Skip to main content

Barnes’ multiple Bernoulli and generalized Barnes’ multiple Frobenius-Euler mixed-type polynomials

Abstract

In this paper, by considering Barnes’ multiple Bernoulli polynomials as well as generalized Barnes’ multiple Frobenius-Euler polynomials, we define and investigate the mixed-type polynomials of these polynomials. From the properties of Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

MSC:05A15, 05A40, 11B68, 11B75, 33E20, 65Q05.

1 Introduction

In this paper, we consider the polynomials

B H n (x)=B H n (x|a;b;λ;μ)=B H n (x| a 1 ,, a r ; b 1 ,, b s ; λ 1 ,, λ s ; μ 1 ,, μ s )

called Barnes’ multiple Bernoulli and generalized Barnes’ multiple Frobenius-Euler mixed-type polynomials, whose generating function is given by

i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e x t = n = 0 B H n (x) t n n ! ,
(1)

where a 1 ,, a r , b 1 ,, b s , λ 1 ,, λ s , μ 1 ,, μ s C with a 1 ,, a r , b 1 ,, b s 0, λ 1 ,, λ s 1. When x=0,

B H n =B H n (0)=B H n (0; a 1 ,, a r ; b 1 ,, b s ; λ 1 ,, λ r ; μ 1 ,, μ r )

are called Barnes’ multiple Bernoulli and generalized Barnes’ multiple Frobenius-Euler mixed-type numbers.

Recall that Barnes’ multiple Bernoulli polynomials, denoted by B n (x| a 1 ,, a r ), are given by the generating function as

i = 1 r ( t e a i t 1 ) e x t = n = 0 B n (x| a 1 ,, a r ) t n n ! ,
(2)

where a 1 ,, a r 0 [1, 2]. In addition, the generalized Barnes’ multiple Frobenius-Euler polynomials, denoted by H n (x|b;λ;μ)= H n (x| b 1 ,, b s ; λ 1 ,, λ s ; μ 1 ,, μ s ), are given by the generating function as

j = 1 s ( 1 λ j e b j t λ j ) μ j e x t = n = 0 H n (x|b;λ;μ) t n n !
(3)

(see e.g. [37]). If μ 1 == μ s =1, then

H n (x| b 1 ,, b s ; λ 1 ,, λ s )= H n (x| b 1 ,, b s ; λ 1 ,, λ s ;1,,1)

are called Barnes-type Frobenius-Euler polynomials. If further λ 1 == λ s =λ and b 1 == b s =1, then H n ( s ) (x|λ)= H n (x|1,,1;λ,,λ;1,,1) are called Frobenius-Euler polynomials of order s (see e.g. [8, 9]). If λ 1 == λ s =1, then E n (x| b 1 ,, b s ; μ 1 ,, μ s )= H n (x| b 1 ,, b s ;1,,1; μ 1 ,, μ s ) are called generalized Barnes-type Euler polynomials. These polynomials arise naturally in connection with the study of Barnes-type Peters polynomials. Peters polynomials were mentioned in [[10], p.128] and were investigated in e.g. [11].

In this paper, by considering Barnes’ multiple Bernoulli polynomials as well as generalized Barnes’ multiple Frobenius-Euler polynomials, we define and investigate the mixed-type polynomials of these polynomials. From the properties of Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

2 Umbral calculus

Let be a complex number field and let be the set of all formal power series in the variable t:

F= { f ( t ) = k = 0 a k k ! t k | a k C } .
(4)

Let P=C[x] and let P be the vector space of all linear functionals on . L|p(x) is the action of the linear functional L on the polynomial p(x), and we recall that the vector space operations on P are defined by L+M|p(x)=L|p(x)+M|p(x), cL|p(x)=cL|p(x), where c is a complex constant in . For f(t)F, let us define the linear functional on by setting

f ( t ) | x n = a n (n0).
(5)

In particular,

t k | x n =n! δ n , k (n,k0),
(6)

where δ n , k is the Kronecker symbol.

For f L (t)= k = 0 L | x k k ! t k , we have f L (t)| x n =L| x n . That is, L= f L (t). The map L f L (t) is a vector space isomorphism from P onto . Henceforth, denotes both the algebra of formal power series in t and the vector space of all linear functionals on , and so an element f(t) of will be thought of as both a formal power series and a linear functional. We call umbral algebra, and umbral calculus is the study of umbral algebra. The order O(f(t)) of a power series f(t) (≠0) is the smallest integer k for which the coefficient of t k does not vanish. If O(f(t))=1, then f(t) is called a delta series; if O(f(t))=0, then f(t) is called an invertible series. For f(t),g(t)F with O(f(t))=1 and O(g(t))=0, there exists a unique sequence s n (x) (deg s n (x)=n) such that g(t)f ( t ) k | s n (x)=n! δ n , k for n,k0 [[10], Theorem 2.3.1]. Such a sequence s n (x) is called the Sheffer sequence for (g(t),f(t)) which is denoted by s n (x)(g(t),f(t)).

For f(t),g(t)F and p(x)P, we have

f ( t ) g ( t ) | p ( x ) = f ( t ) | g ( t ) p ( x ) = g ( t ) | f ( t ) p ( x ) ,
(7)

and

f(t)= k = 0 f ( t ) | x k t k k ! ,p(x)= k = 0 t k | p ( x ) x k k ! ,
(8)

[[10], Theorem 2.2.5]. Thus, by (8), we get

t k p(x)=p(x)= d k p ( x ) d x k and e y t p(x)=p(x+y).
(9)

Sheffer sequences are characterized in the generating function [[10], Theorem 2.3.4].

Lemma 1 The sequence s n (x) is Sheffer for (g(t),f(t)) if and only if

1 g ( f ¯ ( t ) ) e y f ¯ ( t ) = k = 0 s k ( y ) k ! t k (yC),

where f ¯ (t) is the compositional inverse of f(t).

For s n (x)(g(t),f(t)), we have the following equations [[10], Theorem 2.3.7, Theorem 2.3.5, Theorem 2.3.9]:

f(t) s n (x)=n s n 1 (x)(n0),
(10)
s n (x)= j = 0 n 1 j ! g ( f ¯ ( t ) ) 1 f ¯ ( t ) j | x n x j ,
(11)
s n (x+y)= j = 0 n ( n j ) s j (x) p n j (y),
(12)

where p n (x)=g(t) s n (x).

Assume that p n (x)(1,f(t)) and q n (x)(1,g(t)). Then the transfer formula [[10], Corollary 3.8.2] is given by

q n (x)=x ( f ( t ) g ( t ) ) n x 1 p n (x)(n1).

For s n (x)(g(t),f(t)) and r n (x)(h(t),l(t)), assume that

s n (x)= m = 0 n C n , m r m (x)(n0).

Then we have [[10], p.132]

C n , m = 1 m ! h ( f ¯ ( t ) ) g ( f ¯ ( t ) ) l ( f ¯ ( t ) ) m | x n .
(13)

3 Main results

From definitions (2), (3) and (1), B n (x| a 1 ,, a r ), H n (x| b 1 ,, b s ; λ 1 ,, λ s ; μ 1 ,, μ s ) and B H n (x| a 1 ,, a r ; b 1 ,, b s ; λ 1 ,, λ s ; μ 1 ,, μ s ) are the Appell sequences for

i = 1 r ( e a i t 1 t ) , j = 1 s ( e b j t λ j 1 λ j ) μ j and i = 1 r ( e a i t 1 t ) j = 1 s ( e b j t λ j 1 λ j ) μ j ,

respectively. So,

B n (x| a 1 ,, a r ) ( i = 1 r ( e a i t 1 t ) , t ) ,
(14)
H n (x| b 1 ,, b s ; λ 1 ,, λ s ; μ 1 ,, μ s ) ( j = 1 s ( e b j t λ j 1 λ j ) μ j , t ) ,
(15)
B H n ( x | a 1 , , a r ; b 1 , , b s ; λ 1 , , λ s ; μ 1 , , μ s ) ( i = 1 r ( e a i t 1 t ) j = 1 s ( e b j t λ j 1 λ j ) μ j , t ) .
(16)

In particular,

t B n ( x | a ) = d d x B n ( x | a ) = n B n 1 ( x | a ) , t H n ( x | b ; λ ; μ ) = d d x H n ( x | b ; λ ; μ ) = n H n 1 ( x | b ; λ ; μ ) , t B H n ( x | a ; b ; λ ; μ ) = d d x B H n ( x | a ; b ; λ ; μ ) = n B H n 1 ( x | a ; b ; λ ; μ ) ,

where a=( a 1 ,, a r ), b=( b 1 ,, b s ), λ=( λ 1 ,, λ s ) and μ=( μ 1 ,, μ s ).

3.1 Explicit expressions

Let ( n ) j =n(n1)(nj+1) (j1) with ( n ) 0 =1. The (signed) Stirling numbers of the first kind S 1 (n,m) are defined by

( x ) n = m = 0 n S 1 (n,m) x m .

Notice that

( x ) n ( 1 , e t 1 ) .
(17)

Theorem 1 We have

B H n (x|a;b;λ;μ)= j = 0 n ( n j ) B H n j x j
(18)
= l = 0 n ( n l ) B n l (a) H l (x|b;λ;μ)
(19)
= l = 0 n ( n l ) H n l (b;λ;μ) B l (x|a).
(20)

Proof By (11) with (16), we get

g ( f ¯ ( t ) ) 1 f ¯ ( t ) j | x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j t j | x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | t j x n = ( n ) j i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | x n j = ( n ) j i = 0 B H i t i i ! | x n j = ( n ) j B H n j .

Thus, we obtain identity (18).

Next,

B H n ( y | a ; b ; λ ; μ ) = i = 0 B H i ( y | a ; b ; λ ; μ ) t i i ! | x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t | x n = i = 1 r ( t e a i t 1 ) | j = 1 s ( 1 λ j e b j t λ j ) μ j e y t x n = i = 1 r ( t e a i t 1 ) | l = 0 H l ( y | b ; λ ; μ ) t l l ! x n = l = 0 n ( n l ) H l ( y | b ; λ ; μ ) i = 1 r ( t e a i t 1 ) | x n l = l = 0 n ( n l ) H l ( y | b ; λ ; μ ) i = 0 B i ( a ) t i i ! | x n l = l = 0 n ( n l ) H l ( y | b ; λ ; μ ) B n l ( a ) .

Thus, we obtain (19).

Finally, we obtain that

B H n ( y | a ; b ; λ ; μ ) = i = 0 B H i ( y | a ; b ; λ ; μ ) t i i ! | x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t | x n = j = 1 s ( 1 λ j e b j t λ j ) μ j | i = 1 r ( t e a i t 1 ) e y t x n = j = 1 s ( 1 λ j e b j t λ j ) μ j | l = 0 B l ( y | a ) t l l ! x n = l = 0 n ( n l ) B l ( y | a ) j = 1 s ( 1 λ j e b j t λ j ) μ j | x n l = l = 0 n ( n l ) B l ( y | a ) i = 0 H i ( b ; λ ; μ ) t i i ! | x n l = l = 0 n ( n l ) B l ( y | a ) H n l ( b ; λ ; μ ) .

Thus, we get identity (20). □

3.2 The Sheffer identity

Theorem 2

B H n (x+y|a;b;λ;μ)= j = 0 n ( n j ) B H j (x|a;b;λ;μ) y n j .
(21)

Proof By (16) with

p n ( x ) = i = 1 r ( e a i t 1 t ) j = 1 s ( e b j t λ j 1 λ j ) μ j B H n ( x | a ; b ; λ ; μ ) = x n ( 1 , t ) ,

using (12), we have (21). □

3.3 Recurrence

Theorem 3

( 1 r n + 1 ) B H n + 1 ( x | a ; b ; λ ; μ ) = x B H n ( x | a ; b ; λ ; μ ) 1 n + 1 i = 1 r a i B H n + 1 ( x + a i | a , a i ; b ; λ ; μ ) j = 1 s μ j b j 1 λ j B H n ( x + b j | a ; b ; λ ; μ + e j ) .
(22)

Remark When n=r1, as the left-hand side of (22) is equal to 0, we have

x B H r 1 ( x | a ; b ; λ ; μ ) = 1 r i = 1 r a i B H r ( x + a i | a , a i ; b ; λ ; μ ) + j = 1 s μ j b j 1 λ j B H r 1 ( x + b j | a ; b ; λ ; μ + e j ) .

Proof By applying

s n + 1 (x)= ( x g ( t ) g ( t ) ) 1 f ( t ) s n (x)
(23)

[[10], Corollary 3.7.2] with (16), we get

B H n + 1 (x|a;b;λ;μ)=xB H n (x|a;b;λ;μ) g ( t ) g ( t ) B H n (x|a;b;λ;μ).

Since

g ( t ) g ( t ) = ( ln g ( t ) ) = ( i = 1 r ln ( e a i t 1 ) r ln t + j = 1 s μ j ln ( e b j t λ j ) j = 1 s μ j ln ( 1 λ j ) ) = i = 1 r a i e a i t e a i t 1 r t + j = 1 s μ j b j e b j t e b j t λ j = 1 t i = 1 r ( a i t e a i t e a i t 1 1 ) + j = 1 s μ j b j e b j t e b j t λ j

and

i = 1 r ( a i t e a i t e a i t 1 1 ) = 1 2 ( i = 1 r a i ) t+

is a series with order at least one, we have

g ( t ) g ( t ) B H n ( x | a ; b ; λ ; μ ) = ( 1 t i = 1 r ( a i t e a i t e a i t 1 1 ) + j = 1 s μ j b j e b j t 1 λ j 1 λ j e b j t λ j ) B H n ( x | a ; b ; λ ; μ ) = 1 t i = 1 r ( a i t e a i t e a i t 1 1 ) B H n ( x | a ; b ; λ ; μ ) + j = 1 s μ j b j e a j t 1 λ j i = 1 r ( t e a i t 1 ) 1 λ j e b j t λ j j = 1 s ( 1 λ j e b j t λ j ) μ j x n = 1 n + 1 ( i = 1 r a i t e a i t e a i t 1 r ) B H n + 1 ( x | a ; b ; λ ; μ ) + j = 1 s μ j b j 1 λ j B H n ( x + b j | a ; b ; λ ; μ + e j ) = 1 n + 1 i = 1 r a i e a i t t e a i t 1 ν = 1 r ( t e a ν t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j x n + 1 r n + 1 B H n + 1 ( x | a ; b ; λ ; μ ) + j = 1 s μ j b j 1 λ j B H n ( x + b j | a ; b ; λ ; μ + e j ) = 1 n + 1 i = 1 r a i B H n + 1 ( x + a i | a , a i ; b ; λ ; μ ) r n + 1 B H n + 1 ( x | a ; b ; λ ; μ ) + j = 1 s μ j b j 1 λ j B H n ( x + b j | a ; b ; λ ; μ + e j ) .

Here (a, a i )=( a 1 ,, a r , a i ) and (i=1,2,,r). Therefore, we obtain

( 1 r n + 1 ) B H n + 1 ( x | a ; b ; λ ; μ ) = x B H n ( x | a ; b ; λ ; μ ) 1 n + 1 i = 1 r a i B H n + 1 ( x + a i | a , a i ; b ; λ ; μ ) j = 1 s μ j b j 1 λ j B H n ( x + b j | a ; b ; λ ; μ + e j ) ,

which is (22). □

3.4 More relations

Theorem 4 For n1, we have

B H n ( x | a ; b ; λ ; μ ) = x B H n 1 ( x | a ; b ; λ ; μ ) j = 1 s μ j b j 1 λ j B H n 1 ( x + b j | a ; b ; λ ; μ + e j ) + m = 1 n ( 1 ) m 1 ( n 1 m 1 ) B m m B H n m ( x | a ; b ; λ ; μ ) i = 1 r a i m .
(24)

Proof For n1, we have

B H n ( y | a ; b ; λ ; μ ) = l = 0 B H l ( y | a ; b ; λ ; μ ) t l l ! | x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t | x n = t ( i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t ) | x n 1 = ( t i = 1 r ( t e a i t 1 ) ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t | x n 1 + i = 1 r ( t e a i t 1 ) ( t j = 1 s ( 1 λ j e b j t λ j ) μ j ) e y t | x n 1 + i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j ( t e y t ) | x n 1 .

The third term is

y i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t | x n 1 =yB H n 1 (y|a;b;λ;μ).

Since

t i = 1 r ( t e a i t 1 ) = i = 1 r ( t e a i t 1 ) ν i t e a ν t 1 = t r 1 ν = 1 r ( e a ν t 1 ) ( r i = 1 r a i t e a i t e a i t 1 ) = t r 1 ν = 1 r ( e a ν t 1 ) ( r i = 1 r a i t e a i t 1 ) = t r 1 ν = 1 r ( e a ν t 1 ) ( r i = 1 r m = 0 ( a i ) m B m t m m ! ) = t r 1 ν = 1 r ( e a ν t 1 ) ( r m = 0 i = 1 r ( a i ) m B m t m m ! ) = t r ν = 1 r ( e a ν t 1 ) m = 1 i = 1 r a i m ( 1 ) m 1 B m m ! t m 1 ,

the first term is

i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t | m = 1 i = 1 r a i m ( 1 ) m 1 B m m ! t m 1 x n 1 = m = 1 n ( 1 ) m 1 ( n 1 m 1 ) B m m i = 1 r a i m i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j e y t | x n m = m = 1 n ( 1 ) m 1 ( n 1 m 1 ) B m m B H n m ( y | a ; b ; λ ; μ ) i = 1 r a i m .

Since

t j = 1 s ( 1 λ j e b j t λ j ) μ j = j = 1 s ( ( 1 λ j e b j t λ j ) μ j ) ν j ( 1 λ ν e b ν t λ ν ) μ ν = j = 1 s ( 1 λ j e b j t λ j ) μ j ν = 1 s μ ν b ν e b ν t 1 λ ν 1 λ ν e b ν t λ ν ,

the second term is

ν = 1 s μ ν b ν 1 λ ν i = 1 r ( t e a i t 1 ) 1 λ ν e b ν t λ ν j = 1 s ( 1 λ j e b j t λ j ) μ j e ( y + b ν ) t | x n 1 = ν = 1 s μ ν b ν 1 λ ν B H n 1 ( y + b ν | a ; b ; λ ; μ + e ν ) .

Therefore, we obtain

B H n ( x | a ; b ; λ ; μ ) = x B H n 1 ( x | a ; b ; λ ; μ ) j = 1 s μ j b j 1 λ j B H n 1 ( x + b j | a ; b ; λ ; μ + e j ) + m = 1 n ( 1 ) m 1 ( n 1 m 1 ) B m m B H n m ( x | a ; b ; λ ; μ ) i = 1 r a i m ,

which is identity (24). □

3.5 A relation including Bernoulli numbers

Theorem 5 For n1m1, we have

( n m ) B H n m ( a ; b ; λ ; μ ) = ( n m ) j = 1 s μ j b j 1 λ j B H n m 1 ( b i | a ; b ; λ ; μ + e j ) + l = 1 n m ( 1 ) l 1 ( n m l ) B l B H n m l ( a ; b ; λ ; μ ) i = 1 r a i l .
(25)

Proof We shall compute

i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j t m | x n

in two different ways. On the one hand, it is equal to

i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | t m x n = ( n ) m i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | x n m = ( n ) m B H n m ( a ; b ; λ ; μ ) .

On the other hand, it is equal to

t ( i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j t m ) | x n 1 = ( t i = 1 r ( t e a i t 1 ) ) j = 1 s ( 1 λ j e b j t λ j ) μ j t m | x n 1 + i = 1 r ( t e a i t 1 ) ( t j = 1 s ( 1 λ j e b j t λ j ) μ j ) t m | x n 1 + i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j ( t t m ) | x n 1 .
(26)

The third term of (26) is equal to

m i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j t m 1 | x n 1 = m ( n 1 ) m 1 B H n m ( a ; b ; λ ; μ ) .

The second term of (26) is equal to

l = 1 s μ l b l 1 λ l i = 1 r ( t e a i t 1 ) 1 λ l e b l t λ l j = 1 s ( 1 λ j e b j t λ j ) μ j e b l t | t m x n 1 = ( n 1 ) m l = 1 s μ l b l 1 λ l i = 1 r ( t e a i t 1 ) 1 λ l e b l t λ l j = 1 s ( 1 λ j e b j t λ j ) μ j e b l t | x n m 1 = ( n 1 ) m l = 1 s μ l b l 1 λ l B H n m 1 ( b l | a ; b ; λ ; μ + e l ) .

Since

( n 1 ) l 1 ( n l ) m = ( n 1 ) l + m 1 = ( n 1 ) m 1 ( n m ) l ,

the first term of (26) is equal to

i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j t m | l = 1 ( ν = 1 r a ν l ) ( 1 ) l 1 B l l ! t l 1 x n 1 = l = 1 n m ( ν = 1 r a ν l ) ( 1 ) l 1 B l l ! ( n 1 ) l 1 i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j t m | x n l = l = 1 n m ( ν = 1 r a ν l ) ( 1 ) l 1 B l l ! ( n 1 ) l 1 ( n l ) m B H n m l ( a ; b ; λ ; μ ) = ( n 1 ) m 1 l = 1 n m ( 1 ) l 1 ( n m l ) B l B H n m l ( a ; b ; λ ; μ ) ν = 1 r a ν l .

Therefore, we get, for n1m1,

( n ) m B H n m ( a ; b ; λ ; μ ) = m ( n 1 ) m 1 B H n m ( a ; b ; λ ; μ ) ( n 1 ) m j = 1 s μ j b j 1 λ j B H n m 1 ( b j | a ; b ; λ ; μ + e j ) + ( n 1 ) m 1 l = 1 n m ( 1 ) l 1 ( n m l ) B l B H n m l ( a ; b ; λ ; μ ) i = 1 r a i l .

Dividing both sides by ( n 1 ) m 1 , we obtain, for n1m1,

( n m ) B H n m ( a ; b ; λ ; μ ) = ( n m ) j = 1 s μ j b j 1 λ j B H n m 1 ( b j | a ; b ; λ ; μ + e j ) + l = 1 n m ( 1 ) l 1 ( n m l ) B l B H n m l ( a ; b ; λ ; μ ) i = 1 r a i l .

Thus, we get (25). □

3.6 A relation with Stirling numbers

The Stirling numbers of the second kind S 2 (n,m) are defined by

( e t 1 ) m m ! = n = m S 2 (n,m) t n n ! .

Then

ϕ n (x):= m = 0 n S 2 (n,m) x m ( 1 , ln ( 1 + t ) ) .
(27)

Theorem 6

B H n (x|a;b;λ;μ)= m = 0 n l = m n ( n l ) S 1 (l,m)B H n l ϕ m (x).
(28)

Proof For (16) and (27), assume that B H n (x|a;b;λ;μ)= m = 0 n C n , m ϕ m (x). By (13), we have

C n , m = 1 m ! 1 i = 1 r ( e a i t 1 t ) j = 1 s ( e b j t λ j 1 λ j ) μ j ( ln ( 1 + t ) ) m | x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | 1 m ! ( ln ( 1 + t ) ) m x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | l = m S 1 ( l , m ) t l l ! x n = l = m n ( n l ) S 1 ( l , m ) i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | x n l = l = m n ( n l ) S 1 ( l , m ) B H n l .

Thus, we get identity (28). □

3.7 A relation with falling factorials

Theorem 7

B H n (x|a;b;λ;μ)= m = 0 n l = m n ( n l ) S 2 (l,m)B H n l ( x ) m .
(29)

Proof For (16) and (17), assume that B H n (x|a;b;λ;μ)= m = 0 n C n , m ( x ) m . By (13), we have

C n , m = 1 m ! 1 i = 1 r ( e a i t 1 t ) j = 1 s ( e b j t λ j 1 λ j ) μ j ( e t 1 ) m | x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | 1 m ! ( e t 1 ) m x n = i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | l = m S 2 ( l , m ) t l l ! x n = l = m n ( n l ) S 2 ( l , m ) i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | x n l = l = m n ( n l ) S 2 ( l , m ) B H n l .

Thus, we get identity (29). □

3.8 A relation with higher-order Frobenius-Euler polynomials

Theorem 8

B H n ( x | a ; b ; λ ; μ ) = 1 ( 1 α ) p m = 0 n ( n m ) ( l = 0 p ν = 0 n m ( p l ) ( n m ν ) ( α ) p l l ν B H n m ν ) H m ( p ) ( x | α ) .
(30)

Proof For (16) and

H n ( p ) (x|α) ( ( e t α 1 α ) p , t ) ,
(31)

assume that B H n (x|a;b;λ;μ)= m = 0 n C n , m H m ( s ) (x|α). By (13), similarly to the proof of (25), we have

C n , m = 1 m ! ( e t α 1 α ) p i = 1 r ( e a i t 1 t ) j = 1 s ( e b j t λ j 1 λ j ) μ j t m | x n = ( n m ) ( 1 α ) p i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | ( e t α ) p x n m = ( n m ) ( 1 α ) p i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | l = 0 p ( p l ) ( α ) p l e l t x n m = ( n m ) ( 1 α ) p l = 0 p ( p l ) ( α ) p l e l t | i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j x n m = ( n m ) ( 1 α ) p l = 0 p ( p l ) ( α ) p l e l t | ν = 0 B H ν t ν ν ! x n m = ( n m ) ( 1 α ) p l = 0 p ( p l ) ( α ) p l ν = 0 n m ( n m ν ) B H ν e l t | x n m ν = ( n m ) ( 1 α ) p l = 0 p ( p l ) ( α ) p l ν = 0 n m ( n m ν ) B H ν l n m ν = ( n m ) ( 1 α ) p l = 0 p ( p l ) ( α ) p l ν = 0 n m ( n m ν ) B H n m ν l ν .

Thus, we get identity (30). □

3.9 A relation with higher-order Bernoulli polynomials

Bernoulli polynomials B n ( p ) (x) of order p are defined by

( t e t 1 ) p e x t = n = 0 B n ( p ) ( x ) n ! t n

(see e.g. [[10], Section 2.2]).

Theorem 9

B H n (x|a;b;λ;μ)= m = 0 n ( n m ) ( l = 0 n m ( n m l ) ( n m l + p p ) S 2 ( n m l + p , p ) B H l ) B m ( p ) (x).
(32)

Proof For (16) and

B n ( p ) (x) ( ( e t 1 t ) p , t ) ,
(33)

assume that B H n (x|a;b;λ;μ)= m = 0 n C n , m B m ( p ) (x). By (13), similarly to the proof of (25), we have

C n , m = 1 m ! ( e t 1 t ) p i = 1 r ( e a i t 1 t ) j = 1 s ( e b j t λ j 1 λ j ) μ j t m | x n = ( n m ) i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | ( e t 1 t ) p x n m = ( n m ) i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | p ! l = 0 S 2 ( l + p , p ) t l ( l + p ) ! x n m = ( n m ) p ! l = 0 n m ( n m ) l ( l + p ) ! S 2 ( l + p , p ) i = 1 r ( t e a i t 1 ) j = 1 s ( 1 λ j e b j t λ j ) μ j | x n m l = ( n m ) l = 0 n m ( n m l ) ( l + p p ) S 2 ( l + p , p ) B H n m l = ( n m ) l = 0 n m ( n m l ) ( n m l + p p ) S 2 ( n m l + p , p ) B H l .

Thus, we get identity (32). □

References

  1. Araci S, Acikgoz M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 2012, 22: 399-406.

    MathSciNet  MATH  Google Scholar 

  2. Ota K: On Kummer-type congruences for derivatives of Barnes’ multiple Bernoulli polynomials. J. Number Theory 2002, 92: 1-36. 10.1006/jnth.2001.2702

    MathSciNet  Article  MATH  Google Scholar 

  3. Kim DS, Kim T: Higher-order Frobenius-Euler and poly-Bernoulli mixed-type polynomials. Adv. Differ. Equ. 2013., 2013: Article ID 251

    Google Scholar 

  4. Kim DS, Kim T, Lee S-H, Rim S-H: A note on the higher-order Frobenius-Euler polynomials and Sheffer sequences. Adv. Differ. Equ. 2013., 2013: Article ID 41

    Google Scholar 

  5. Can M, Cenkci M, Kurt V, Simsek Y: Twisted Dedekind type sums associated with Barnes’ type multiple Frobenius-Euler l -functions. Adv. Stud. Contemp. Math. 2009, 18: 135-160.

    MathSciNet  MATH  Google Scholar 

  6. Ryoo CS, Song H, Agarwal RP: On the roots of the q -analogue of Euler-Barnes’ polynomials. Adv. Stud. Contemp. Math. 2004, 9: 153-163.

    MathSciNet  MATH  Google Scholar 

  7. Simsek Y, Yurekli O, Kurt V: On interpolation functions of the twisted generalized Frobenius-Euler numbers. Adv. Stud. Contemp. Math. 2007, 15: 187-194.

    MathSciNet  Article  MATH  Google Scholar 

  8. Kim DS, Kim T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012., 2012: Article ID 196

    Google Scholar 

  9. Bayad A, Kim T: Results on values of Barnes polynomials. Rocky Mt. J. Math. 2013, 43: 1857-1869. 10.1216/RMJ-2013-43-6-1857

    MathSciNet  Article  MATH  Google Scholar 

  10. Roman S: The Umbral Calculus. Dover, New York; 2005.

    MATH  Google Scholar 

  11. Kim DS, Kim T: Poly-Cauchy and Peters mixed-type polynomials. Adv. Differ. Equ. 2014., 2014: Article ID 4

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2003786) and was partially supported by Kwangwoon University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, D.S., Kim, T., Komatsu, T. et al. Barnes’ multiple Bernoulli and generalized Barnes’ multiple Frobenius-Euler mixed-type polynomials. Adv Differ Equ 2014, 238 (2014). https://doi.org/10.1186/1687-1847-2014-238

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-238

Keywords

  • Formal Power Series
  • Linear Functional
  • Bernoulli Polynomial
  • Stirling Number
  • Euler Polynomial