Skip to main content

Theory and Modern Applications

Solvability of boundary value problems for fractional order elastic beam equations

Abstract

In this article, the existence results for solutions of a boundary value problem for nonlinear singular fractional order elastic beam equations are established. The analysis relies on the well-known Schauder’s fixed point theorem.

MSC:92D25, 34A37, 34K15.

1 Introduction

Boundary value problems for fractional differential equations have been discussed by many authors; see the textbooks [1, 2], papers [3–21] and the references therein.

Fourth-order two-point boundary value problems are useful for material mechanics because the problems usually characterize the deflection of an elastic beam. The following problem

{ u ′′′′ ( t ) = f ( t , u ( t ) ) , t ∈ ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = u ′ ( 1 ) = 0
(1)

describes the deflection of an elastic beam with both ends rigidly fixed. The existence of positive solutions were studied extensively; see [13–16].

In [12], the authors studied the existence of positive solutions of the following boundary value problem for the fractional order beam equation:

{ D 0 + α u ( t ) = f ( t , u ( t ) ) , t ∈ ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = u ′ ( 1 ) = 0 ,
(2)

where 3<α≤4, D 0 + α ( D α for short) is the Riemann-Liouville fractional derivative of order Î±, and f:[0,1]×[0,∞)→[0,∞) is continuous or f:[0,1]×(0,∞)→[0,∞) is continuous and f is singular at x=0. We note that f in (1) depends on x, t→f(t,x) is continuous and the solutions obtained in [11] satisfy that both x and x ′ are continuous on [0,1] (hence they are bounded on [0,1]).

Motivated by [12] and the above-mentioned example, in this paper we discuss the boundary value problem for nonlinear singular fractional order elastic beam equation of the form

{ D 0 + α u ( t ) = f ( t , u ( t ) ) , t ∈ ( 0 , 1 ) , lim t → 0 t 4 − α u ( t ) = a , lim t → 0 D 0 + α − 3 u ( t ) = b , u ( 1 ) = D 0 + α − 3 u ( 1 ) = 0 ,
(3)

where 3<α<4, D 0 + α ( D α for short) is the Riemann-Liouville fractional derivative of order Î±, a,b∈R and f:(0,1)×R→R is continuous. f may be singular at t=0 and t=1.

The purpose of this paper is to establish some existence results for solutions of BVP (3) by using Schauder’s fixed point theorem. The solutions obtained in this paper may be unbounded since lim t → 0 t 4 − α u(t)=a. The methods used in this paper are different from the ones used in [[13], contraction mapping and iterative techniques], [[14], Guo-Krasnosel’skii fixed point theorem], [[15], upper and lower solution methods], [[16], topological degree theory in Banach space], [[17], Lie symmetry group methods], [[18], the contraction mapping principle and Krasnoselskii’s fixed point theorem] and [[19], study the asymptotic behavior of solutions], Schauder’s fixed point theorem [22–24].

A function u:(0,1]→R is called a solution of BVP (3) if u∈ C 0 (0,1] and all equations in (3) are satisfied. The remainder of the paper is divided into three sections. In Section 2, we present some preliminary results. In Section 3, we establish sufficient conditions for solvability of BVP (3). An example is given to illustrate the main result at the end of the paper.

2 Preliminary results

For the convenience of the reader, we present here the necessary definitions from fractional calculus theory. These definitions and results can be found in the literature [1, 2]. Denote the gamma function and the beta function, respectively, by

Γ( σ 1 )= ∫ 0 + ∞ s σ 1 − 1 e − s ds,B( σ 2 , σ 3 )= ∫ 0 1 ( 1 − x ) σ 2 − 1 x σ 3 − 1 dx, σ i >0,i=1,2,3.

Definition 2.1 [1]

The Riemann-Liouville fractional integral of order α>0 of a function f:(0,∞)→R is given by

I 0 + α f(t)= 1 Γ ( α ) ∫ 0 t ( t − s ) α − 1 f(s)ds,

provided that the right-hand side exists.

Definition 2.2 [1]

The Riemann-Liouville fractional derivative of order α>0 of a continuous function f:(0,∞)→R is given by

D 0 + α f(t)= 1 Γ ( n − α ) d n d t n ∫ 0 t f ( s ) ( t − s ) α − n + 1 ds,

where n−1≤α<n, provided that the right-hand side is point-wise defined on (0,∞).

Lemma 2.1 [1]

Let n−1<α≤n, u∈ C 0 (0,1)∩ L 1 (0,1). Then

I 0 + α D 0 + α u(t)=u(t)+ C 1 t α − 1 + C 2 t α − 2 +⋯+ C n t α − n ,

where C i ∈R, i=1,2,…,n.

For our construction, we choose

X= { x ∈ C 0 ( 0 , 1 ] : there exists the limit  lim t → 0 t 4 − α x ( t ) }

with the norm

∥u∥= sup t ∈ ( 0 , 1 ] t 4 − α | u ( t ) |

for u∈X. It is easy to show that X is a real Banach space.

Lemma 2.2 Suppose that h∈ C 0 (0,1) and there exist k>−1 and σ∈(3−α,0] such that |h(t)|≤ t k ( 1 − t ) σ for all t∈(0,1). Then x∈X is a solution of the problem

{ D α x ( t ) = h ( t ) , 0 < t < 1 , lim t → 0 t 4 − α x ( t ) = lim t → 0 D 0 + α − 3 x ( t ) = 0 , x ( 1 ) = D 0 + α − 3 x ( 1 ) = 0 ,
(4)

if and only if x∈X satisfies

x ( t ) = ∫ 0 t ( t − s ) α − 1 Γ ( α ) h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 α − 1 t α − 1 + t α − 2 ) ∫ 0 1 ( 1 − s ) α − 1 h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( t α − 1 − t α − 2 ) ∫ 0 1 ( 1 − s ) 2 h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 ( α − 3 ) t α − 1 + α ( α − 3 ) t α − 2 − ( α − 2 ) ( α − 3 ) t α − 3 ) b + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 Γ ( α − 1 ) t α − 1 + Γ ( α ) t α − 2 + ( 2 Γ ( α − 1 ) − Γ ( α ) ) t α − 4 ) a .
(5)

Proof Since h∈ C 0 (0,1) and there exist k>−1 and σ∈(3−α,0] such that |h(t)|≤ t k ( 1 − t ) σ for all t∈(0,1), then

| ∫ 0 t ( t − s ) α − 1 Γ ( α ) h ( s ) d s | ≤ ∫ 0 t ( t − s ) α − 1 Γ ( α ) s k ( 1 − s ) σ d s ≤ ∫ 0 t ( t − s ) α − 1 Γ ( α ) s k ( t − s ) σ d s ≤ ∫ 0 t ( t − s ) α + σ − 1 Γ ( α ) s k d s = t α + σ + k ∫ 0 1 ( 1 − w ) α + σ − 1 Γ ( α ) w k d w = t α + σ + k B ( α + σ , k + 1 ) Γ ( α ) .

Similarly, we get

| ∫ 0 1 ( 1 − s ) 2 h(s)ds|≤B(3+σ,k+1).

So, for t∈(0,1], D α u(t)=h(t) together with Lemma 2.1 implies that there exist constants c i (i=1,2,3,4) such that

x(t)= ∫ 0 t ( t − s ) α − 1 Γ ( α ) h(s)ds+ c 1 t α − 1 + c 2 t α − 2 + c 3 t α − 3 + c 4 t α − 4

with

D 0 + α − 3 x(t)= ∫ 0 t ( t − s ) 2 2 h(s)ds+ c 1 Γ ( α ) 2 t 2 + c 2 Γ(α−1)t+ c 3 Γ(α−2).

Now, lim t → 0 t 4 − α x(t)=a implies that c 4 =a.

lim t → 0 D 0 + α − 3 x(t)=b implies c 3 = b Γ ( α − 2 ) .

u(1)= D 0 + α − 3 (1)=0 implies that

c 1 + c 2 = − ∫ 0 1 ( 1 − s ) α − 1 Γ ( α ) h ( s ) d s − b Γ ( α − 2 ) − a , c 1 Γ ( α ) 2 + c 2 Γ ( α − 1 ) = − ∫ 0 1 ( 1 − s ) 2 2 h ( s ) d s − b .

It follows that

c 1 = 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) 2 h ( s ) d s − 2 α − 1 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) α − 1 h ( s ) d s − 2 ( α − 3 ) 2 Γ ( α − 1 ) − Γ ( α ) b − 2 Γ ( α − 1 ) 2 Γ ( α − 1 ) − Γ ( α ) a , c 2 = − 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) 2 h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) α − 1 h ( s ) d s + α ( α − 3 ) 2 Γ ( α − 1 ) − Γ ( α ) b + Γ ( α ) 2 Γ ( α − 1 ) − Γ ( α ) a .

Then

x ( t ) = ∫ 0 t ( t − s ) α − 1 Γ ( α ) h ( s ) d s + t α − 1 ( 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) 2 h ( s ) d s − 2 α − 1 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) α − 1 h ( s ) d s − 2 ( α − 3 ) 2 Γ ( α − 1 ) − Γ ( α ) b − 2 Γ ( α − 1 ) 2 Γ ( α − 1 ) − Γ ( α ) a ) + t α − 2 ( − 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) 2 h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) α − 1 h ( s ) d s + α ( α − 3 ) 2 Γ ( α − 1 ) − Γ ( α ) b + Γ ( α ) 2 Γ ( α − 1 ) − Γ ( α ) a ) + t α − 3 b Γ ( α − 2 ) + t α − 4 a = ∫ 0 t ( t − s ) α − 1 Γ ( α ) h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 α − 1 t α − 1 + t α − 2 ) ∫ 0 1 ( 1 − s ) α − 1 h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( t α − 1 − t α − 2 ) ∫ 0 1 ( 1 − s ) 2 h ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 ( α − 3 ) t α − 1 + α ( α − 3 ) t α − 2 − ( α − 2 ) ( α − 3 ) t α − 3 ) b + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 Γ ( α − 1 ) t α − 1 + Γ ( α ) t α − 2 + ( 2 Γ ( α − 1 ) − Γ ( α ) ) t α − 4 ) a .

It is easy to see that x∈ C 0 (0,1]. Furthermore, we have

t 4 − α | ∫ 0 t ( t − s ) α − 1 Γ ( α ) h(s)ds|≤ t 4 + σ + k B ( α + σ , k + 1 ) Γ ( α ) →0as t→0.

Then the following limit exists

lim t → 0 t 4 − α x(t).

Hence x∈X and x satisfies (5).

On the other hand, if x∈X satisfies (5), we can show that x is a solution of problem (4). The proof is completed. □

Define the operator T on X, for x∈X, denote f x (t)=f(t,x(t)), by

( T x ) ( t ) = ∫ 0 t ( t − s ) α − 1 Γ ( α ) f ( s , x ( s ) ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 α − 1 t α − 1 + t α − 2 ) ∫ 0 1 ( 1 − s ) α − 1 f ( s , x ( s ) ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( t α − 1 − t α − 2 ) ∫ 0 1 ( 1 − s ) 2 f ( s , x ( s ) ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 ( α − 3 ) t α − 1 + α ( α − 3 ) t α − 2 − ( α − 2 ) ( α − 3 ) t α − 3 ) b + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 Γ ( α − 1 ) t α − 1 + Γ ( α ) t α − 2 + ( 2 Γ ( α − 1 ) − Γ ( α ) ) t α − 4 ) a .

By Lemma 2.2, we have that x∈X is a solution of BVP (3) if and only if x∈X is a fixed point of T.

Lemma 2.3 Suppose that

(B0) f(t,x) is continuous on (0,1)×R and satisfies that for each r>0 there exist k>−1, σ∈(3−α,0] and M r >0 such that

| f ( t , t α − 4 x ) | ≤ M r t k ( 1 − t ) σ

holds for all t∈(0,1), |x|≤r.

Then T:X→X is completely continuous.

Proof We divide the proof into four steps.

Step 1. We prove that T:X→X is well defined.

For x∈X, there exists r>0 such that

sup t ∈ ( 0 , 1 ] t 4 − α | x ( t ) | <r.

Then there exist k>−1, σ∈(3−α,0], M r ≥0 such that

| f ( t , x ( t ) ) | = | f ( t , t α − 4 t 4 − α x ( t ) ) | ≤ M r t k ( 1 − t ) σ
(6)

for all t∈(0,1). Similarly to the proof of Lemma 2.2, we can show that Tx∈X. So T:X→X is well defined.

Step 2. T is continuous.

Let { x n ∈X} be a sequence such that x n → x 0 as n→∞ in X. Then there exists r>0 such that

sup t ∈ ( 0 , 1 ] t 4 − α | x n ( t ) | ≤r

holds for n=0,1,2,… . Then there exist M r >0, k>−1 and σ∈(3−α,0) such that

| f ( t , x n ( t ) ) | = | f ( t , t α − 4 t 4 − α x n ( t ) ) | ≤ M r t k ( 1 − t ) σ

holds for all t∈(0,1), n=0,1,2,… . Then

t 4 − α | ( T x n ) ( t ) − ( T x 0 ) ( t ) | ≤ t 4 − α ∫ 0 t ( t − s ) α − 1 Γ ( α ) | f x n ( s ) − f x 0 ( s ) | d s + 1 | 2 Γ ( α − 1 ) − Γ ( α ) | | − 2 α − 1 t 3 + t 2 | ∫ 0 1 ( 1 − s ) α − 1 | f x n ( s ) − f x 0 ( s ) | d s + 1 | 2 Γ ( α − 1 ) − Γ ( α ) | | t 3 − t 2 | ∫ 0 1 ( 1 − s ) 2 | f x n ( s ) − f x 0 ( s ) | d s ≤ 2 M r t 4 − α ∫ 0 t ( t − s ) α − 1 Γ ( α ) s k ( 1 − s ) σ d s + 2 M r | 2 Γ ( α − 1 ) − Γ ( α ) | ( 2 α − 1 + 1 ) ∫ 0 1 ( 1 − s ) α − 1 s k ( 1 − s ) σ d s + 4 M r | 2 Γ ( α − 1 ) − Γ ( α ) | ∫ 0 1 ( 1 − s ) 2 s k ( 1 − s ) σ d s ≤ 2 M r t 4 − α ∫ 0 t ( t − s ) α − 1 Γ ( α ) s k ( t − s ) σ d s + 2 M r B ( α + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | ( 2 α − 1 + 1 ) + 4 M r B ( 3 + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | ≤ 2 M r t 4 + σ + k ∫ 0 1 ( 1 − w ) α + σ − 1 Γ ( α ) w k d w + 2 M r B ( α + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | ( 2 α − 1 + 1 ) + 4 M r B ( 3 + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | ≤ 2 M r B ( α + σ , k + 1 ) Γ ( α ) + 2 M r B ( α + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | ( 2 α − 1 + 1 ) + 4 M r B ( 3 + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | .

By the dominant convergence theorem, we have ∥T x n −T x 0 ∥→0 as n→∞. Then T is continuous.

Let Ω⊂X be a bounded subset. Then there exists r>0 such that

sup t ∈ ( 0 , 1 ] t 4 − α | x ( t ) | ≤r,x∈Ω.

Then there exist M r >0, k>−1 and σ∈(3−α,0) such that

| f ( t , x ( t ) ) | = | f ( t , t α − 4 t 4 − α x ( t ) ) | ≤ M r t k ( 1 − t ) σ

holds for all t∈(0,1), x∈Ω.

Step 3. Prove that T Ω is a bounded set in X.

Similarly to Step 2, we can show that

t 4 − α | ( T x ) ( t ) | ≤ M r B ( α + σ , k + 1 ) Γ ( α ) + M r B ( α + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | ( 2 α − 1 + 1 ) + 2 M r B ( 3 + σ , k + 1 ) | 2 Γ ( α − 1 ) − Γ ( α ) | .

So T maps bounded sets into bounded sets in X.

Step 4. Prove that T Ω is a relatively compact set in X.

We can prove easily that { t 4 − α (Tu)(t):u∈Ω} is equicontinuous on (0,1]. Therefore, T Ω is relatively compact.

From the above discussion, T is completely continuous. The proof is complete. □

3 Main results

In this section, we prove the main results.

Theorem 3.1 Suppose that

(B1) ϕ∈ C 0 (0,1) satisfies that there exist k 0 >−1, σ 0 ∈(3−α,0] and M 0 >0 such that |ϕ(t)|≤ M 0 t k 0 ( 1 − t ) σ 0 for all t∈(0,1);

(B2) f:(0,1)×R→R is continuous and there exist numbers k 1 >−1, σ 1 ∈(3−α,0], μ≥0, A≥0 such that

| f ( t , t α − 4 x ) − ϕ ( t ) | ≤A t k 1 ( 1 − t ) σ 1 | x | μ

holds for all t∈(0,1), x∈R. Let

Φ ( t ) = ∫ 0 t ( t − s ) α − 1 Γ ( α ) ϕ ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 α − 1 t α − 1 + t α − 2 ) ∫ 0 1 ( 1 − s ) α − 1 ϕ ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( t α − 1 − t α − 2 ) ∫ 0 1 ( 1 − s ) 2 ϕ ( s ) d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 ( α − 3 ) t α − 1 + α ( α − 3 ) t α − 2 − ( α − 2 ) ( α − 3 ) t α − 3 ) b + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 Γ ( α − 1 ) t α − 1 + Γ ( α ) t α − 2 + ( 2 Γ ( α − 1 ) − Γ ( α ) ) t α − 4 ) a

and

P = B ( α + σ 1 + k 1 , k 1 + 1 ) Γ ( α ) + 1 Γ ( α ) − 2 Γ ( α − 1 ) α + 1 α − 1 B ( α + σ 1 , k 1 + 1 ) + 2 Γ ( α ) − 2 Γ ( α − 1 ) B ( 3 + σ 1 , k 1 + 1 ) .

Then BVP (3) has at least one solution if

  1. (i)

    μ<1 or

  2. (ii)

    μ=1 with AP<1 or

  3. (iii)

    μ>1 with

    ∥ Φ ∥ ( μ − 1 ) μ − 1 ( ∥ Φ ∥ μ ) μ ≥AP.

Proof It is easy to show that (B1) and (B2) imply (B0). Let the Banach space X and the operator T defined on X be defined in Section 2. By Lemma 2.3, T:X→X is well defined, completely continuous, x∈X is a positive solution if and only if x∈X is a fixed point of T. It is easy to see that Φ∈X.

For r>0, denote Ω r ={x∈X:∥x−Φ∥≤r}. One sees that

∥x∥= sup t ∈ ( 0 , 1 ] t 4 − α | x ( t ) | ≤∥x−Φ∥+∥Φ∥≤r+∥Φ∥,x∈ Ω r .

Hence for x∈ Ω r , we have

| f ( t , x ( t ) ) − ϕ ( t ) | = | f ( t , t α − 4 t 4 − α x ( t ) ) − ϕ ( t ) | ≤ A t k 1 ( 1 − t ) σ 1 | t 4 − α x ( t ) | μ ≤ A t k 1 ( 1 − t ) σ 1 [ r + ∥ Φ ∥ ] μ .

We have

t 4 − α | ( T x ) ( t ) − Φ ( t ) | ≤ t 4 − α ∫ 0 t ( t − s ) α − 1 Γ ( α ) | f ( s , x ( s ) ) − ϕ ( s ) | d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( − 2 α − 1 t 3 + t 2 ) × ∫ 0 1 ( 1 − s ) α − 1 | f ( s , x ( s ) ) − ϕ ( s ) | d s + 1 2 Γ ( α − 1 ) − Γ ( α ) ( t 3 − t 2 ) ∫ 0 1 ( 1 − s ) 2 | f ( s , x ( s ) ) − ϕ ( s ) | d s ≤ t 4 − α ∫ 0 t ( t − s ) α − 1 Γ ( α ) | f ( s , x ( s ) ) − ϕ ( s ) | d s + 1 2 Γ ( α − 1 ) − Γ ( α ) α + 1 α − 1 ∫ 0 1 ( 1 − s ) α − 1 | f ( s , x ( s ) ) − ϕ ( s ) | d s + 2 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) 2 | f ( s , x ( s ) ) − ϕ ( s ) | d s ≤ t 4 − α ∫ 0 t ( t − s ) α − 1 Γ ( α ) A s k 1 ( 1 − s ) σ 1 [ r + ∥ Φ ∥ ] μ d s + 1 2 Γ ( α − 1 ) − Γ ( α ) α + 1 α − 1 ∫ 0 1 ( 1 − s ) α − 1 A s k 1 ( 1 − s ) σ 1 [ r + ∥ Φ ∥ ] μ d s + 2 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) 2 A s k 1 ( 1 − s ) σ 1 [ r + ∥ Φ ∥ ] μ d s ≤ A [ r + ∥ Φ ∥ ] μ [ t 4 − α ∫ 0 t ( t − s ) α + σ 1 − 1 Γ ( α ) s k 1 d s + 1 2 Γ ( α − 1 ) − Γ ( α ) α + 1 α − 1 ∫ 0 1 ( 1 − s ) α + σ 1 − 1 s k 1 d s + 2 2 Γ ( α − 1 ) − Γ ( α ) ∫ 0 1 ( 1 − s ) 2 + σ 1 s k 1 d s ] = A P [ r + ∥ Φ ∥ ] μ .

It follows that

∥Tx−Φ∥≤AP [ r + ∥ Φ ∥ ] μ .

Case 1. μ<1.

Since there exists r 0 >0 sufficiently large such that

AP [ r 0 + ∥ Φ ∥ ] μ < r 0 .

Choose Ω r 0 ={x∈X:∥x−Φ∥≤ r 0 }. From the above discussion, we have

∥Tx−Φ∥≤Ap [ r 0 + ∥ Φ ∥ ] μ ≤ r 0 .

Then Tx∈ Ω r 0 . By Schauder’s fixed point theorem, T has at least one fixed point x∈ Ω r 0 . Then x is a solution of BVP (3).

Case 2. μ=1.

Choose

r 0 > A P ∥ Φ ∥ 1 − A P .

Let Ω r 0 ={x∈X:∥x−Φ∥≤ r 0 }. From the above discussion, we have

∥Tx−Φ∥≤AP [ r 0 + ∥ Φ ∥ ] ≤ r 0 .

Then Tx∈ Ω r 0 . By Schauder’s fixed point theorem, T has at least one fixed point x∈Ω. Then x is a positive solution of BVP (3).

Case 3. μ>1.

Choose r 0 = ∥ Φ ∥ μ − 1 . Let Ω r 0 ={x∈X:∥x−Φ∥≤ r 0 }. From the above discussion, we have

∥ T x − Φ ∥ ≤ A P [ r 0 + ∥ Φ ∥ ] μ = A P [ ∥ Φ ∥ μ − 1 + ∥ Φ ∥ ] μ ≤ ∥ Φ ∥ ( μ − 1 ) μ − 1 ( ∥ Φ ∥ μ ) μ [ ∥ Φ ∥ μ − 1 + ∥ Φ ∥ ] μ = ∥ Φ ∥ μ − 1 = r 0 .

Then Tx∈ Ω r 0 . By Schauder’s fixed point theorem, T has at least one fixed point x∈ Ω r 0 . Then x is a positive solution of BVP (3).

The proof of Theorem 3.1 is completed. □

4 An example

In this section, we give an example to illustrate the application of Theorem 3.1.

Example 4.1 Consider the following boundary value problem:

{ D 0 + 3.5 u ( t ) = t − 1 2 ( 1 − t ) − 1 3 ( 1 + g ( t , u ( t ) ) ) , t ∈ ( 0 , 1 ) , lim t → 0 t 0.5 u ( t ) = a , lim t → 0 D 0 + 0.5 u ( t ) = b , u ( 1 ) = D 0 + 0.5 u ( 1 ) = 0 ,
(7)

where a,b≥0, g:[0,1]×R→R is defined by g(t,x)=A t 0.5 μ x μ with A≥0 and μ≥0 continuous.

Corresponding to BVP (3), we have α=3.5, a,b≥0 and f(t,x)= t − 1 2 ( 1 − t ) − 1 3 (1+g(t,x)). Choose ϕ(t)= t − 1 2 ( 1 − t ) − 1 3 . So |ϕ(t)|≤ M 0 t k 0 ( 1 − t ) σ 0 for all t∈(0,1) with k 0 =−0.5, σ 0 =− 1 3 and M 0 =1. Furthermore, we have

| f ( t , t α − 4 x ) − ϕ ( t ) | ≤A t k 1 ( 1 − t ) σ 1 | x | μ

with A≥0, k 1 =−0.5 and σ 1 =− 1 3 . It is easy to see that (B1) and (B2) in Theorem 3.1 hold. By using Mathlab, we get 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ≈−1.5045. By direct computation, we find that

| Φ ( t ) | = | ∫ 0 t ( t − s ) 2.5 Γ ( 3.5 ) s − 0.5 ( 1 − s ) − 1 3 d s + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( − 2 2.5 t 2.5 + t 1.5 ) ∫ 0 1 ( 1 − s ) 2.5 s − 0.5 ( 1 − s ) − 1 3 d s + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( t 2.5 − t 1.5 ) ∫ 0 1 ( 1 − s ) 2 s − 0.5 ( 1 − s ) − 1 3 d s + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( − t 2.5 + 1.75 t 1.5 − 0.75 t 0.5 ) b + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( − 2 Γ ( 2.5 ) t 2.5 + Γ ( 3.5 ) t 1.5 + ( 2 Γ ( 2.5 ) − Γ ( 3.5 ) ) t − 0.5 ) a | ≤ ∫ 0 t ( t − s ) 2.5 Γ ( 3.5 ) s − 0.5 ( t − s ) − 1 3 d s + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( − 0.8 t 2.5 − t 1.5 ) B ( 9.5 / 3 , 3 / 2 ) + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( − t 2.5 − t 1.5 ) B ( 8 / 3 , 3 / 2 ) + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( − t 2.5 − 1.75 t 1.5 − 0.75 t 0.5 ) b + 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) ( − 2 Γ ( 2.5 ) t 2.5 − Γ ( 3.5 ) t 1.5 + ( 2 Γ ( 2.5 ) − Γ ( 3.5 ) ) t − 0.5 ) a .

So

t 0.5 | Φ ( t ) | ≤ t 0.5 t 10 3 B ( 9.5 / 3 , 3 / 2 ) Γ ( 3.5 ) + − 0.8 t 3 − t 2 2 Γ ( 2.5 ) − Γ ( 3.5 ) B ( 9.5 / 3 , 3 / 2 ) + − t 3 − t 2 2 Γ ( 2.5 ) − Γ ( 3.5 ) B ( 8 / 3 , 3 / 2 ) + − t 3 − 1.75 t 2 − 0.75 t 2 Γ ( 2.5 ) − Γ ( 3.5 ) b + − 2 Γ ( 2.5 ) t 3 − Γ ( 3.5 ) t 2 + ( 2 Γ ( 2.5 ) − Γ ( 3.5 ) ) 2 Γ ( 2.5 ) − Γ ( 3.5 ) a ≤ B ( 9.5 / 3 , 3 / 2 ) Γ ( 3.5 ) + − 0.8 − 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) B ( 9.5 / 3 , 3 / 2 ) + − 1 − 1 2 Γ ( 2.5 ) − Γ ( 3.5 ) B ( 8 / 3 , 3 / 2 ) + − 1 − 1.75 − 0.75 2 Γ ( 2.5 ) − Γ ( 3.5 ) b + − 2 Γ ( 3.5 ) 2 Γ ( 2.5 ) − Γ ( 3.5 ) a ≈ 0.9294 + 5.2658 b + 10 a .

It follows that ∥Φ∥≤0.9294+5.2658b+10a. Furthermore, we have

P = B ( 8 / 3 , 0.5 ) Γ ( 3.5 ) + 1 Γ ( 3.5 ) − 2 Γ ( 2.5 ) 4.5 2.5 B ( 9.5 / 3 , 0.5 ) + 2 Γ ( 3.5 ) − 2 Γ ( 2.5 ) B ( 8 / 3 , 0.5 ) ≈ 6.5695 .

Using Theorem 3.1, we know that BVP (7) has at least one solution if

  1. (i)

    μ<1 or

  2. (ii)

    μ=1 with A<1.1522 or

  3. (iii)

    μ>1 with

    ( 0.9294 + 5.2658 b + 10 a ) ( μ − 1 ) μ − 1 ( 0.9294 + 5.2658 b + 10 a ) μ μ μ ≥6.5695A.

References

  1. Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York; 1993.

    MATH  Google Scholar 

  2. Samko SG, Kilbas AA, Marichev OI: Fractional Integral and Derivative. Theory and Applications. Gordon & Breach, New York; 1993.

    MATH  Google Scholar 

  3. Agarwal RP, Benchohra M, Hamani S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2011, 109: 973-1033.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kilbas AA, Trujillo JJ: Differential equations of fractional order: methods, results and problems-I. Appl. Anal. 2001, 78: 153-192. 10.1080/00036810108840931

    Article  MathSciNet  MATH  Google Scholar 

  5. Arara A, Benchohra M, Hamidi N, Nieto JJ: Fractional order differential equations on an unbounded domain. Nonlinear Anal. TMA 2010, 72: 580-586. 10.1016/j.na.2009.06.106

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 2010, 72: 916-924. 10.1016/j.na.2009.07.033

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghant R, Ghanbari K: Triple positive solutions for boundary value problem of a nonlinear fractional differential equation. Bull. Iran. Math. Soc. 2007, 33: 1-14.

    MathSciNet  Google Scholar 

  8. Rida SZ, El-Sherbiny HM, Arafa AAM: On the solution of the fractional nonlinear Schrödinger equation. Phys. Lett. A 2008, 372: 553-558. 10.1016/j.physleta.2007.06.071

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu X, Jiang D, Yuan C: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. TMA 2009, 71: 4676-4688. 10.1016/j.na.2009.03.030

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang F: Existence results of positive solutions to boundary value problem for fractional differential equation. Positivity 2008, 13: 583-599.

    Article  MathSciNet  Google Scholar 

  11. Liu Y, He T, Shi H: Existence of positive solutions for Sturm-Liouville BVPs of singular fractional differential equations. Sci. Bull. ‘Politeh.’ Univ. Buchar., Ser. A, Appl. Math. Phys. 2012, 74(1):93-108.

    MathSciNet  MATH  Google Scholar 

  12. Xu X, Jiang D, Yuan C: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 2009, 71: 4676-4688. 10.1016/j.na.2009.03.030

    Article  MathSciNet  MATH  Google Scholar 

  13. Agarwal RP, Chow YM: Iterative method for fourth order boundary value problem. J. Comput. Appl. Math. 1984, 10: 203-217. 10.1016/0377-0427(84)90058-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao Q: Positive solutions for eigenvalue problems of four-order elastic beam equations. Appl. Math. Lett. 2004, 17: 237-243. 10.1016/S0893-9659(04)90037-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Bai Z: The upper and lower solution method for some fourth-order boundary value problems. Nonlinear Anal. 2007, 67: 1704-1709. 10.1016/j.na.2006.08.009

    Article  MathSciNet  MATH  Google Scholar 

  16. Lu H, Sun L, Sun J: Existence of positive solutions to a non-positive elastic beam equation with both ends fixed. Bound. Value Probl. 2012., 2012: Article ID 56 10.1186/1687-2770-2012-56

    Google Scholar 

  17. Bokhari AH, Mahomed FM, Zaman FD: Invariant boundary value problems for a fourth-order dynamic Euler-Bernoulli beam equation. J. Math. Phys. 2012., 53: Article ID 043703

    Google Scholar 

  18. Ahmad B, Nieto JJ, Alsaedi A, El-Shahed MA: Study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 2012, 13: 599-606. 10.1016/j.nonrwa.2011.07.052

    Article  MathSciNet  MATH  Google Scholar 

  19. Labidi S, Tatar NE: Blow-up of solutions for a nonlinear beam equation with fractional feedback. Nonlinear Anal., Theory Methods Appl. 2011, 74: 1402-1409. 10.1016/j.na.2010.10.012

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu Y: Solvability of multi-point boundary value problems for multiple term Riemann-Liouville fractional differential equations. Comput. Math. Appl. 2012, 64: 413-431. 10.1016/j.camwa.2011.12.004

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu Y: Existence and uniqueness of solutions for initial value problems of multi-order fractional differential equations on the half lines. Sci. Sin., Math. 2012, 42(7):735-756. (in Chinese) 10.1360/012011-1032

    Article  Google Scholar 

  22. Ahmad B, Nieto JJ: Riemann-Liouville fractional differential equations with fractional boundary conditions. Fixed Point Theory 2012, 13(2):329-336.

    MathSciNet  MATH  Google Scholar 

  23. Liu Y, Ahmad B, Agarwal RP: Existence of solutions for a coupled system of nonlinear fractional differential equations with fractional boundary conditions on the half-line. Adv. Differ. Equ. 2013., 2013: Article ID 46

    Google Scholar 

  24. Ahmad B, Nieto JJ, Alsaedi A, Al-Hutami H: Existence of solutions for nonlinear fractional q -difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J. Franklin Inst. 2014, 351(5):2890-2909. 10.1016/j.jfranklin.2014.01.020

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for the many valuable comments and references. The work has been partially supported by the Natural Science Foundation of Guangdong province (No. S2011010001900) and the Foundation for High-level talents in Guangdong Higher Education Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Liu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each of the authors contributed to each part of this study equally and read and approved the final version of the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Liu, Y. Solvability of boundary value problems for fractional order elastic beam equations. Adv Differ Equ 2014, 204 (2014). https://doi.org/10.1186/1687-1847-2014-204

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-204

Keywords