Skip to main content

Theory and Modern Applications

Barnes-type Daehee polynomials

Abstract

In this paper, we consider Barnes-type Daehee polynomials of the first kind and of the second kind. From the properties of the Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

MSC:05A15, 05A40, 11B68, 11B75, 65Q05.

1 Introduction

In this paper, we consider the polynomials D n (x| a 1 ,, a r ) and D ˆ n (x| a 1 ,, a r ) called the Barnes-type Daehee polynomials of the first kind and of the second kind, whose generating functions are given by

j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) x = n = 0 D n (x| a 1 ,, a r ) t n n ! ,
(1)
j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) x = n = 0 D ˆ n (x| a 1 ,, a r ) t n n ! ,
(2)

respectively, where a 1 ,, a r 0. When x=0, D n ( a 1 ,, a r )= D n (0| a 1 ,, a r ) and D ˆ n ( a 1 ,, a r )= D ˆ n (0| a 1 ,, a r ) are called the Barnes-type Daehee numbers of the first kind and of the second kind, respectively.

Recall that the Daehee polynomials of the first kind and of the second kind of order r, denoted by D n ( r ) (x) and D ˆ n ( r ) (x), respectively, are given by the generating functions to be

( ln ( 1 + t ) t ) r ( 1 + t ) x = n = 0 D n ( r ) ( x ) t n n ! , ( ( 1 + t ) ln ( 1 + t ) t ) r ( 1 + t ) x = n = 0 D ˆ n ( r ) ( x ) t n n ! ,

respectively. If a 1 == a r =1, then D n ( r ) (x)= D n (x| 1 , , 1 r ) and D ˆ n ( r ) (x)= D ˆ n (x| 1 , , 1 r ). Daehee polynomials were defined by the second author [1] and have been investigated in [24].

In this paper, we consider Barnes-type Daehee polynomials of the first kind and of the second kind. From the properties of the Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

2 Umbral calculus

Let be the complex number field and let be the set of all formal power series in the variable t:

F= { f ( t ) = k = 0 a k k ! t k | a k C } .
(3)

Let P=C[x] and let P be the vector space of all linear functionals on . L|p(x) is the action of the linear functional L on the polynomial p(x), and we recall that the vector space operations on P are defined by L+M|p(x)=L|p(x)+M|p(x), cL|p(x)=cL|p(x), where c is a complex constant in . For f(t)F, let us define the linear functional on by setting

f ( t ) | x n = a n (n0).
(4)

In particular,

t k | x n =n! δ n , k (n,k0),
(5)

where δ n , k is the Kronecker symbol.

For f L (t)= k = 0 L | x k k ! t k , we have f L (t)| x n =L| x n . That is, L= f L (t). The map L f L (t) is a vector space isomorphism from P onto . Henceforth, denotes both the algebra of formal power series in t and the vector space of all linear functionals on , and therefore an element f(t) of will be thought of as both a formal power series and a linear functional. We call the umbral algebra and the umbral calculus is the study of umbral algebra. The order O(f(t)) of a power series f(t) (≠0) is the smallest integer k for which the coefficient of t k does not vanish. If O(f(t))=1, then f(t) is called a delta series; if O(f(t))=0, then f(t) is called an invertible series. For f(t),g(t)F with O(f(t))=1 and O(g(t))=0, there exists a unique sequence s n (x) (deg s n (x)=n) such that g(t)f ( t ) k | s n (x)=n! δ n , k , for n,k0. Such a sequence s n (x) is called the Sheffer sequence for (g(t),f(t)), which is denoted by s n (x)(g(t),f(t)).

For f(t),g(t)F and p(x)P, we have

f ( t ) g ( t ) | p ( x ) = f ( t ) | g ( t ) p ( x ) = g ( t ) | f ( t ) p ( x )
(6)

and

f(t)= k = 0 f ( t ) | x k t k k ! ,p(x)= k = 0 t k | p ( x ) x k k !
(7)

[5], Theorem 2.2.5]. Thus, by (7), we get

t k p(x)= p ( k ) (x)= d k p ( x ) d x k and e y t p(x)=p(x+y).
(8)

Sheffer sequences are characterized by the generating function [5], Theorem 2.3.4].

Lemma 1 The sequence s n (x) is Sheffer for (g(t),f(t)) if and only if

1 g ( f ¯ ( t ) ) e y f ¯ ( t ) = k = 0 s k ( y ) k ! t k (yC),

where f ¯ (t) is the compositional inverse of f(t).

For s n (x)(g(t),f(t)), we have the following equations [5], Theorem 2.3.7, Theorem 2.3.5, Theorem 2.3.9]:

f(t) s n (x)=n s n 1 (x)(n0),
(9)
s n (x)= j = 0 n 1 j ! g ( f ¯ ( t ) ) 1 f ¯ ( t ) j | x n x j ,
(10)
s n (x+y)= j = 0 n ( n j ) s j (x) p n j (y),
(11)

where p n (x)=g(t) s n (x).

Assume that p n (x)(1,f(t)) and q n (x)(1,g(t)). Then the transfer formula [5], Corollary 3.8.2] is given by

q n (x)=x ( f ( t ) g ( t ) ) n x 1 p n (x)(n1).

For s n (x)(g(t),f(t)) and r n (x)(h(t),l(t)), assume that

s n (x)= m = 0 n C n , m r m (x)(n0).

Then we have [5], p.132]

C n , m = 1 m ! h ( f ¯ ( t ) ) g ( f ¯ ( t ) ) l ( f ¯ ( t ) ) m | x n .
(12)

3 Main results

We now note that D n (x| a 1 ,, a r ) is the Sheffer sequence for

g(t)= j = 1 r ( e a j t 1 t ) andf(t)= e t 1.

Therefore,

D n (x| a 1 ,, a r ) ( j = 1 r ( e a j t 1 t ) , e t 1 ) .
(13)

D ˆ n (x| a 1 ,, a r ) is the Sheffer sequence for

g(t)= j = 1 r ( e a j t 1 t e a j t ) andf(t)= e t 1.

So,

D ˆ n (x| a 1 ,, a r ) ( j = 1 r ( e a j t 1 t e a j t ) , e t 1 ) .
(14)

3.1 Explicit expressions

Recall that Barnes’ multiple Bernoulli polynomials B n (x| a 1 ,, a r ) are defined by the generating function as

t r j = 1 r ( e a j t 1 ) e x t = n = 0 B n (x| a 1 ,, a r ) t n n ! ,
(15)

where a 1 ,, a r 0 [68]. Let ( n ) j =n(n1)(nj+1) (j1) with ( n ) 0 =1. The (signed) Stirling numbers of the first kind S 1 (n,m) are defined by

( x ) n = m = 0 n S 1 (n,m) x m .

Theorem 1

D n (x| a 1 ,, a r )= m = 0 n S 1 (n,m) B m (x| a 1 ,, a r )
(16)
D n ( x | a 1 , , a r ) = j = 0 n ( l = j n ( n l ) S 1 ( l , j ) D n l ( a 1 , , a r ) ) x j
(17)
D n ( x | a 1 , , a r ) = m = 0 n ( n m ) D n m ( a 1 ,, a r ) ( x ) m ,
(18)
D ˆ n (x| a 1 ,, a r )= m = 0 n S 1 (n,m) B m (x+ a 1 ++ a r | a 1 ,, a r )
(19)
D ˆ n ( x | a 1 , , a r ) = j = 0 n ( l = j n ( n l ) S 1 ( l , j ) D ˆ n l ( a 1 , , a r ) ) x j
(20)
D ˆ n ( x | a 1 , , a r ) = m = 0 n ( n m ) D ˆ n m ( a 1 ,, a r ) ( x ) m .
(21)

Proof Since

j = 1 r ( e a j t 1 t ) D n (x| a 1 ,, a r ) ( 1 , e t 1 )
(22)

and

( x ) n ( 1 , e t 1 ) ,
(23)

we have

D n ( x | a 1 , , a r ) = j = 1 r ( t e a j t 1 ) ( x ) n = m = 0 n S 1 ( n , m ) j = 1 r ( t e a j t 1 ) x m = m = 0 n S 1 ( n , m ) B m ( x | a 1 , , a r ) .

So, we get (16).

Similarly, by

j = 1 r ( e a j t 1 t e a j t ) D ˆ n (x| a 1 ,, a r ) ( 1 , e t 1 )
(24)

and (23), we have

D ˆ n ( x | a 1 , , a r ) = j = 1 r ( t e a j t e a j t 1 ) ( x ) n = m = 0 n S 1 ( n , m ) j = 1 r ( t e a j t e a j t 1 ) x m = m = 0 n S 1 ( n , m ) e ( a 1 + + a r ) t j = 1 r ( t e a j t 1 ) x m = m = 0 n S 1 ( n , m ) B m ( x + a 1 + + a r | a 1 , , a r ) .

Therefore, we get (19).

By (10) with (13), we get

D n (x| a 1 ,, a r )= j = 0 n 1 j ! j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) j | x n x j .

Since

j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) j | x n = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) j x n = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | j ! l = j S 1 ( l , j ) t l l ! x n = j ! l = j n ( n l ) S 1 ( l , j ) j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n l = j ! l = j n ( n l ) S 1 ( l , j ) i = 0 D i ( a 1 , , a r ) t i i ! | x n l = j ! l = j n ( n l ) S 1 ( l , j ) D n l ( a 1 , , a r ) ,

we obtain (17).

Similarly, by (10) with (14), we get

D ˆ n (x| a 1 ,, a r )= j = 0 n 1 j ! j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) j | x n x j .

Since

j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) j | x n = j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) j x n = j ! l = j n ( n l ) S 1 ( l , j ) j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n l = j ! l = j n ( n l ) S 1 ( l , j ) i = 0 D ˆ i ( a 1 , , a r ) t i i ! | x n l = j ! l = j n ( n l ) S 1 ( l , j ) D ˆ n l ( a 1 , , a r ) ,

we obtain (20).

Next, we obtain

D n ( y | a 1 , , a r ) = i = 0 D i ( y | a 1 , , a r ) t i i ! | x n = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) y | x n = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | m = 0 ( y ) m t m m ! x n = m = 0 n ( y ) m ( n m ) j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n m = m = 0 n ( n m ) D n m ( a 1 , , a r ) ( y ) m .

Thus, we get the identity (18).

Similarly,

D ˆ n ( y | a 1 , , a r ) = i = 0 D ˆ i ( y | a 1 , , a r ) t i i ! | x n = j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) y | x n = j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | m = 0 ( y ) m t m m ! x n = m = 0 n ( y ) m ( n m ) j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n m = m = 0 n ( n m ) D ˆ n m ( a 1 , , a r ) ( y ) m .

Thus, we get the identity (21). □

3.2 Sheffer identity

Theorem 2

D n (x+y| a 1 ,, a r )= j = 0 n ( n j ) D j (x| a 1 ,, a r ) ( y ) n j ,
(25)
D ˆ n (x+y| a 1 ,, a r )= j = 0 n ( n j ) D ˆ j (x| a 1 ,, a r ) ( y ) n j .
(26)

Proof By (13) with

p n ( x ) = j = 1 r ( e a j t 1 t ) D n ( x | a 1 , , a r ) = ( x ) n ( 1 , e t 1 ) ,

using (11), we have (25).

By (14) with

p n ( x ) = j = 1 r ( e a j t 1 t e a j t ) D ˆ n ( x | a 1 , , a r ) = ( x ) n ( 1 , e t 1 ) ,

using (11), we have (26). □

3.3 Difference relations

Theorem 3

D n (x+1| a 1 ,, a r ) D n (x| a 1 ,, a r )=n D n 1 (x| a 1 ,, a r ),
(27)
D ˆ n (x+1| a 1 ,, a r ) D ˆ n (x| a 1 ,, a r )=n D ˆ n 1 (x| a 1 ,, a r ).
(28)

Proof By (9) with (13), we get

( e t 1 ) D n (x| a 1 ,, a r )=n D n 1 (x| a 1 ,, a r ).

By (8), we have (27).

Similarly, by (9) with (14), we get

( e t 1 ) D ˆ n (x| a 1 ,, a r )=n D ˆ n 1 (x| a 1 ,, a r ).

By (8), we have (28). □

3.4 Recurrence

Theorem 4

D n + 1 ( x | a 1 , , a r ) = x D n ( x 1 | a 1 , , a r ) D n + 1 ( x | a 1 , , a r ) = m = 0 n ( i = m n l = i n j = 1 r 1 i + 1 ( n l ) ( i + 1 m ) S 1 ( l , i ) D n + 1 ( x | a 1 , , a r ) = × B i + 1 m ( a j ) i + 1 m D n l ( a 1 , , a r ) ) ( x 1 ) m ,
(29)
D ˆ n + 1 ( x | a 1 , , a r ) = ( x + j = 1 r a j ) D ˆ n ( x 1 | a 1 , , a r ) D ˆ n + 1 ( x | a 1 , , a r ) = m = 0 n ( i = m n l = i n j = 1 r 1 i + 1 ( n l ) ( i + 1 m ) S 1 ( l , i ) D ˆ n + 1 ( x | a 1 , , a r ) = × B i + 1 m ( a j ) i + 1 m D ˆ n l ( a 1 , , a r ) ) ( x 1 ) m ,
(30)

where B n is the nth ordinary Bernoulli number.

Proof By applying

s n + 1 (x)= ( x g ( t ) g ( t ) ) 1 f ( t ) s n (x)
(31)

[5], Corollary 3.7.2] with (13), we get

D n + 1 (x| a 1 ,, a r )=x D n (x1| a 1 ,, a r ) e t g ( t ) g ( t ) D n (x| a 1 ,, a r ).

Now,

g ( t ) g ( t ) = ( ln g ( t ) ) = ( j = 1 r ln ( e a j t 1 ) r ln t ) = j = 1 r a j e a j t e a j t 1 r t = j = 1 r i j ( e a i t 1 ) ( a j t e a j t e a j t + 1 ) t j = 1 r ( e a j t 1 ) .

Since

j = 1 r a j t e a j t e a j t 1 r = j = 1 r i j ( e a i t 1 ) ( a j t e a j t e a j t + 1 ) j = 1 r ( e a j t 1 ) = 1 2 ( j = 1 r a 1 a j 1 a j 2 a j + 1 a r ) t r + 1 + ( a 1 a r ) t r + = 1 2 ( j = 1 r a j ) t +

is a series with order ≥1, by (17) we have

D n + 1 ( x | a 1 , , a r ) = x D n ( x 1 | a 1 , , a r ) e t j = 1 r a j t e a j t e a j t 1 r t D n ( x | a 1 , , a r ) = x D n ( x 1 | a 1 , , a r ) e t j = 1 r a j t e a j t e a j t 1 r t ( i = 0 n l = i n ( n l ) S 1 ( l , i ) D n l ( a 1 , , a r ) x i ) = x D n ( x 1 | a 1 , , a r ) i = 0 n l = i n ( n l ) S 1 ( l , i ) D n l ( a 1 , , a r ) e t ( j = 1 r a j t e a j t e a j t 1 r ) x i + 1 i + 1 .

Since

e t ( j = 1 r a j t e a j t e a j t 1 r ) x i + 1 = e t ( j = 1 r m = 0 ( 1 ) m B m a j m m ! t m r ) x i + 1 = e t ( j = 1 r m = 0 i + 1 ( i + 1 m ) B m ( a j ) m x i + 1 m r x i + 1 ) = j = 1 r m = 1 i + 1 ( i + 1 m ) B m ( a j ) m ( x 1 ) i + 1 m = j = 1 r m = 0 i ( i + 1 m ) B i + 1 m ( a j ) i + 1 m ( x 1 ) m ,
(32)

we have

D n + 1 ( x | a 1 , , a r ) = x D n ( x 1 | a 1 , , a r ) i = 0 n l = i n j = 1 r m = 0 i 1 i + 1 ( n l ) ( i + 1 m ) S 1 ( l , i ) × B i + 1 m ( a j ) i + 1 m D n l ( a 1 , , a r ) ( x 1 ) m = x D n ( x 1 | a 1 , , a r ) m = 0 n ( i = m n l = i n j = 1 r 1 i + 1 ( n l ) ( i + 1 m ) S 1 ( l , i ) × B i + 1 m ( a j ) i + 1 m D n l ( a 1 , , a r ) ) ( x 1 ) m ,

which is the identity (29).

Next, by applying (31) with (14), we get

D ˆ n + 1 (x| a 1 ,, a r )=x D ˆ n (x1| a 1 ,, a r ) e t g ( t ) g ( t ) D ˆ n (x| a 1 ,, a r ).

Now,

g ( t ) g ( t ) = ( ln g ( t ) ) = ( j = 1 r ln ( e a j t 1 ) r ln t ( j = 1 r a j ) t ) = j = 1 r a j e a j t e a j t 1 r t j = 1 r a j .

By (20) we have

D ˆ n + 1 ( x | a 1 , , a r ) = ( x + j = 1 r a j ) D ˆ n ( x 1 | a 1 , , a r ) e t j = 1 r a j t e a j t e a j t 1 r t D ˆ n ( x | a 1 , , a r ) = ( x + j = 1 r a j ) D ˆ n ( x 1 | a 1 , , a r ) e t j = 1 r a j t e a j t e a j t 1 r t ( i = 0 n l = i n ( n l ) S 1 ( l , i ) D ˆ n l ( a 1 , , a r ) x i ) = ( x + j = 1 r a j ) D ˆ n ( x 1 | a 1 , , a r ) i = 0 n l = i n ( n l ) S 1 ( l , i ) D ˆ n l ( a 1 , , a r ) e t ( j = 1 r a j t e a j t e a j t 1 r ) x i + 1 i + 1 .

By (32), we have the identity (30). □

3.5 Differentiation

Theorem 5

d d x D n (x| a 1 ,, a r )=n! l = 0 n 1 ( 1 ) n l 1 l ! ( n l ) D l (x| a 1 ,, a r ),
(33)
d d x D ˆ n (x| a 1 ,, a r )=n! l = 0 n 1 ( 1 ) n l 1 l ! ( n l ) D ˆ l (x| a 1 ,, a r ).
(34)

Proof We shall use

d d x s n (x)= l = 0 n 1 ( n l ) f ¯ ( t ) | x n l s l (x)

(cf. [5], Theorem 2.3.12]). Since

f ¯ ( t ) | x n l = ln ( 1 + t ) | x n l = m = 1 ( 1 ) m 1 t m m | x n l = m = 1 n l ( 1 ) m 1 m t m | x n l = m = 1 n l ( 1 ) m 1 m ( n l ) ! δ m , n l = ( 1 ) n l 1 ( n l 1 ) ! ,

with (13), we have

d d x D n ( x | a 1 , , a r ) = l = 0 n 1 ( n l ) ( 1 ) n l 1 ( n l 1 ) ! D l ( x | a 1 , , a r ) = n ! l = 0 n 1 ( 1 ) n l 1 l ! ( n l ) D l ( x | a 1 , , a r ) ,

which is the identity (33). Similarly, with (14), we have the identity (34). □

3.6 More relations

The classical Cauchy numbers c n are defined by

t ln ( 1 + t ) = n = 0 c n t n n !

(see e.g. [9, 10]).

Theorem 6

D n ( x | a 1 , , a r ) = x D n 1 ( x 1 | a 1 , , a r ) D n ( x | a 1 , , a r ) = + r n l = 0 n ( n l ) c l D n l ( x 1 | a 1 , , a r ) D n ( x | a 1 , , a r ) = 1 n j = 1 r l = 0 n ( n l ) a j c l D n l ( x + a j 1 | a 1 , , a r , a j ) ,
(35)
D ˆ n ( x | a 1 , , a r ) = ( x + j = 1 r a j ) D ˆ n 1 ( x 1 | a 1 , , a r ) D ˆ n ( x | a 1 , , a r ) = + r n l = 0 n ( n l ) c l D ˆ n l ( x 1 | a 1 , , a r ) D ˆ n ( x | a 1 , , a r ) = 1 n j = 1 r l = 0 n ( n l ) a j c l D ˆ n l ( x 1 | a 1 , , a r , a j ) .
(36)

Proof For n1, we have

D n ( y | a 1 , , a r ) = l = 0 D l ( y | a 1 , , a r ) t l l ! | x n = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) y | x n = t ( j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) y ) | x n 1 = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( t ( 1 + t ) y ) | x n 1 + ( t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( 1 + t ) y | x n 1 = y D n 1 ( y 1 | a 1 , , a r ) + ( t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( 1 + t ) y | x n 1 .

Observe that

t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) = j = 1 r i j ( ln ( 1 + t ) ( 1 + t ) a i 1 ) 1 1 + t ( ( 1 + t ) a j 1 ) ln ( 1 + t ) ( a j ( 1 + t ) a j 1 ) ( ( 1 + t ) a j 1 ) 2 = 1 1 + t i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) j = 1 r ( 1 ln ( 1 + t ) a j ( 1 + t ) a j ( 1 + t ) a j 1 ) = 1 1 + t i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t .

Since

j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) = 1 2 ( j = 1 r a j ) t+

is a series with order ≥1, we have

( t i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ) ( 1 + t ) y | x n 1 = i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t x n 1 = 1 n j = 1 r i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) x n = r n i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | t ln ( 1 + t ) x n 1 n j = 1 r a j ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y + a j 1 | t ln ( 1 + t ) x n = r n i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | l = 0 c l t l l ! x n 1 n j = 1 r a j ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y + a j 1 | l = 0 c l t l l ! x n = r n l = 0 n c l ( n l ) i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | x n l 1 n j = 1 r a j l = 0 n c l ( n l ) ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y + a j 1 | x n l = r n l = 0 n ( n l ) c l D n l ( y 1 | a 1 , , a r ) 1 n j = 1 r l = 0 n ( n l ) a j c l D n l ( y + a j 1 | a 1 , , a r , a j ) .

Therefore, we obtain

D n ( x | a 1 , , a r ) = x D n 1 ( x 1 | a 1 , , a r ) + r n l = 0 n ( n l ) c l D n l ( x 1 | a 1 , , a r ) 1 n j = 1 r l = 0 n ( n l ) a j c l D n l ( x + a j 1 | a 1 , , a r , a j ) ,

which is the identity (35).

Next, for n1 we have

D ˆ n ( y | a 1 , , a r ) = l = 0 D ˆ l ( y | a 1 , , a r ) t l l ! | x n = j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) y | x n = t ( j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) y ) | x n 1 = j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( t ( 1 + t ) y ) | x n 1 + ( t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( 1 + t ) y | x n 1 = y D ˆ n 1 ( y 1 | a 1 , , a r ) + ( t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( 1 + t ) y | x n 1 .

Observe that

t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) = t ( j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) j = 1 r ( 1 + t ) a j ) = ( t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ) j = 1 r ( 1 + t ) a j + j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( t j = 1 r ( 1 + t ) a j ) = 1 1 + t i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t + 1 1 + t i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) j = 1 r a j .

Thus, we have

( t i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ) ( 1 + t ) y | x n 1 = i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t x n 1 + ( j = 1 r a j ) i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | x n 1 = ( j = 1 r a j ) D ˆ n 1 ( y 1 | a 1 , , a r ) + 1 n i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) x n = ( j = 1 r a j ) D ˆ n 1 ( y 1 | a 1 , , a r ) + r n i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | t ln ( 1 + t ) x n 1 n j = 1 r a j ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | t ln ( 1 + t ) x n = ( j = 1 r a j ) D ˆ n 1 ( y 1 | a 1 , , a r ) + r n i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | l = 0 c l t l l ! x n 1 n j = 1 r a j ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | l = 0 c l t l l ! x n = ( j = 1 r a j ) D ˆ n 1 ( y 1 | a 1 , , a r ) + r n l = 0 n c l ( n l ) i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | x n l 1 n j = 1 r a j l = 0 n c l ( n l ) ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) y 1 | x n l = ( j = 1 r a j ) D ˆ n 1 ( y 1 | a 1 , , a r ) + r n l = 0 n ( n l ) c l D ˆ n l ( y 1 | a 1 , , a r ) 1 n j = 1 r l = 0 n ( n l ) a j c l D ˆ n l ( y 1 | a 1 , , a r , a j ) .

Therefore, we obtain

D ˆ n ( x | a 1 , , a r ) = ( x + j = 1 r a j ) D ˆ n 1 ( x 1 | a 1 , , a r ) + r n l = 0 n ( n l ) c l D ˆ n l ( x 1 | a 1 , , a r ) 1 n j = 1 r l = 0 n ( n l ) a j c l D ˆ n l ( x 1 | a 1 , , a r , a j ) ,

which is the identity (36). □

3.7 Relations including the Stirling numbers of the first kind

Theorem 7 For n1m1, we have

l = 0 n m ( n l ) S 1 ( n l , m ) D l ( a 1 , , a r ) = l = 0 n m ( n 1 l ) S 1 ( n l 1 , m 1 ) D l ( 1 | a 1 , , a r ) + 1 n l = 0 n m 1 ( n l + 1 ) S 1 ( n l 1 , m ) × ( r i = 0 l + 1 ( l + 1 i ) c i D l + 1 i ( 1 | a 1 , , a r ) j = 1 r i = 0 l + 1 ( l + 1 i ) a j c i D l + 1 i ( a j 1 | a 1 , , a r , a j ) ) ,
(37)
l = 0 n m ( n l ) S 1 ( n l , m ) D ˆ l ( a 1 , , a r ) = l = 0 n m ( n 1 l ) S 1 ( n l 1 , m 1 ) D ˆ l ( 1 | a 1 , , a r ) + 1 n l = 0 n m 1 ( n l + 1 ) S 1 ( n l 1 , m ) × ( r i = 0 l + 1 ( l + 1 i ) c i D ˆ l + 1 i ( 1 | a 1 , , a r ) j = 1 r i = 0 l + 1 ( l + 1 i ) a j c i D ˆ l + 1 i ( 1 | a 1 , , a r , a j ) ) + l = 0 n m 1 ( n 1 l ) S 1 ( n l 1 , m ) j = 1 r a j D ˆ l ( 1 | a 1 , , a r ) .
(38)

Proof We shall compute

j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n

in two different ways. On the one hand,

j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) m x n = j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | l = 0 m ! ( l + m ) ! S 1 ( l + m , m ) t l + m x n = l = 0 n m m ! ( l + m ) ! S 1 ( l + m , m ) ( n ) l + m j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n l m = l = 0 n m m ! ( n l + m ) S 1 ( l + m , m ) D n l m ( a 1 , , a r ) = l = 0 n m m ! ( n l ) S 1 ( n l , m ) D l ( a 1 , , a r ) .

On the other hand,

j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n = t ( j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m ) | x n 1 = ( t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( ln ( 1 + t ) ) m | x n 1 + j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) t ( ( ln ( 1 + t ) ) m ) | x n 1 .
(39)

The second term of (39) is equal to

j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) t ( ( ln ( 1 + t ) ) m ) | x n 1 = m j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) 1 | ( ln ( 1 + t ) ) m 1 x n 1 = m j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) 1 | l = 0 n m ( m 1 ) ! ( l + m 1 ) ! S 1 ( l + m 1 , m 1 ) t l + m 1 x n 1 = m l = 0 n m ( m 1 ) ! ( l + m 1 ) ! S 1 ( l + m 1 , m 1 ) ( n 1 ) l + m 1 × j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) 1 | x n l m = m ! l = 0 n m ( n 1 l + m 1 ) S 1 ( l + m 1 , m 1 ) D n l m ( 1 | a 1 , , a r ) = m ! l = 0 n m ( n 1 l ) S 1 ( n l 1 , m 1 ) D l ( 1 | a 1 , , a r ) .

The first term of (39) is equal to

( t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( ln ( 1 + t ) ) m | x n 1 = t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) m x n 1 = t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | l = 0 n m 1 m ! ( l + m ) ! S 1 ( l + m , m ) t l + m x n 1 = l = 0 n m 1 m ! ( l + m ) ! S 1 ( l + m , m ) ( n 1 ) l + m t j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n l m 1 = l = 0 n m 1 m ! ( n 1 l + m ) S 1 ( l + m , m ) × i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t x n l m 1 = m ! l = 0 n m 1 1 n l m ( n 1 l + m ) S 1 ( l + m , m ) × i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) x n l m = m ! n l = 0 n m 1 ( n l + 1 ) S 1 ( n 1 l , m ) ( r i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | t ln ( 1 + t ) x l + 1 ( j = 1 r a j ) ln ( 1 + t ) ( 1 + t ) a j 1 ( 1 + t ) a j 1 i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) | t ln ( 1 + t ) x l + 1 ) = m ! n l = 0 n m 1 ( n l + 1 ) S 1 ( n l 1 , m ) ( r i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | i = 0 l + 1 c i t i i ! x l + 1 ( j = 1 r a j ) ln ( 1 + t ) ( 1 + t ) a j 1 ( 1 + t ) a j 1 i = 1 r ( ln ( 1 + t ) ( 1 + t ) a i 1 ) | i = 0 l + 1 c i t i i ! x l + 1 ) = m ! n l = 0 n m 1 ( n l + 1 ) S 1 ( n l 1 , m ) ( r i = 0 l + 1 ( l + 1 i ) c i D l + 1 i ( 1 | a 1 , , a r ) j = 1 r a j i = 0 l + 1 ( l + 1 i ) c i D l + 1 i ( a j 1 | a 1 , , a r , a j ) ) .

Therefore, we have, for n1m1,

m ! l = 0 n m ( n l ) S 1 ( n l , m ) D l ( a 1 , , a r ) = m ! l = 0 n m ( n 1 l ) S 1 ( n l 1 , m 1 ) D l ( 1 | a 1 , , a r ) + m ! n l = 0 n m 1 ( n l + 1 ) S 1 ( n l 1 , m ) × ( r i = 0 l + 1 ( l + 1 i ) c l + 1 i D i ( 1 | a 1 , , a r ) j = 1 r i = 0 l + 1 a j ( l + 1 i ) c l + 1 i D i ( a j 1 | a 1 , , a r , a j ) ) .

Thus, we get (37).

Next, we shall compute

j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n

in two different ways. On the one hand,

j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n = j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) m x n = j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | l = 0 m ! ( l + m ) ! S 1 ( l + m , m ) t l + m x n = l = 0 n m m ! ( l + m ) ! S 1 ( l + m , m ) ( n ) l + m j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n l m = l = 0 n m m ! ( n l + m ) S 1 ( l + m , m ) D ˆ n l m ( a 1 , , a r ) = l = 0 n m m ! ( n l ) S 1 ( n l , m ) D ˆ l ( a 1 , , a r ) .

On the other hand,

j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n = t ( j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m ) | x n 1 = ( t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( ln ( 1 + t ) ) m | x n 1 + j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) t ( ( ln ( 1 + t ) ) m ) | x n 1 .
(40)

The second term of (40) is equal to

j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) t ( ( ln ( 1 + t ) ) m ) | x n 1 = m j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) 1 | ( ln ( 1 + t ) ) m 1 x n 1 = m j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) 1 | l = 0 n m ( m 1 ) ! ( l + m 1 ) ! S 1 ( l + m 1 , m 1 ) t l + m 1 x n 1 = m l = 0 n m ( m 1 ) ! ( l + m 1 ) ! S 1 ( l + m 1 , m 1 ) ( n 1 ) l + m 1 × j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( 1 + t ) 1 | x n l m = m ! l = 0 n m ( n 1 l + m 1 ) S 1 ( l + m 1 , m 1 ) D ˆ n l m ( 1 | a 1 , , a r ) = m ! l = 0 n m ( n 1 l ) S 1 ( n l 1 , m 1 ) D ˆ l ( 1 | a 1 , , a r ) .

The first term of (40) is equal to

( t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ) ( ln ( 1 + t ) ) m | x n 1 = t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) m x n 1 = t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | l = 0 n m 1 m ! ( l + m ) ! S 1 ( l + m , m ) t l + m x n 1 = l = 0 n m 1 m ! ( l + m ) ! S 1 ( l + m , m ) ( n 1 ) l + m t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n l m 1 .

From the proof of (36), we recall

t j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) = 1 1 + t i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t + 1 1 + t i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) j = 1 r a j .

Hence, the first term of (39) is equal to

l = 0 n m 1 m ! ( n 1 l + m ) S 1 ( l + m , m ) × ( i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t x n l m 1 + ( j = 1 r a j ) i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | x n l m 1 ) = m ! l = 0 n m 1 ( n 1 l ) S 1 ( n l 1 , m ) × ( i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) t x l + ( j = 1 r a j ) i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | x l ) = m ! l = 0 n m 1 ( n 1 l ) S 1 ( n l 1 , m ) × ( 1 l + 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | j = 1 r ( t ln ( 1 + t ) a j t ( 1 + t ) a j ( 1 + t ) a j 1 ) x l + 1 + ( j = 1 r a j ) i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | x l ) = m ! l = 0 n m 1 ( n 1 l ) S 1 ( n l 1 , m ) × ( r l + 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | t ln ( 1 + t ) x l + 1 1 l + 1 ( j = 1 r a j ) ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | t ln ( 1 + t ) x l + 1 + ( j = 1 r a j ) i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | x l ) = m ! l = 0 n m 1 ( n 1 l ) S 1 ( n l 1 , m ) × ( r l + 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | i = 0 l + 1 c i t i i ! x l + 1 1 l + 1 ( j = 1 r a j ) ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | i = 0 l + 1 c i t i i ! x l + 1 + ( j = 1 r a j ) i = 1 r ( ( 1 + t ) a i ln ( 1 + t ) ( 1 + t ) a i 1 ) ( 1 + t ) 1 | x l ) = m ! l = 0 n m 1 ( n 1 l ) S 1 ( n l 1 , m ) × ( r l + 1 i = 0 l + 1 ( l + 1 i ) c i D ˆ l + 1 i ( 1 | a 1 , , a r ) 1 l + 1 j = 1 r a j i = 0 l + 1 ( l + 1 i ) c i D ˆ l + 1 i ( 1 | a 1 , , a r , a j ) + j = 1 r a j D ˆ l ( 1 | a 1 , , a r ) ) = m ! n l = 0 n m 1 ( n l + 1 ) S 1 ( n l 1 , m ) × ( r i = 0 l + 1 ( l + 1 i ) c i D ˆ l + 1 i ( 1 | a 1 , , a r ) j = 1 r i = 0 l + 1 ( l + 1 i ) a j c i D ˆ l + 1 i ( 1 | a 1 , , a r , a j ) ) + m ! l = 0 n m 1 ( n 1 l ) S 1 ( n l 1 , m ) j = 1 r a j D ˆ l ( 1 | a 1 , , a r ) .

Therefore, we get (38). □

3.8 Relations with the falling factorials

Theorem 8

D n (x| a 1 ,, a r )= m = 0 n ( n m ) D n m ( a 1 ,, a r ) ( x ) m ,
(41)
D ˆ n (x| a 1 ,, a r )= m = 0 n ( n m ) D ˆ n m ( a 1 ,, a r ) ( x ) m .
(42)

Proof For (13) and (23), assume that D n (x| a 1 ,, a r )= m = 0 n C n , m ( x ) m . By (12), we have

C n , m = 1 m ! 1 j = 1 r ( e a j ln ( 1 + t ) 1 ln ( 1 + t ) ) t m | x n = 1 m ! j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | t m x n = ( n m ) j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n m = ( n m ) D n m ( a 1 , , a r ) .

Thus, we get the identity (41).

Similarly, for (13) and (23), assume that D ˆ n (x| a 1 ,, a r )= m = 0 n C n , m ( x ) m . By (12), we have

C n , m = 1 m ! 1 j = 1 r ( e a j ln ( 1 + t ) 1 e a j ln ( 1 + t ) ln ( 1 + t ) ) t m | x n = 1 m ! j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | t m x n = ( n m ) j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | x n m = ( n m ) D ˆ n m ( a 1 , , a r ) .

Thus, we get the identity (42). □

3.9 Relations with higher-order Frobenius-Euler polynomials

For λC with λ1, the Frobenius-Euler polynomials of order r, H n ( r ) (x|λ) are defined by the generating function

( 1 λ e t λ ) r e x t = n = 0 H n ( r ) (x|λ) t n n !

(see e.g. [11, 12]).

Theorem 9

D n ( x | a 1 , , a r ) = m = 0 n ( j = 0 n m l = 0 n m j ( s j ) ( n j l ) ( n ) j D n ( x | a 1 , , a r ) = × ( 1 λ ) j S 1 ( n j l , m ) D l ( a 1 , , a r ) ) H m ( s ) ( x | λ ) ,
(43)
D ˆ n ( x | a 1 , , a r ) = m = 0 n ( j = 0 n m l = 0 n m j ( s j ) ( n j l ) ( n ) j D ˆ n ( x | a 1 , , a r ) = × ( 1 λ ) j S 1 ( n j l , m ) D ˆ l ( a 1 , , a r ) ) H m ( s ) ( x | λ ) .
(44)

Proof For (13) and

H n ( s ) (x|λ) ( ( e t λ 1 λ ) s , t ) ,
(45)

assume that D n (x| a 1 ,, a r )= m = 0 n C n , m H m ( s ) (x|λ). By (12), similarly to the proof of (37), we have

C n , m = 1 m ! ( e ln ( 1 + t ) λ 1 λ ) s j = 1 r ( e a j ln ( 1 + t ) 1 ln ( 1 + t ) ) ( ln ( 1 + t ) ) m | x n = 1 m ! ( 1 λ ) s j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m ( 1 λ + t ) s | x n = 1 m ! ( 1 λ ) s j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | i = 0 min { s , n } ( s i ) ( 1 λ ) s i t i x n = 1 m ! ( 1 λ ) s i = 0 n m ( s i ) ( 1 λ ) s i ( n ) i j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) m x n i = 1 m ! ( 1 λ ) s i = 0 n m ( s i ) ( 1 λ ) s i ( n ) i l = 0 n m i m ! ( n i l ) S 1 ( n i l , m ) D l ( a 1 , , a r ) = i = 0 n m l = 0 n m i ( s i ) ( n i l ) ( n ) i ( 1 λ ) i S 1 ( n i l , m ) D l ( a 1 , , a r ) .

Thus, we get the identity (43).

Next, for (14) and (45), assume that D ˆ n (x| a 1 ,, a r )= m = 0 n C n , m H m ( s ) (x|λ). By (12), similarly to the proof of (38), we have

C n , m = 1 m ! ( e ln ( 1 + t ) λ 1 λ ) s j = 1 r ( e a j ln ( 1 + t ) 1 e a j ln ( 1 + t ) ln ( 1 + t ) ) ( ln ( 1 + t ) ) m | x n = 1 m ! ( 1 λ ) s j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | ( 1 λ + t ) s x n = 1 m ! ( 1 λ ) s j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | i = 0 min { s , n } ( s i ) ( 1 λ ) s i t i x n = 1 m ! ( 1 λ ) s i = 0 n m ( s i ) ( 1 λ ) s i ( n ) i j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) | ( ln ( 1 + t ) ) m x n i = 1 m ! ( 1 λ ) s i = 0 n m ( s i ) ( 1 λ ) s i ( n ) i l = 0 n m i m ! ( n i l ) S 1 ( n i l , m ) D ˆ l ( a 1 , , a r ) = i = 0 n m l = 0 n m i ( s i ) ( n i l ) ( n ) i ( 1 λ ) i S 1 ( n i l , m ) D ˆ l ( a 1 , , a r ) .

Thus, we get the identity (44). □

3.10 Relations with higher-order Bernoulli polynomials

Bernoulli polynomials B n ( r ) (x) of order r are defined by

( t e t 1 ) r e x t = n = 0 B n ( r ) ( x ) n ! t n

(see e.g. [5], Section 2.2]). In addition, Cauchy numbers of the first kind C n ( r ) of order r are defined by

( t ln ( 1 + t ) ) r = n = 0 C n ( r ) n ! t n

(see e.g. [13], (2.1)], [14], (6)]).

Theorem 10

D n ( x | a 1 , , a r ) = m = 0 n ( i = 0 n m l = 0 n m i ( n i ) ( n i l ) C i ( s ) S 1 ( n i l , m ) D l ( a 1 , , a r ) ) B m ( s ) ( x ) ,
(46)
D ˆ n ( x | a 1 , , a r ) = m = 0 n ( i = 0 n m l = 0 n m i ( n i ) ( n i l ) C i ( s ) S 1 ( n i l , m ) D ˆ l ( a 1 , , a r ) ) B m ( s ) ( x ) .
(47)

Proof For (13) and

B n ( s ) (x) ( ( e t 1 t ) s , t ) ,
(48)

assume that D n (x| a 1 ,, a r )= m = 0 n C n , m B m ( s ) (x). By (12), similarly to the proof of (37), we have

C n , m = 1 m ! ( e ln ( 1 + t ) 1 ln ( 1 + t ) ) s j = 1 r ( e a j ln ( 1 + t ) 1 ln ( 1 + t ) ) ( ln ( 1 + t ) ) m | x n = 1 m ! j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | ( t ln ( 1 + t ) ) s x n = 1 m ! j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | i = 0 C i ( s ) t i i ! x n = 1 m ! i = 0 n m C i ( s ) ( n i ) j = 1 r ( ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n i = 1 m ! i = 0 n m C i ( s ) ( n i ) l = 0 n m i m ! ( n i l ) S 1 ( n i l , m ) D l ( a 1 , , a r ) = i = 0 n m l = 0 n m i ( n i ) ( n i l ) C i ( s ) S 1 ( n i l , m ) D l ( a 1 , , a r ) .

Thus, we get the identity (46).

Next, for (13) and (48), assume that D ˆ n (x| a 1 ,, a r )= m = 0 n C n , m B m ( s ) (x). By (12), similarly to the proof of (38), we have

C n , m = 1 m ! ( e ln ( 1 + t ) 1 ln ( 1 + t ) ) s j = 1 r ( e a j ln ( 1 + t ) 1 e a j ln ( 1 + t ) ln ( 1 + t ) ) ( ln ( 1 + t ) ) m | x n = 1 m ! j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | ( t ln ( 1 + t ) ) s x n = 1 m ! j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | i = 0 C i ( s ) t i i ! x n = 1 m ! i = 0 n m C i ( s ) ( n i ) j = 1 r ( ( 1 + t ) a j ln ( 1 + t ) ( 1 + t ) a j 1 ) ( ln ( 1 + t ) ) m | x n i = 1 m ! i = 0 n m C i ( s ) ( n i ) l = 0 n m i m ! ( n i l ) S 1 ( n i l , m ) D ˆ l ( a 1 , , a r ) = i = 0 n m l = 0 n m i ( n i ) ( n i l ) C i ( s ) S 1 ( n i l , m ) D ˆ l ( a 1 , , a r ) .

Thus, we get the identity (47). □

References

  1. Kim T: An invariant p -adic integral associated with Daehee numbers. Integral Transforms Spec. Funct. 2002, 13: 65–69. 10.1080/10652460212889

    Article  MathSciNet  MATH  Google Scholar 

  2. Kim DS, Kim T, Rim S-H: On the associated sequence of special polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23: 355–366.

    MathSciNet  MATH  Google Scholar 

  3. Ozden H, Cangul IN, Simsek Y: Remarks on q -Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. (Kyungshang) 2009, 18: 41–48.

    MathSciNet  MATH  Google Scholar 

  4. Park J-W, Rim S-H, Kwon J: The twisted Daehee numbers and polynomials. Adv. Differ. Equ. 2014., 2014: Article ID 1

    Google Scholar 

  5. Roman S: The Umbral Calculus. Dover, New York; 2005.

    MATH  Google Scholar 

  6. Kim T: On Euler-Barnes multiple zeta functions. Russ. J. Math. Phys. 2003, 10: 261–267.

    MathSciNet  MATH  Google Scholar 

  7. Kim T: Barnes-type multiple q -zeta functions and q -Euler polynomials. J. Phys. A 2010., 43: Article ID 255201

    Google Scholar 

  8. Bayad A, Kim T, Kim WJ, Lee SH: Arithmetic properties of q -Barnes polynomials. J. Comput. Anal. Appl. 2013, 15: 111–117.

    MathSciNet  MATH  Google Scholar 

  9. Comtet L: Advanced Combinatorics. Reidel, Dordrecht; 1974.

    Book  MATH  Google Scholar 

  10. Komatsu T: Poly-Cauchy numbers. Kyushu J. Math. 2013, 67: 143–153. 10.2206/kyushujm.67.143

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim DS, Kim T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012., 2012: Article ID 196

    Google Scholar 

  12. Kim, DS, Kim, T, Lee, S-H: Poly-Bernoulli polynomials arising from umbral calculus. arXiv: 1306.6697

  13. Carlitz L: A note on Bernoulli and Euler polynomials of the second kind. Scr. Math. 1961, 25: 323–330.

    MathSciNet  MATH  Google Scholar 

  14. Liang H, Wuyungaowa : Identities involving generalized harmonic numbers and other special combinatorial sequences. J. Integer Seq. 2012., 15: Article ID 12.9.6

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MOE) (No. 2012R1A1A2003786). The authors would like to thank the referee for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.S., Kim, T., Komatsu, T. et al. Barnes-type Daehee polynomials. Adv Differ Equ 2014, 141 (2014). https://doi.org/10.1186/1687-1847-2014-141

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-141

Keywords