 ( λ ˜ 2 ,+), system (1.1) has at least one positive solution ( u ˜ , v ˜ ). Moreover, ( u ˜ , v ˜ ) satisfies u ˜ (t) l ˜ t α 1 1 , v ˜ (t) l ˜ t α 2 1 , t[0,1]. The proof is completed. □

Remark 3.4 From the proof of Theorem 3.4, we know that the conclusion of Theorem 3.4 is valid if the second equality of condition ( H 7 ) is replaced by

lim x + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) y [ 0 , + ) f 1 (t,x,y)=+,or lim y + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) x [ 0 , + ) f 1 (t,x,y)=+.

Remark 3.5 From the proof of Theorem 3.4, we know that the conclusion of Theorem 3.4 is valid if the second equality of condition ( H 7 ) is replaced by

lim inf x + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) y [ 0 , + ) f 2 (t,x,y)>,or lim inf y + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) x [ 0 , + ) f 2 (t,x,y)>,

where is defined in Theorem 3.4.

Similarly as Remark 3.4, the conclusion of Theorem 3.4 is also valid if the second equality of condition ( H 7 ) is replaced by

lim x + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) y [ 0 , + ) f 2 (t,x,y)=+,or lim y + inf t [ a ˜ , b ˜ ] ( 0 , 1 ) x [ 0 , + ) f 2 (t,x,y)=+.

4 Example

Consider the fractional differential system

{ D 0 + 5 2 u ( t ) + λ 1 f 1 ( t , u ( t ) , v ( t ) ) = 0 , D 0 + 5 2 v ( t ) + λ 2 f 2 ( t , u ( t ) , v ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = 0 , u ( 1 ) = 1 2 0 1 v ( t ) d t , v ( 0 ) = v ( 0 ) = 0 , v ( 1 ) = 0 1 u ( t ) d t 1 2 ,
(4.1)

where λ i >0 (i=1,2) is a parameter, α 1 = α 2 = 5 2 , μ 1 = 1 2 , μ 2 =1, A 1 (t)=t, A 2 (t)= t 1 2 . Then we have

k 1 = 0 1 t α 2 1 d A 1 ( t ) = 0 1 t 3 2 d t = 2 5 > 0 , k 2 = 0 1 t α 1 1 d A 2 ( t ) = 0 1 t 3 2 d t 1 2 = 1 2 0 1 t d t = 1 4 > 0 , 1 μ 1 μ 2 k 1 k 2 = 19 20 > 0 .

So, condition ( H 0 ) holds.

Next, in order to demonstrate the application of our main results obtained in Section 3, we choose two different sets of functions f i (t,x,y) (i=1,2) such that f i satisfies the conditions of Theorems 3.3 and 3.4.

Case 1. Let f 1 (t,x,y)= x 2 + y 2 t ( 1 t ) +lnt, f 2 (t,x,y)= 1 + e x + e y t ( 1 t ) +ln(1t), (t,x,y)(0,1)×[0,+)×[0,+). Take a 1 (t)= a 2 (t)= 1 t ( 1 t ) , q 1 (t)=lnt, q 2 (t)=ln(1t), p 1 (t,x,y)= x 2 + y 2 , p 2 (t,x,y)=1+ e x + e y , then

q i (t)f(t,x,y) a i (t) p i (t,x,y),(t,x,y)(0,1)×[0,+)×[0,+),i=1,2.

By a direct calculation, we have

0 1 a 1 (t)dt= 0 1 a 2 (t)dt=π, 0 1 q 1 (t)dt= 0 1 q 2 (t)dt=1.

So condition ( H 1 ) holds.

In addition, choose [ 1 3 , 2 3 ][0,1], we know

lim x + inf t [ 1 3 , 2 3 ] y [ 0 , + ) f 1 ( t , x , y ) x =+,or lim y + inf t [ 1 3 , 2 3 ] x [ 0 , + ) f 1 ( t , x , y ) y =+,

so condition ( H 6 ) of Theorem 3.3 is satisfied.

Therefore, by Theorem 3.3, we obtain that system (4.1) has at least one positive solution provided λ i >0 (i=1,2) is small enough.

Case 2. Let f 1 (t,x,y)= 2 ( x + y ) 1 2 t 3 ( 1 t ) 4 ( 1 + t 2 ( 1 t ) ) 2 t , f 2 (t,x,y)= 1 e x + y + 1 t ( 1 t ) 3 1 t , (t,x,y)(0,1)×[0,+)×[0,+). Take a 1 (t)= 2 t 3 ( 1 t ) 4 , a 2 (t)= 1 t ( 1 t ) , q 1 (t)= 2 t , q 2 (t)= 3 1 t , p 1 (t,x,y)= ( x + y ) 1 2 1 + t 2 ( 1 t ) , p 2 (t,x,y)= 1 e x + y + 1 , then

q i (t)f(t,x,y) a i (t) p i (t,x,y),(t,x,y)(0,1)×[0,+)×[0,+),i=1,2.

By a direct calculation, we have

0 1 a 1 (t)dt=2π, 0 1 a 2 (t)dt=π, 0 1 q 1 (t)dt=4, 0 1 q 2 (t)dt=6.

So condition ( H 1 ) holds.

In addition, choose [ 1 4 , 3 4 ][0,1], we know

lim sup x + sup t [ 0 , 1 ] y [ 0 , + ) p i ( t , x , y ) x =0,i=1,2,

and

lim inf x + inf t [ 1 4 , 3 4 ] y [ 0 , + ) f 1 (t,x,y)=+,or lim inf y + inf t [ 1 4 , 3 4 ] x [ 0 , + ) f 1 (t,x,y)=+,

so condition ( H 7 ) of Theorem 3.4 is satisfied.

Therefore, by Theorem 3.4, we obtain that system (4.1) has at least one positive solution provided λ i >0 (i=1,2) is sufficiently large.

References

  1. Amann H: Parabolic evolution equations and nonlinear boundary conditions. J. Differ. Equ. 1988, 72: 201-269. 10.1016/0022-0396(88)90156-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Mehmeti FA, Nicaise S: Nonlinear interaction problems. Nonlinear Anal. 1993, 20: 27-61. 10.1016/0362-546X(93)90183-S

    Article  MathSciNet  MATH  Google Scholar 

  3. Pao CV: Finite difference reaction-diffusion systems with coupled boundary conditions and time delays. J. Math. Anal. Appl. 2002, 272: 407-434. 10.1016/S0022-247X(02)00145-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang S: Doubly nonlinear degenerate parabolic systems with coupled nonlinear boundary conditions. J. Differ. Equ. 2002, 182: 431-469. 10.1006/jdeq.2001.4101

    Article  MathSciNet  MATH  Google Scholar 

  5. Leung A: A semilinear reaction-diffusion prey-predator system with nonlinear coupled boundary conditions: equilibrium and stability. Indiana Univ. Math. J. 1982, 31: 223-241. 10.1512/iumj.1982.31.31020

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronson DG: A comparison method for stability analysis of nonlinear parabolic problems. SIAM Rev. 1978, 20: 245-264. 10.1137/1020038

    Article  MathSciNet  MATH  Google Scholar 

  7. Salem HAH: On the existence of continuous solutions for a singular system of non-linear fractional differential equations. Appl. Math. Comput. 2008, 198: 445-452. 10.1016/j.amc.2007.08.063

    Article  MathSciNet  MATH  Google Scholar 

  8. Goodrich CS: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 2011, 62: 1251-1268. 10.1016/j.camwa.2011.02.039

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang GT, Agarwal RP, Cabada A: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Comput. 2012, 25: 1019-1024.

    MathSciNet  MATH  Google Scholar 

  10. Li R, Zhang HQ, Tao H: Unique solution of a coupled fractional differential system involving integral boundary conditions from economic model. Abstr. Appl. Anal. 2013., 2013: Article ID 615707

    Google Scholar 

  11. Henderson J, Luca R: Positive solutions for a system of nonlocal fractional boundary value problems. Fract. Calc. Appl. Anal. 2013, 16(4):985-1008. 10.2478/s13540-013-0061-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Henderson J, Luca R: Existence and multiplicity of positive solutions for a system of fractional boundary value problems. Bound. Value Probl. 2014., 2014: Article ID 60

    Google Scholar 

  13. Zhang HN, Gao WJ: Existence and uniqueness results for a coupled system of nonlinear fractional differential equations with antiperiodic boundary conditions. Abstr. Appl. Anal. 2014., 2014: Article ID 463517

    Google Scholar 

  14. Wang JH, Xiang HJ, Liu ZG: Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations. Int. J. Differ. Equ. 2010., 2010: Article ID 186928

    Google Scholar 

  15. Yang WG: Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions. Comput. Math. Appl. 2012, 63: 288-297. 10.1016/j.camwa.2011.11.021

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.

    MATH  Google Scholar 

  17. Podlubny I Mathematics in Science and Engineering 198. In Fractional Differential Equations. Academic Press, New York; 1999.

    Google Scholar 

  18. Yuan CJ: Multiple positive solutions for (n1,1) -type semipositone conjugate boundary value problems of nonlinear fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010., 2010: Article ID 36

    Google Scholar 

  19. Guo DJ, Lakshmikantham V: Nonlinear Problems in Abstract Cones. Academic Press, New York; 1988.

    MATH  Google Scholar 

Download references

Acknowledgements

The first and second authors were supported financially by the National Natural Science Foundation of China (11371221), the Specialized Research Foundation for the Doctoral Program of Higher Education of China (20123705110001) and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province. The third author was supported financially by the Australia Research Council through an ARC Discovery Project Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishan Liu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The study was carried out in collaboration between all authors. YW completed the main part of this paper and gave two examples; LSL and YHW corrected the main theorems and polished the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, L. & Wu, Y. Positive solutions for a class of higher-order singular semipositone fractional differential systems with coupled integral boundary conditions and parameters. Adv Differ Equ 2014, 268 (2014). https://doi.org/10.1186/1687-1847-2014-268

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-268

Keywords