Theory and Modern Applications

Fixed point theory approach to boundary value problems for second-order difference equations on non-uniform lattices

Abstract

In this paper, by means of the appropriate Green’s function, an integral representation for the solutions of certain boundary value problems for second-order difference equations on (quadratic and q-quadratic) non-uniform lattices is presented. As a consequence, using fixed point theory, new results for the existence and uniqueness of the solution are proved on non-uniform lattices.

MSC:34B27, 39A20, 34A05, 34B05.

1 Introduction

In this paper we solve certain boundary value problems for second-order difference equations on the most general (quadratic and q-quadratic) non-uniform lattices . These problems appear in the discretization of differential operators when the convenient grid or mesh is not uniform. For our purposes, we shall use the Green’s function approach [2, 3].

As indicated by Roach , ‘Boundary value problems are an almost inevitable consequence of using mathematics to study problems in the real world’. In the monograph cited, the author examines in detail the one particular method which requires the construction of an auxiliary function known as a Green’s function. Some historical developments of Green’s functions, definitions, and applications to circuit theory, statics, wave equation, heat equation, quantum physics, finite elements, infinite products, Helmholtz equation or lattice Schrödinger operators can be found in .

A well-posed problem for an ordinary differential equation, partial differential equation or difference equation should have a unique solution that continuously depends on the sources. For linear equations, the operator that transforms the data into the solution is usually a linear integral operator . The kernel is the Green’s function. A list of formulas of such Green’s functions for different situations and problems can be found in . According to  the most appropriate way to solve a boundary value problem (BVP) is by calculating its Green’s function and by means of the integral expression, it is also possible obtain some additional qualitative information about the solutions of the considered problem, such as their sign, oscillation properties, a priori bounds or their stability.

Let us consider the one-dimensional problem of a thin rod occupying the interval $\left(0,1\right)$ on the x axis . The boundary value problem reads

$-\frac{{d}^{2}u\left(x\right)}{dx}=f\left(x\right),\phantom{\rule{1em}{0ex}}0
(1)

where $f\left(x\right)$ is the prescribed source density (per unit length of the rod) of heat and α, β are the prescribed end temperatures. The solution of the above problem can be written in the form [, (1.1.2)]

$u\left(x\right)={\int }_{0}^{1}G\left(x,\xi \right)f\left(\xi \right)\phantom{\rule{0.2em}{0ex}}d\xi +\left(1-x\right)\alpha +x\beta ,$
(2)

where the so-called Green’s function $G\left(x,\xi \right)$ is a function of the real variables x and ξ defined on the square $0\le x,\xi \le 1$ and is explicitly given by [, (1.1.3), p.52]

$G\left(x,\xi \right)=\left\{\begin{array}{ll}x\left(1-\xi \right),& 0

Since the Green’s function $G\left(x,\xi \right)$ does not depend on the data, it is clear that (2) expresses in a very simple manner the dependence of the solution $u\left(x\right)$ on the data f, α, β.

In many other applications, there appears the same differential equation with Cauchy boundary conditions $u\left(0\right)={u}^{\prime }\left(0\right)=0$, whose solution has the following integral representation:

$u\left(x\right)=u\left(0\right)+{u}^{\prime }\left(0\right)x+{\int }_{0}^{x}\left(y-x\right)f\left(y\right)\phantom{\rule{0.2em}{0ex}}dy={\int }_{0}^{x}\left(y-x\right)f\left(y\right)\phantom{\rule{0.2em}{0ex}}dy.$
(3)

For specific f, the integration in (2) provides the solution of the boundary value problem (1). In other words, if we consider the differential operator defined as

$\mathcal{L}u\left(x\right)=-f\left(x\right),$

the solution (2) provides a representation of the inverse operator ${\mathcal{L}}^{-1}$ as an integral operator with kernel the Green’s function $G\left(x,\xi \right)$.

One of the main advantages of the Green’s function is the fact that it is independent on the source and recently  an algorithm that calculates explicitly the Green’s function related to a linear ordinary differential equation, with constant coefficients, coupled with two-point linear boundary conditions has been developed.

For these reasons the theory of Green’s functions is a fundamental tool in the analysis of differential equations. It has been widely studied in the literature [2, 3, 6, 12] and it has a great importance for the use of monotone iterative techniques [14, 15], lower and upper solutions , fixed point theorems [17, 18], fractional calculus approach  or variational methods .

Although several results in the discrete case are similar to those already known in the continuous case, the adaptation from the continuous case to the discrete case is not direct but requires some special devices . Despite the fact that BVP of differential equations has been studied by many authors using various methods and techniques, there are scarce techniques for studying the BVP of difference equations. In the last decades, the fixed point theorems have been improved and generalized in different directions for solving boundary value problems (see e.g. ). These results were usually obtained by analytic techniques and various fixed point theorems. For example, the upper and lower solution method, the conical shell fixed point theorems, the Brouwer and Schauder fixed point theorems or topological degree theory (see  and references therein).

As indicated at the beginning of this section, we use the Green’s function to study some boundary value problems for second-order difference equations on non-uniform lattices. As in the classical case, separation of the variables and representation of solutions in terms of the basic Fourier series might also give explicit solutions of these boundary value problems . Finally, fixed point theorems are used to prove the existence and uniqueness of solutions for the boundary value problems analyzed in this paper.

2 Basic definitions and notations

Let us introduce the following difference operator :

${\mathbb{D}}_{x}f\left(x\left(s\right)\right)=\frac{f\left(x\left(s+1/2\right)\right)-f\left(x\left(s-1/2\right)\right)}{x\left(s+1/2\right)-x\left(s-1/2\right)}.$
(4)

This operator is the most general (divided difference) derivative having the following property: if $f\left(x\left(s\right)\right)$ is a polynomial of degree n in $x\left(s\right)$, then ${\mathbb{D}}_{x}f\left(x\left(s\right)\right)$ is a polynomial of degree $n-1$ in $x\left(s\right)$, where for $s\in \mathbf{Z}$, the lattice function $x\left(s\right)$ has the form [1, 38, 39]

$x\left(s\right)={c}_{1}{q}^{s}+{c}_{2}{q}^{-s}+{c}_{3},\phantom{\rule{1em}{0ex}}\text{or}$
(5)
$x\left(s\right)={c}_{4}{s}^{2}+{c}_{5}s+{c}_{6},$
(6)

with $q\ne 1$, and ${c}_{i}$, $i=1,\dots ,6$, are constants.

Depending on the constants ${c}_{i}$, there are four primary classes for the lattices $x\left(s\right)$ given in (5) and (6) which usually are called:

1. 1.

Linear lattices if we choose in (6) ${c}_{4}=0$ and ${c}_{5}\ne 0$.

2. 2.

Quadratic lattices if we choose in (6) ${c}_{4}\ne 0$.

3. 3.

q-linear lattices if we choose in (5) ${c}_{2}=0$ and ${c}_{1}\ne 0$.

4. 4.

q-quadratic lattices if we choose in (5) ${c}_{1}{c}_{2}\ne 0$.

Some properties of these classical lattices are presented in . Applications of the theory of basic Fourier series to q-analogues of several equations of mathematical physics such as the q-heat equation, q-wave equation and q-Laplace equation were studied in . Besides, linear second-order partial q-difference equations of the hypergeometric type in two variables on q-linear lattices have been recently analyzed in .

The Green’s function approach for difference equations on linear and q-linear lattices being well known (see e.g. ), we shall analyze certain boundary value problems for second-order difference equations on quadratic and q-quadratic lattices.

Remark 1 The q-quadratic lattice, in its general non-symmetrical form, is the most general case and the other lattices can be found from this by limiting processes. For ${c}_{1}={c}_{2}=1/2$ and ${c}_{3}=0$, we obtain the Askey-Wilson lattice . Moreover, if we choose ${c}_{4}=1$, ${c}_{5}=\gamma +\delta +1$, and ${c}_{6}=0$, we obtain the Racah lattice . Askey-Wilson and Racah polynomials  both satisfy a second-order difference equation on non-uniform lattices [1, 38, 39].

The well-known relation in the continuous case

$\frac{d}{dx}{x}^{n}=n{x}^{n-1}$

has appropriate analogues  for q-quadratic and quadratic lattices, by using different systems of polynomials bases $\left\{{\vartheta }_{n}\left(x\left(s\right)\right)\right\}$ with exact ${deg}_{x\left(s\right)}\left({\vartheta }_{m}\left(x\left(s\right)\right)\right)=m$ as proposed in [39, 48]. In particular we have the following.

Proposition 1

1. 1.

In the q-quadratic lattice $x\left(s\right)={c}_{1}{q}^{s}+{c}_{2}{q}^{-s}+{c}_{3}$, with $q\ne 1$, ${c}_{1}>0$ and ${c}_{2}>0$, the basis ${\vartheta }_{n}\left(s;q\right)$ defined for $n\ge 0$ as

${\vartheta }_{n}\left(x\left(s\right)\right)\equiv {\vartheta }_{n}\left(s;q\right)={\left(-\frac{{c}_{1}^{3/2}{q}^{1/4}}{\sqrt{{c}_{2}}}\right)}^{n}{\left(\frac{{q}^{-\frac{n}{2}+s+\frac{1}{4}}\sqrt{{c}_{1}}}{\sqrt{{c}_{2}}};q\right)}_{n}{\left(\frac{{q}^{-\frac{n}{2}-s+\frac{1}{4}}\sqrt{{c}_{2}}}{\sqrt{{c}_{1}}};q\right)}_{n}$
(7)

satisfies, for $n\ge 1$,

${\mathbb{D}}_{x}{\vartheta }_{n}\left(s;q\right)=\frac{{\vartheta }_{n}\left(s+1/2;q\right)-{\vartheta }_{n}\left(s-1/2;q\right)}{x\left(s+1/2\right)-x\left(s-1/2\right)}={k}_{n}\left({c}_{1},{c}_{2},{c}_{3}\right){\vartheta }_{n-1}\left(s;q\right),$
(8)

where the constants ${k}_{n}\left({c}_{1},{c}_{2},{c}_{3}\right)$ are explicitly given by

${k}_{n}\left({c}_{1},{c}_{2},{c}_{3}\right)=\frac{{c}_{1}{q}^{\frac{1-n}{2}}{\left[n\right]}_{q}}{{c}_{2}},$
(9)

the q-Pochhammer symbol is given by

${\left(a;q\right)}_{0}=1,\phantom{\rule{2em}{0ex}}{\left(a;q\right)}_{n}=\prod _{j=0}^{n-1}\left(1-a{q}^{j}\right),\phantom{\rule{1em}{0ex}}n=1,2,\dots ,$

and the q-number ${\left[z\right]}_{q}$ is defined by

${\left[z\right]}_{q}=\frac{{q}^{z}-1}{q-1},\phantom{\rule{2em}{0ex}}\underset{q\to 1}{lim}{\left[z\right]}_{q}=z.$
(10)
2. 2.

In the quadratic lattice $x\left(s\right)={c}_{4}{s}^{2}+{c}_{5}s+{c}_{6}$, with ${c}_{4}\ne 0$, the basis ${\vartheta }_{n}\left(s\right)$ is defined for $n\ge 0$ as

${\vartheta }_{n}\left(x\left(s\right)\right)\equiv {\vartheta }_{n}\left(s\right)={4}^{-n}{\left(-{c}_{4}\right)}^{n}{\left(-\frac{{c}_{5}}{{c}_{4}}-2s+\frac{1}{2}\right)}_{n}{\left(\frac{{c}_{5}}{{c}_{4}}+2s+\frac{1}{2}\right)}_{n},$
(11)

and satisfies, for $n\ge 1$,

${\mathbb{D}}_{x}{\vartheta }_{n}\left(s\right)=\frac{{\vartheta }_{n}\left(s+1/2\right)-{\vartheta }_{n}\left(s-1/2\right)}{x\left(s+1/2\right)-x\left(s-1/2\right)}={k}_{n}\left({c}_{4},{c}_{5},{c}_{6}\right){\vartheta }_{n-1}\left(s\right),$
(12)

where the constants ${k}_{n}\left({c}_{4},{c}_{5},{c}_{6}\right)$ are explicitly given by

${k}_{n}\left({c}_{4},{c}_{5},{c}_{6}\right)=n,$
(13)

and ${\left(A\right)}_{n}=A\left(A+1\right)\cdots \left(A+n-1\right)$ denotes the Pochhammer symbol.

As a consequence ${\mathbb{D}}_{x}$ is an exact lowering operator in these bases $\left\{{\vartheta }_{n}\left(x\left(s\right)\right)\right\}$ where ${k}_{n}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)$, $i=1$ or $i=4$, are constants with respect to s and they depend on the lattice type.

For a lattice $x\left(s\right)$ of the form (5) or (6), let 

$L\left[x\right]=\left\{x\left(\frac{s}{2}+{s}_{1}\right):s\in \mathbf{Z}\right\},\phantom{\rule{1em}{0ex}}{s}_{1}\in \mathbf{R}.$
(14)

The $\mathbb{D}$-integral of a function 

$f:L\left[x\right]\to \mathbf{R},$

defined on $L\left[x\right]$ is defined by the Riemann sum over the lattice points

${\int }_{x\left(a\right)}^{x\left(b\right)}f\left(x\left(s\right)\right)\mathbb{D}x\left(s\right):=\sum _{s=a}^{b}f\left(x\left(s\right)\right)\mathrm{\Delta }x\left(s-1/2\right),$
(15)

where $x\left(a\right), $a,b\in \mathbf{Z}$, and

$\mathrm{\Delta }x\left(s\right)=x\left(s+1\right)-x\left(s\right).$

This definition reduces to the usual definition of the difference integral and the Thomae  and Jackson q-integrals [46, 51, 52] in the canonical forms of the linear and q-linear lattices, respectively.

By using the notations

${E}_{x}^{±}f\left(x\left(s\right)\right)=f\left(x\left(s±1/2\right)\right),\phantom{\rule{2em}{0ex}}{E}_{x}^{±}x\left(s\right)=x\left(s±1/2\right),\phantom{\rule{1em}{0ex}}\mathrm{\forall }x\left(s\right)\in L\left[x\right],$

the following properties follow from definition (15) [34, 37]:

1. 1.

An analogue of the fundamental theorem of calculus

${\int }_{x\left(a\right)}^{x\left(\omega \right)}{\mathbb{D}}_{x}f\left(x\left(s\right)\right)\mathbb{D}x\left(s\right)=f\left({E}_{x}^{+}x\left(\omega \right)\right)-f\left({E}_{x}^{-}x\left(a\right)\right).$
(16)
2. 2.

An analogue of integration by parts formula for two functions $f\left(x\right)$ and $g\left(x\right)$

$\begin{array}{r}{\int }_{x\left(a\right)}^{x\left(\omega \right)}f\left(x\left(s\right)\right){\mathbb{D}}_{x}g\left(x\right)\mathbb{D}x\left(x\right)\\ \phantom{\rule{1em}{0ex}}=f\left({E}_{x}^{+2}x\left(\omega \right)\right)g\left({E}_{x}^{+}x\left(\omega \right)\right)-f\left(x\left(a\right)\right)g\left({E}_{x}^{-}x\left(a\right)\right)\end{array}$
(17)
$\phantom{\rule{2em}{0ex}}-{\int }_{x\left(a\right)}^{x\left(\omega \right)}{\mathbb{D}}_{x}f\left({E}_{x}^{+}x\left(s\right)\right)g\left({E}_{x}^{+}x\left(s\right)\right)\mathbb{D}\left({E}_{x}^{+}x\left(s\right)\right).$
(18)

Next we present two basic but illustrative computations which might help to clarify the notation used as well as the analogue of the fundamental theorem of calculus (16).

1. 1.

In the case of a q-quadratic lattice $x\left(s\right)={c}_{1}{q}^{s}+{c}_{2}{q}^{-s}+{c}_{3}$, with $q\ne 1$, ${c}_{1}>0$ and ${c}_{2}>0$,

$\begin{array}{rl}{\int }_{x\left(a\right)}^{x\left(b\right)}{\vartheta }_{n}\left(s;q\right)\mathbb{D}x\left(s\right)& =\sum _{s=a}^{b}{\vartheta }_{n}\left(s;q\right)\mathrm{\Delta }x\left(s-1/2\right)\\ =\sum _{s=a}^{b}\frac{{c}_{2}{q}^{n/2}}{{c}_{1}{\left[n+1\right]}_{q}}{\mathbb{D}}_{x}{\vartheta }_{n+1}\left(s;q\right)\mathrm{\Delta }x\left(s-1/2\right)\\ =\frac{{\vartheta }_{n+1}\left(b+1/2;q\right)-{\vartheta }_{n+1}\left(a-1/2;q\right)}{{k}_{n+1}\left({c}_{1},{c}_{2},{c}_{3}\right)},\end{array}$
(19)

where ${\vartheta }_{n}\left(s;q\right)$ and ${k}_{n}\left({c}_{1},{c}_{2},{c}_{3}\right)$ have been defined in (7) and (9).

2. 2.

In the case of a quadratic lattice $x\left(s\right)={c}_{4}{s}^{2}+{c}_{5}s+{c}_{6}$, with ${c}_{4}\ne 0$, the following relation holds:

$\begin{array}{rcl}{\int }_{x\left(a\right)}^{x\left(b\right)}{\vartheta }_{n}\left(s\right)\mathbb{D}x\left(s\right)& =& \sum _{s=a}^{b}{\vartheta }_{n}\left(s\right)\mathrm{\Delta }x\left(s-1/2\right)\\ =& \sum _{s=a}^{b}\frac{1}{n+1}{\mathbb{D}}_{x}{\vartheta }_{n+1}\left(s\right)\mathrm{\Delta }x\left(s-1/2\right)\\ =& \frac{{\vartheta }_{n+1}\left(b+1/2\right)-{\vartheta }_{n+1}\left(a-1/2\right)}{{k}_{n+1}\left({c}_{4},{c}_{5},{c}_{6}\right)},\end{array}$
(20)

where ${\vartheta }_{n}\left(s\right)$ and ${k}_{n}\left({c}_{4},{c}_{5},{c}_{6}\right)$ have been defined in (11) and (13).

3 Boundary value problem on non-uniform lattices

Let us consider $f\in \mathcal{C}\left(L\left[x\right]×\mathbf{R},\mathbf{R}\right)$, where $L\left[x\right]$ has been defined in (14). Analogues of trigonometric and exponential functions on q-quadratic lattices are given in [33, 40, 53]. In this section we explicitly obtain the Green’s function $G\left(t,s;x\left(s\right)\right)$ [2, 3, 6, 7] in quadratic and q-quadratic lattices $x\left(s\right)$ such that the solutions of the boundary value problem for a new class of second-order difference equation as

${\mathbb{D}}_{x}^{2}u\left(x\left(s\right)\right)=f\left(x\left(s\right),u\left(x\left(s\right)\right)\right),\phantom{\rule{1em}{0ex}}x\left(s\right)\in L\left[x\right],$
(21)

with Cauchy boundary conditions

$u\left(x\left({s}_{1}\right)\right)=\alpha ,\phantom{\rule{2em}{0ex}}{\mathbb{D}}_{x}u\left(x\left({s}_{1}-1/2\right)\right)=\beta ,$
(22)

are given by the solutions

$u\left(x\left(t\right)\right)=\alpha +\beta \left(\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left({s}_{1}\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)+{\int }_{x\left({s}_{1}\right)}^{x\left(a\right)}G\left(t,s;x\left(s\right)\right)f\left(x\left(s\right),u\left(x\left(s\right)\right)\right)\mathbb{D}x\left(s\right),$
(23)

where [, Eq. (2.2.10)]

${\mathbb{D}}_{x}^{2}u\left(x\left(s\right)\right)=\frac{1}{x\left(s+1/2\right)-x\left(s-1/2\right)}\left[\frac{u\left(x\left(s+1\right)\right)-u\left(x\left(s\right)\right)}{x\left(s+1\right)-x\left(s\right)}-\frac{u\left(x\left(s\right)\right)-u\left(x\left(s-1\right)\right)}{x\left(s\right)-x\left(s-1\right)}\right],$

and $G\left(t,s;x\left(s\right)\right)$ denotes the Green’s function which shall be computed explicitly (see (24) and (25) below).

For $x\left(s\right)\in L\left[x\right]$, from (16) we have

$g\left(x\left(s\right)\right)=g\left(x\left(a\right)\right)+{\int }_{x\left(a+1/2\right)}^{x\left(s-1/2\right)}{\mathbb{D}}_{x}g\left(x\left(r\right)\right)\mathbb{D}x\left(r\right).$

Therefore, if $g\left(x\left(s\right)\right)={\mathbb{D}}_{x}u\left(x\left(s\right)\right)$ and $a={s}_{1}$,

${\mathbb{D}}_{x}u\left(x\left(s\right)\right)={\mathbb{D}}_{x}u\left(x\left({s}_{1}\right)\right)+{\int }_{x\left({s}_{1}+1/2\right)}^{x\left(s-1/2\right)}{\mathbb{D}}_{x}^{2}u\left(x\left(r\right)\right)\mathbb{D}x\left(r\right),$

or equivalently from (21)

${\mathbb{D}}_{x}u\left(x\left(y\right)\right)={\mathbb{D}}_{x}u\left(x\left({s}_{1}\right)\right)+{\int }_{x\left({s}_{1}+1/2\right)}^{x\left(y-1/2\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\mathbb{D}x\left(z\right).$

From (16) and the latter expression we have

$\begin{array}{rcl}u\left(x\left(s\right)\right)& =& u\left(x\left({s}_{1}\right)\right)+{\int }_{x\left({s}_{1}+1/2\right)}^{x\left(s-1/2\right)}{\mathbb{D}}_{x}u\left(x\left(y\right)\right)\mathbb{D}x\left(y\right)\\ =& u\left(x\left({s}_{1}\right)\right)+{\int }_{x\left({s}_{1}+1/2\right)}^{x\left(s-1/2\right)}\left({\mathbb{D}}_{x}u\left(x\left({s}_{1}-1/2\right)\right)+{\int }_{x\left({s}_{1}\right)}^{x\left(y-1/2\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\mathbb{D}x\left(z\right)\right)\mathbb{D}x\left(y\right)\\ =& u\left(x\left({s}_{1}\right)\right)+{\mathbb{D}}_{x}u\left(x\left({s}_{1}-1/2\right)\right)\left(\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left({s}_{1}\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\\ +{\int }_{x\left({s}_{1}+1/2\right)}^{x\left(s-1/2\right)}{\int }_{x\left({s}_{1}\right)}^{x\left(y-1/2\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\mathbb{D}x\left(z\right)\mathbb{D}x\left(y\right),\end{array}$

where the constants ${k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)$, $i=1$ or $i=4$, depend on the lattice considered and have been explicitly given in (13) and (9) for quadratic and q-quadratic lattices, respectively. If we interchange the integrals, we obtain

$\begin{array}{rcl}u\left(x\left(s\right)\right)& =& u\left(x\left({s}_{1}\right)\right)+{\mathbb{D}}_{x}u\left(x\left({s}_{1}-1/2\right)\right)\left(\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left({s}_{1}\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\\ +{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\mathbb{D}x\left(z\right){\int }_{x\left(z+{s}_{1}+1/2\right)}^{x\left(s-1/2\right)}\mathbb{D}x\left(y\right).\end{array}$

Thus, we just need to compute the last integral, which is simple in terms of the basis associated with the operator as

${\int }_{x\left(z+{s}_{1}+1/2\right)}^{x\left(s-1/2\right)}\mathbb{D}x\left(y\right)=\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left(z\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)},$

and therefore

$\begin{array}{rcl}u\left(x\left(s\right)\right)& =& u\left(x\left({s}_{1}\right)\right)+{\mathbb{D}}_{x}u\left(x\left({s}_{1}-1/2\right)\right)\left(\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left({s}_{1}\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\\ +{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left(z+{s}_{1}\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right)\\ =& \alpha +\beta \left(\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left({s}_{1}\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\\ +{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\frac{{\vartheta }_{1}\left(x\left(s\right)\right)-{\vartheta }_{1}\left(x\left(z+{s}_{1}\right)\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right).\end{array}$

If we impose ${s}_{1}=0$ and the boundary conditions (22) with $\alpha =\beta =0$, we give the solution of the boundary value problem (21)-(22) for the two types of different non-uniform lattices considered in this article:

1. 1.

In the q-quadratic lattice $x\left(s\right)={c}_{1}{q}^{s}+{c}_{2}{q}^{-s}+{c}_{3}$, with $q\ne 1$, ${c}_{1}>0$ and ${c}_{2}>0$, we have

${\int }_{x\left(z+1/2\right)}^{x\left(s-1/2\right)}\mathbb{D}x\left(y\right)=\frac{{\vartheta }_{1}\left(s;q\right)-{\vartheta }_{1}\left(z;q\right)}{{k}_{1}\left(\left({c}_{1},{c}_{2},{c}_{3}\right)\right)}={c}_{1}\left({q}^{s}-{q}^{z}\right)+{c}_{2}\left({q}^{-s}-{q}^{-z}\right)$

and with the boundary conditions (22) we obtain

$\begin{array}{rcl}u\left(x\left(s\right)\right)& =& {\int }_{x\left(0\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\frac{{\vartheta }_{1}\left(s;q\right)-{\vartheta }_{1}\left(z;q\right)}{{k}_{1}\left({c}_{1},{c}_{2},{c}_{3}\right)}\right)\mathbb{D}x\left(z\right)\\ =& {\int }_{x\left(0\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left({c}_{1}\left({q}^{s}-{q}^{z}\right)+{c}_{2}\left({q}^{-s}-{q}^{-z}\right)\right)\mathbb{D}x\left(z\right).\end{array}$
(24)
2. 2.

In the quadratic lattice $x\left(s\right)={c}_{4}{s}^{2}+{c}_{5}s+{c}_{6}$, ${c}_{4}\ne 0$,

$\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z\right)}{{k}_{1}\left({c}_{4},{c}_{5},{c}_{6}\right)}=\left(s-z\right)\left({c}_{4}\left(z+s\right)+{c}_{5}\right)$

and therefore, with the boundary conditions (22) it yields

$\begin{array}{rcl}u\left(x\left(s\right)\right)& =& {\int }_{x\left(0\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z\right)}{{k}_{1}\left({c}_{4},{c}_{5},{c}_{6}\right)}\right)\mathbb{D}x\left(z\right)\\ =& {\int }_{x\left(0\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\left(s-z\right)\left({c}_{4}\left(s+z\right)+{c}_{5}\right)\right)\mathbb{D}x\left(z\right).\end{array}$
(25)

As a consequence, (24) and (25) provide an explicit representation of the Green’s function for the BVP (21)-(22) for each type of non-uniform lattice considered in this paper (quadratic and q-quadratic).

Now, motivated by (23), let us introduce the following operator:

$\mathbb{T}\left[u\right]={\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right),$

where the constants ${k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)$ are given for $i=1$ (q-quadratic lattice) in (9) and for $i=4$ (quadratic lattice) in (13).

In this case, $\mathbb{D}$ is defined in the Banach space of all continuous functions from $L\left[x\right]$ to R with the norm defined by

$\parallel u\parallel =sup\left\{|u\left(x\left(s\right)\right)|:x\left(s\right)\in L\left[x\right]\right\}.$

Let us define

${\mathrm{\Lambda }}_{1}=\underset{x\left(s\right)\in L\left[x\right]}{sup}|{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right)|.$
(26)

In a similar way as in  we can prove the following result for the uniqueness of the solution of the boundary value problem, assuming that the function f satisfies a Lipchitz bound in the second variable.

Theorem 1 Let $f:L\left[x\right]×\mathbf{R}\to \mathbf{R}$ be a continuous function satisfying the condition

$|f\left(t,u\right)-f\left(t,v\right)|\le L|u-v|,\phantom{\rule{1em}{0ex}}\mathrm{\forall }t,u,v\in \mathbf{R},$

where L is a Lipschitz constant. Then, the boundary value problem (21)-(22) has a unique solution provided $\mathrm{\Lambda }=L{\mathrm{\Lambda }}_{1}<1$, where ${\mathrm{\Lambda }}_{1}$ is given by (26).

Proof Let

$\mathbb{T}\left[u\left(x\left(s\right)\right)\right]={\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right),$

for a continuous function u and $x\left(s\right)\in L\left[x\right]$. Let us define

${M}_{0}=\underset{x\left(s\right)\in L\left[x\right]}{sup}|f\left(x\left(s\right),0\right)|,$
(27)

and consider

$r\ge \frac{{M}_{0}{\mathrm{\Lambda }}_{1}}{1-\delta },$
(28)

where δ is chosen such that $\mathrm{\Lambda }\le \delta <1$. First, we prove that if

${\mathcal{B}}_{r}=\left\{u\in \mathcal{C}:\parallel u\parallel \le r\right\},$

then we have $\mathbb{T}{\mathcal{B}}_{r}\subset {\mathcal{B}}_{r}$. This property follows from

$\begin{array}{rcl}\parallel \mathbb{T}\left[u\right]\parallel & =& \underset{x\left(s\right)\in L\left[x\right]}{sup}|{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right)|\\ \le & \underset{x\left(s\right)\in L\left[x\right]}{sup}|{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}\left(|f\left(x\left(z\right),u\left(x\left(z\right)\right)\right)-f\left(x\left(z\right),0\right)|+|f\left(x\left(z\right),0\right)|\right)\\ ×\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right)|\\ \le & \left(L\parallel u\parallel +{M}_{0}\right)\underset{x\left(s\right)\in L\left[x\right]}{sup}|{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right)|\le \left(L\parallel u\parallel +{M}_{0}\right){\mathrm{\Lambda }}_{1}\\ \le & \left(Lr+{M}_{0}\right){\mathrm{\Lambda }}_{1}\le \left(\mathrm{\Lambda }+1-\delta \right)r\le r.\end{array}$

Moreover,

$\begin{array}{rcl}\parallel \mathbb{T}\left[u\right]-\mathbb{T}\left[v\right]\parallel & =& \underset{x\left(s\right)\in L\left[x\right]}{sup}|\mathbb{T}\left[u\left(x\left(s\right)\right)\right]-\mathbb{T}\left[v\left(x\left(s\right)\right)\right]|\\ \le & \underset{x\left(s\right)\in L\left[x\right]}{sup}|{\int }_{x\left({s}_{1}\right)}^{x\left(s-1\right)}\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)L\parallel u-v\parallel \mathbb{D}x\left(z\right)|\le \mathrm{\Lambda }\parallel u-v\parallel .\end{array}$

As $\mathrm{\Lambda }<1$, the conclusion follows from Banach’s contraction mapping principle . □

Example 1 In  and references therein, the theory of basic analogs of Fourier series and their applications to quantum groups and mathematical physics is presented. Let us consider BVP which appears as a difference analog of equation for harmonic motion [, (2.4.16)]

$\begin{array}{r}{\mathbb{D}}_{x}^{2}u\left(x\left(s\right)\right)+\frac{4{q}^{1/2}{w}^{2}}{{\left(1-q\right)}^{2}}u\left(x\left(s\right)\right)=0,\phantom{\rule{2em}{0ex}}u\left(x\left(1/4\right)\right)=\alpha ,\\ {\mathbb{D}}_{x}u\left(x\left(-1/4\right)\right)={\mathbb{D}}_{x}u\left(x\left(1/4\right)\right)=\beta ,\end{array}$
(29)

where ${s}_{1}=1/4$, $q\ne 1$ and the non-uniform lattice is given by

$x\left(s\right)=\frac{{q}^{s}+{q}^{-s}}{2}.$

For $|\omega |<1$, let us introduce the basic cosine ${C}_{q}\left(x\left(s\right);\omega \right)$ and basic sine ${S}_{q}\left(x\left(s\right);\omega \right)$ functions [33, 40] as

$\begin{array}{c}{C}_{q}\left(x\left(s\right);\omega \right)={\frac{{\left(-{\omega }^{2};{q}^{2}\right)}_{\mathrm{\infty }}}{{\left(-q{\omega }^{2};{q}^{2}\right)}_{\mathrm{\infty }}}}_{2}{\phi }_{1}\left(\begin{array}{c}-{q}^{2s+1},-{q}^{1-2s}\\ q\end{array}|{q}^{2};-{\omega }^{2}\right),\hfill \\ {S}_{q}\left(x\left(s\right);\omega \right)=\frac{{\left(-{\omega }^{2};{q}^{2}\right)}_{\mathrm{\infty }}}{{\left(-q{\omega }^{2};{q}^{2}\right)}_{\mathrm{\infty }}}\frac{2{q}^{1/4}\omega }{1-q}x{\left(s\right)}_{2}{\phi }_{1}\left(\begin{array}{c}-{q}^{2s+2},-{q}^{2-2s}\\ {q}^{3}\end{array}|{q}^{2};-{\omega }^{2}\right),\hfill \end{array}$

where the q-shifted factorial and the basic hypergeometric series are defined by [46, 51, 52]

$\begin{array}{c}{\left(a;q\right)}_{k}=\prod _{j=0}^{k-1}\left(1-a{q}^{j}\right),\phantom{\rule{2em}{0ex}}{\left(a;q\right)}_{\mathrm{\infty }}=\prod _{j=0}^{\mathrm{\infty }}\left(1-a{q}^{j}\right),\hfill \\ {}_{2}\phi _{1}\left(\begin{array}{c}{a}_{1},{a}_{2}\\ {b}_{1}\end{array}|q;t\right)=\sum _{k=0}^{\mathrm{\infty }}\frac{{\left({a}_{1};q\right)}_{k}{\left({a}_{2};q\right)}_{k}}{{\left(q;q\right)}_{k}{\left({b}_{1};q\right)}_{k}}{t}^{k}.\hfill \end{array}$

The basic sine and cosine functions satisfy [, (2.4.17), (2.4.18)]

${\mathbb{D}}_{x}\left[{S}_{q}\left(x\left(s\right);\omega \right)\right]=\frac{2{q}^{1/4}}{1-q}\omega {C}_{q}\left(x\left(s\right);\omega \right),\phantom{\rule{2em}{0ex}}{\mathbb{D}}_{x}\left[{C}_{q}\left(x\left(s\right);\omega \right)\right]=\frac{-2{q}^{1/4}}{1-q}\omega {S}_{q}\left(x\left(s\right);\omega \right).$

By using the tables of zeros of basic sine and cosine functions [, Appendix C] if

$\alpha ={C}_{{q}_{1}}\left(x\left(1/4\right);{\omega }_{1}\right),\phantom{\rule{2em}{0ex}}\beta =\frac{2{q}_{1}^{1/4}{\omega }_{1}}{1-{q}_{1}}{C}_{{q}_{1}}\left(x\left(1/4\right);{\omega }_{1}\right),$

where ${q}_{1}=0.9$ and ${\omega }_{1}=0.32634395186574$, the explicit solution of the BVP (29) is

$u\left(x\left(s\right)\right)={C}_{q}\left(x\left(s\right);\omega \right)+{S}_{q}\left(x\left(s\right);\omega \right),$

since ${S}_{{q}_{1}}\left(x\left(1/4\right);{\omega }_{1}\right)={S}_{{q}_{1}}\left(x\left(-1/4\right);{\omega }_{1}\right)=0$. Moreover, for these values

$\frac{4{q}_{1}^{1/2}{w}_{1}^{2}}{{\left(1-{q}_{1}\right)}^{2}}\sim 40.4140507688415,$

and since

${\mathrm{\Lambda }}_{1}=\underset{x\left(s\right)\in L\left[x\right]}{sup}|{\int }_{x\left(1/4\right)}^{x\left(23/4\right)}\left(\frac{{\vartheta }_{1}\left(s\right)-{\vartheta }_{1}\left(z+{s}_{1}\right)}{{k}_{1}\left({c}_{i},{c}_{i+1},{c}_{i+2}\right)}\right)\mathbb{D}x\left(z\right)|=0.02094573233035616,$

we have $L{\mathrm{\Lambda }}_{1}<1$, which ensures the unicity of the solution of the BVP for $x\left(1/4\right)\le x\left(s\right)\le x\left(23/4\right)$.

Moreover, if f is a bounded function we have the following.

Theorem 2 If f is a bounded function, then the operator $\mathbb{T}$ has a fixed point and, in consequence, the difference equation on a non-uniform lattice (21) with the boundary conditions (22) has a solution.

Proof The operator $\mathbb{T}$ is compact since it is an integral operator  and the range of $\mathbb{T}$ is contained in a closed ball since f is bounded.

The operator $\mathbb{T}$ has a fixed point in view the classical Schaefer’s fixed point theorem [, Theorem 4.3.2]. □

Concluding remarks

We would like to mention that our goal here is not to exploit all possible boundary value problems covered by this approach, but to emphasize its systematic character and its simplicity, due to very recent results on bases associated with the difference operators considered in this article.

References

1. 1.

Nikiforov AF, Suslov SK, Uvarov VB: Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin; 1991.

2. 2.

Roach GF: Green’s Functions. 2nd edition. Cambridge University Press, Cambridge; 1982.

3. 3.

Stakgold I, Holst M: Green’s Functions and Boundary Value Problems. 3rd edition. Wiley, Hoboken; 2011.

4. 4.

Beck JV, Cole KD, Haji-Sheikh A, Litkouhi B: Heat Conduction Using Green’s Functions. Hemisphere, London; 1992.

5. 5.

Cole KD, Beck JV, Haji-Sheikh A, Litkouhi B: Heat Conduction Using Green’s Functions. 2nd edition. CRC Press, Boca Raton; 2011.

6. 6.

Duffy DG: Green’s Functions with Applications. Chapman & Hall/CRC, Boca Raton; 2001.

7. 7.

Economou EN: Green’s Functions in Quantum Physics. 3rd edition. Springer, Berlin; 2006.

8. 8.

Hartmann F: Green’s Functions and Finite Elements. Heidelberg, Springer; 2013.

9. 9.

Cabada A: Green’s Functions in the Theory of Ordinary Differential Equations. Springer, Berlin; 2014.

10. 10.

Melnikov YA: Green’s Functions and Infinite Products. Birkhäuser/Springer, New York; 2011.

11. 11.

Bourgain J Annals of Mathematics Studies 158. In Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Princeton University Press, Princeton; 2005.

12. 12.

Kythe PK Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. In Green’s Functions and Linear Differential Equations. CRC Press, Boca Raton; 2011.

13. 13.

Cabada A, Cid JÁ, Máquez-Villamarín B: Computation of Green’s functions for boundary value problems with Mathematica . Appl. Math. Comput. 2012, 219(4):1919–1936. 10.1016/j.amc.2012.08.035

14. 14.

Ladde GS, Lakshmikantham V, Vatsala AS: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston; 1985.

15. 15.

Nieto JJ: An abstract monotone iterative technique. Nonlinear Anal. 1997, 28(12):1923–1933. 10.1016/S0362-546X(97)89710-6

16. 16.

De Coster C, Habets P: Two-Point Boundary Value Problems: Lower and Upper Solutions. Elsevier, Amsterdam; 2006.

17. 17.

Webb JRL: Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. (2) 2010, 82(2):420–436. 10.1112/jlms/jdq037

18. 18.

Nieto JJ: Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions. Proc. Am. Math. Soc. 1997, 125(9):2599–2604. 10.1090/S0002-9939-97-03976-2

19. 19.

Baleanu D, Agarwal RP, Mohammadi H, Rezapour S: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 2013., 2013: Article ID 112

20. 20.

Abdeljawad T, Baleanu D, Jarad F, Agarwal RP: Fractional sums and differences with binomial coefficients. Discrete Dyn. Nat. Soc. 2013., 2013: Article ID 104173

21. 21.

Nyamoradi N, Baleanu D, Agarwal RP: On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval. Adv. Math. Phys. 2013., 2013: Article ID 823961

22. 22.

Babakhani A, Baleanu D, Agarwal RP: The existence and uniqueness of solutions for a class of nonlinear fractional differential equations with infinite delay. Abstr. Appl. Anal. 2013., 2013: Article ID 592964

23. 23.

Debbouche A, Baleanu D, Agarwal RP: Nonlocal nonlinear integrodifferential equations of fractional orders. Bound. Value Probl. 2012., 2012: Article ID 78

24. 24.

Struwe M: Variational Methods. 4th edition. Springer, Berlin; 2008.

25. 25.

Agarwal RP, Lalli BS: Discrete polynomial interpolation, Green’s functions, maximum principles, error bounds and boundary value problems. Comput. Math. Appl. 1993, 25(8):3–39. 10.1016/0898-1221(93)90169-V

26. 26.

Zhang P: Existence of positive solutions for nonlocal second-order boundary value problem with variable parameter in Banach spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 43

27. 27.

Du X, Zhao Z: On fixed point theorems of mixed monotone operators. Fixed Point Theory Appl. 2011., 2011: Article ID 563136

28. 28.

Wang G, Zhang L, Song G: Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses. Fixed Point Theory Appl. 2012., 2012: Article ID 200

29. 29.

Wu J, Liu Y: Fixed point theorems for monotone operators and applications to nonlinear elliptic problems. Fixed Point Theory Appl. 2013., 2013: Article ID 134

30. 30.

Ahmad B, Nieto JJ: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Differ. Equ. 2010., 2010: Article ID 649486

31. 31.

Wardowski D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 94

32. 32.

Gao L: Existence of multiple solutions for a second-order difference equation with a parameter. Appl. Math. Comput. 2010, 216(5):1592–1598. 10.1016/j.amc.2010.03.012

33. 33.

Ey K, Ruffing A, Suslov S: Method of separation of the variables for basic analogs of equations of mathematical physics. Ramanujan J. 2007, 13(1–3):407–447. 10.1007/s11139-006-0260-2

34. 34.

Bangerezako G: Variational calculus on q -nonuniform lattices. J. Math. Anal. Appl. 2005, 306: 161–179. 10.1016/j.jmaa.2004.12.029

35. 35.

Magnus AP: Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials. Lecture Notes in Math. 1329. In Orthogonal Polynomials and Their Applications. Springer, Berlin; 1988:261–278.

36. 36.

Magnus AP: Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points. 65. Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions 1995, 253–265.

37. 37.

37. Witte, NS: Semi-classical Orthogonal Polynomial Systems on Non-uniform Lattices, Deformations of the Askey Table and Analogs of Isomonodromy. arXiv:1204.2328 (2011)

38. 38.

Atakishiyev NM, Rahman M, Suslov SK: On classical orthogonal polynomials. Constr. Approx. 1995, 11(2):181–226. 10.1007/BF01203415

39. 39.

Suslov SK: On the theory of difference analogues of special functions of hypergeometric type. Usp. Mat. Nauk 1989, 44(2(266)):185–226.

40. 40.

Suslov SK: An Introduction to Basic Fourier Series. Kluwer Academic, Dordrecht; 2003.

41. 41.

Area I, Atakishiyev N, Godoy E, Rodal J: Linear partial q -difference equations on q -linear lattices and their bivariate q -orthogonal polynomial solutions. Appl. Math. Comput. 2013, 223: 520–536.

42. 42.

Hartman P: Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity. Trans. Am. Math. Soc. 1978, 246: 1–30.

43. 43.

Ahmad B, Alsaedi A, Ntouyas SK: A study of second-order q -difference equations with boundary conditions. Adv. Differ. Equ. 2012., 2012: Article ID 35

44. 44.

Ahmad B, Nieto JJ: Basic theory of nonlinear third-order q -difference equations and inclusions. Math. Model. Anal. 2013, 18: 122–135. 10.3846/13926292.2013.760012

45. 45.

Askey R, Wilson J: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 1985., 54: Article ID 319

46. 46.

Koekoek R, Lesky PA, Swarttouw RF: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer, Berlin; 2010.

47. 47.

Foupouagnigni M, Koepf K, Kenfack-Nangho K, Mboutngam S: On solutions of holonomic divided-difference equations on nonuniform lattices. Axioms 2013, 2(3):404–434. 10.3390/axioms2030404

48. 48.

Suslov SK: Letter to the editors: ‘On the theory of difference analogues of special functions of hypergeometric type’. Usp. Mat. Nauk 1990, 45(3(273)):219. (Usp. Mat. Nauk 44(2(266)), 185–226 (1989))

49. 49.

Thomae J: Beitrage zur Theorie der durch die Heinesche Reihe. J. Reine Angew. Math. 1869, 70: 258–281.

50. 50.

Jackson F: On q -definite integrals. Q. J. Pure Appl. Math. 1910, 41: 193–203.

51. 51.

Gasper G, Rahman M: Basic Hypergeometric Series. 2nd edition. Cambridge University Press, Cambridge; 2004.

52. 52.

Ismail MEH: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge; 2005.

53. 53.

Bustoz J, Suslov SK: Basic analog of Fourier series on a q -quadratic grid. Methods Appl. Anal. 1998, 5: 1–38.

54. 54.

Banach S: Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundam. Math. 1922, 3: 133–181.

55. 55.

Smart DR: Fixed Point Theorems. Cambridge University Press, London; 1974.

Acknowledgements

The authors would like to thank the referees for the many valuable comments and references. The work of I. Area and E. Godoy has been partially supported by the Ministerio de Economía y Competitividad of Spain under grant MTM2012-38794-C02-01, co-financed by the European Community fund FEDER. J.J. Nieto also acknowledges partial financial support by the Ministerio de Economía y Competitividad of Spain under grant MTM2010-15314, co-financed by the European Community fund FEDER.

Author information

Authors

Corresponding author

Correspondence to Juan J Nieto.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each of the authors, IA, EG, and JJN, contributed to each part of this study equally and read and approved the final version of the manuscript.

Rights and permissions

Reprints and Permissions

Area, I., Godoy, E. & Nieto, J.J. Fixed point theory approach to boundary value problems for second-order difference equations on non-uniform lattices. Adv Differ Equ 2014, 14 (2014). https://doi.org/10.1186/1687-1847-2014-14

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1687-1847-2014-14

Keywords

• difference operators on non-uniform lattices
• second-order difference equations on non-uniform lattices
• Green’s function
• boundary value problem
• fixed point theorems 