Open Access

Positive solutions to boundary value problems of a high-order fractional differential equation in a Banach space

Advances in Difference Equations20132013:344

https://doi.org/10.1186/1687-1847-2013-344

Received: 9 July 2013

Accepted: 29 October 2013

Published: 27 November 2013

Abstract

In this paper, by using the fixed-point theorem in the cone of strict-set-contraction operators, we study a class of higher-order boundary value problems of nonlinear fractional differential equation in a Banach space. The sufficient conditions for the existence of at least two positive solutions is obtained. In addition, an example to illustrate the main results is given.

Keywords

fractional differential equationboundary value problemmeasure of noncompactnessstrict-set-contraction operators

1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary noninteger order. The fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and its numerous applications in various fields of science and engineering including fluid flow, rheology, control, electrochemistry, electromagnetic, porous media and probability, etc. (see [14]).

In recent years, the existence and uniqueness of solutions of the initial and boundary value problems for fractional equations have been extensively studied (see [416] and the references therein). But there are few works that deal with the existence of solutions of nonlinear fractional differential equations in Banach spaces; see [1724]. In [19], Hussein investigated the existence of pseudo solutions for the following nonlinear m-point boundary value problem of fractional type:
{ D 0 + q u ( t ) + a ( t ) f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 0 ) = = u ( n 2 ) ( 0 ) = 0 , u ( 1 ) = i = 1 m 2 ζ i u ( η i )

in a reflexive Banach space E, where D 0 + q is the pseudo fractional differential operator of order n 1 < q n , n 2 .

In [22], by the monotone iterative technique and the Mönch fixed point theorem, Lv et al. investigated the existence of a solution to the following Cauchy problem for the differential equation with fractional order in a real Banach space E:
D q C u ( t ) = f ( t , u ( t ) ) , u ( 0 ) = u 0 ,

where D q C u ( t ) is the Caputo derivative of order 0 < q < 1 .

By means of Darbo’s fixed point theorem, Su [23] established the existence result of solutions to the following boundary value problem of fractional differential equation on unbounded domain [ 0 , + ) :
{ D 0 + q u ( t ) = f ( t , u ( t ) ) , t [ 0 , + ) , 1 < q 2 , u ( 0 ) = θ , D 0 + q 1 u ( ) = u

in a Banach space E. D 0 + q is the Riemann-Liouville fractional derivative.

Being directly inspired by [9, 15, 19, 22] but taking quite a different method from that in [15, 1923], we discuss in this paper the following high-order boundary value problem (BVP for short) in a Banach space E:
{ D 0 + q u ( t ) + f ( t , u , u , , u ( n 2 ) ) = θ , t ( 0 , 1 ) , q ( n 1 , n ] , u ( i ) ( 0 ) = 0 , 0 i n 3 , α u ( n 2 ) ( 0 ) β u ( n 1 ) ( 0 ) = θ , γ u ( n 2 ) ( 1 ) + δ u ( n 1 ) ( 1 ) = θ ,
(1.1)

where θ is the zero element of E, n 2 , α, β, γ and δ are nonnegative constants satisfying ρ 1 = α γ + α δ + β γ > 0 , and D 0 + q is the Caputo fractional derivative. Note that the nonlinear term f depends on u and its derivatives u , u , , u ( n 2 ) .

The paper is organized as follows. In Section 2 we give some basic definitions in Riemann-Liouville fractional calculus and the Kuratowski noncompactness. In Section 3 we present the expression and properties of Green’s function associated with BVP (1.1), and by using the fixed-point theorem for strict-set-contraction operators and introducing a new cone Ω, we obtain the existence of at least two positive solutions for BVP (1.1) under certain conditions on the nonlinearity. Moreover, an example illustrating our main result is given in Section 4.

2 Preliminaries and lemmas

For convenience of the reader, we present here some definitions and preliminaries which are used throughout the paper. These definitions and lemmas can be found in the recent literature such as [1, 5].

Definition 2.1 ([1])

The Riemann-Liouville fractional integral of order q > 0 of a function y ( t ) is given by
I 0 + q y ( t ) = 1 Γ ( q ) 0 t ( t s ) q 1 y ( s ) d s ,

provided that the right-hand side is defined pointwise.

Definition 2.2 ([1])

The fractional derivative of order q > 0 of a function y : R 0 + R is given by
D 0 + q y ( t ) = 1 Γ ( n q ) ( d d t ) n 0 t ( t s ) n q 1 y ( s ) d s ,

where n = [ q ] + 1 , [ q ] denotes the integer part of number q, provided that the right-hand side is defined pointwise. In particular, for q = n , D 0 + q y ( t ) = y ( n ) ( t ) .

Lemma 2.3 ([1])

Let q > 0 . Then the fractional differential equation
D 0 + q y ( t ) = 0

has the unique solution y ( t ) = c 1 t q 1 + c 2 t q 2 + + c n t q n , c i R , i = 1 , 2 , , n , here n 1 < q n .

Lemma 2.4 ([5])

Let q > 0 . Then the following equality holds for y L ( 0 , 1 ) , D 0 + q y L ( 0 , 1 ) :
I 0 + q D 0 + q y ( t ) = y ( t ) + c 1 t q 1 + c 2 t q 2 + + c N t q N

for some c i R , i = 1 , 2 , , N , here N is the smallest integer greater than or equal to q.

Let the real Banach space E with the norm be partially ordered by a cone P of E, i.e., u v if and only if v u P , and P is said to be normal if there exists a positive constant N such that θ u v implies u N v , where the smallest N is called the normal constant of P. For details on cone theory, see [25].

The basic space used in this paper is C [ I , E ] . For any u C [ I , E ] , evidently, ( C [ I , E ] , C ) is a Banach space with the norm u C = sup t I | u ( t ) | , and P = { u C [ I , E ] : u ( t ) θ  for  t I } is a cone of the Banach space C [ I , E ] . We use α, α C to denote the Kuratowski noncompactness measure of bounded sets in the spaces E, C ( I , E ) , respectively. As for the definition of the Kuratowski noncompactness measure, we refer to Ref. [25].

Definition 2.5 ([25], Strict-set contraction operator)

Let E 1 , E 2 be real Banach spaces, S E 1 . T : S E 2 is a continuous and bounded operator. If there exists a constant k such that α ( T ( S ) ) k α ( S ) , then T is called a k-set contraction operator. When k < 1 , T is called a strict-set contraction operator.

Lemma 2.6 ([25])

If D C [ I , E ] is bounded and equicontinuous, then α ( D ( t ) ) is continuous on I and
α C ( D ) = max t I α ( D ( t ) ) , α ( { I u ( t ) d t : u D } ) I α ( D ( t ) ) d t ,

where D ( t ) = { u ( t ) : u D , t I } .

Lemma 2.7 ([25])

Let K be a cone in a Banach space E. Assume that Ω 1 , Ω 2 are open subsets of E with θ Ω 1 , Ω ¯ 1 Ω 2 . If T : K ( Ω ¯ 2 Ω 1 ) K is a strict-set contraction operator such that either
  1. (i)

    T x x , x K Ω 1 and T x x , x K Ω 2 , or

     
  2. (ii)

    T x x , x K Ω 1 and T x x , x K Ω 2 ,

     

then T has a fixed point in K ( Ω ¯ 2 Ω 1 ) .

In the paper, we always assume that the following three assumptions hold:
  • (H0) 0 < ρ : = ρ 0 1 φ ( s ) d s < + , where φ ( s ) is defined as
    φ ( s ) = 1 Γ ( q n + 2 ) ( β + α s ) [ γ ( 1 s ) + δ ( q n + 1 ) ] ( 1 s ) q n .
  • (H1) There exist a C [ I , R + ] and h C [ R + n 1 , R + ] such that
    f ( t , u 1 , , u n 1 ) a ( t ) h ( u 1 , , u n 1 ) , t I , u k P , k = 1 , , n 1 .
    (2.1)
  • (H2) f : I × P r n 1 P for any r > 0 , f is uniformly continuous on I × P r n 1 and there exist nonnegative constants L k , k = 1 , , n 1 , with
    2 ρ ( k = 1 n 2 L k ( n 2 k ) ! + L n 1 ) < 1
    (2.2)
    such that
    α ( f ( t , D 1 , D 2 , , D n 1 ) ) k = 1 n 1 L k α ( D k ) , t I ,  bounded  D k P r ,
    (2.3)

    where P r = { u P : u r } .

3 Main results

Lemma 3.1 Given y C [ I , E ] , then the unique solution of
{ D 0 + q n + 2 x ( t ) + y ( t ) = 0 , 0 < t < 1 , n 1 < q n , n > 2 , α x ( 0 ) β x ( 0 ) = 0 , γ x ( 1 ) + δ x ( 1 ) = 0
(3.1)
is
x ( t ) = 0 1 G ( t , s ) y ( s ) d s ,
(3.2)
where
G ( t , s ) = { G 1 ( t , s ) = ( t s ) q n + 1 Γ ( q n + 2 ) + G 0 ( t , s ) , 0 s t 1 , G 0 ( t , s ) , 0 t s 1 ,
(3.3)
and
G 0 ( t , s ) = ρ ( β + α t ) Γ ( q n + 2 ) [ γ ( 1 s ) + δ ( q n + 1 ) ] ( 1 s ) q n .
Proof Deduced from Lemma 2.4, we have
x ( t ) = I 0 + q n + 2 y ( t ) + c 1 + c 2 t
for some c 1 , c 2 R . Then we get
x ( t ) = 1 Γ ( q n + 2 ) 0 t ( t s ) q n + 1 y ( s ) d s + c 1 + c 2 t , x ( t ) = 1 Γ ( q n + 1 ) 0 t ( t s ) q n y ( s ) d s + c 2 .
By boundary conditions α x ( 0 ) β x ( 0 ) = 0 , γ x ( 1 ) + δ x ( 1 ) = 0 , and noting that Γ ( q n + 2 ) = ( q n + 1 ) Γ ( q n + 1 ) , we have
c 1 = ρ β Γ ( q n + 2 ) 0 1 [ γ ( 1 s ) + δ ( q n + 1 ) ] ( 1 s ) q n y ( s ) d s
and
c 2 = ρ α Γ ( q n + 2 ) 0 1 [ γ ( 1 s ) + δ ( q n + 1 ) ] ( 1 s ) q n y ( s ) d s .
Thus
x ( t ) = 0 t ( t s ) q n + 1 Γ ( q n + 2 ) y ( s ) d s + ρ β Γ ( q n + 2 ) 0 1 [ γ ( 1 s ) + δ ( q n + 1 ) ] ( 1 s ) q n y ( s ) d s + ρ α t Γ ( q n + 2 ) 0 1 [ γ ( 1 s ) + δ ( q n + 1 ) ] ( 1 s ) q n y ( s ) d s = 0 t ( t s ) q n + 1 Γ ( q n + 2 ) y ( s ) d s + ρ ( β + α t ) 0 1 [ γ ( 1 s ) + δ ( q n + 1 ) ] ( 1 s ) q n Γ ( q n + 2 ) y ( s ) d s = 0 1 G ( t , s ) y ( s ) d s ,

where G ( t , s ) is Green’s function defined by (3.3). This completes the proof. □

Moreover, there is one paper [10] in which the following statement was shown.

Lemma 3.2 ([10])

The function G ( t , s ) defined by Lemma  2.3 has the following properties:
  1. (i)

    G ( t , s ) is continuous on [ 0 , 1 ] × [ 0 , 1 ] ;

     
  2. (ii)

    if β > n q q n + 1 α , then 0 < G ( t , s ) G ( s , s ) for any t , s [ 0 , 1 ] .

     
Lemma 3.3 If β > n q q n + 1 α , then the function G ( t , s ) satisfies:
λ φ ( s ) G ( t , s ) ρ φ ( s ) for t , s [ 0 , 1 ] ,
where
λ : = min { 4 ρ α γ δ [ β ( q n + 1 ) + α ( q n ) ] ζ , 4 ρ α β γ δ ( q n + 1 ) ζ } , ζ : = [ α γ β γ + α δ ( q n + 1 ) ] 2 + 4 α β γ [ γ + δ ( q n + 1 ) ] .
Proof According to (3.3) and Lemma 3.2, we have
G ( s ) G ( t , s ) ρ φ ( s ) ,
where
G ( s ) = { G 1 ( 1 , s ) , 0 s < β γ α δ ( q n ) α δ + β γ , G 0 ( 0 , s ) , β γ α δ ( q n ) α δ + β γ s < 1 .
Since
inf 0 < s < 1 G 1 ( 1 , s ) φ ( s ) = inf 0 < s < 1 ρ 1 ( 1 s ) + ( β + α ) [ γ ( 1 s ) + δ ( q n + 1 ) ] ρ 1 ( β + α s ) [ γ ( 1 s ) + δ ( q n + 1 ) ] ρ δ [ β ( q n + 1 ) + α ( q n ) ] ( β + α s ) [ γ ( 1 s ) + δ ( q n + 1 ) ] 4 ρ α γ δ [ β ( q n + 1 ) + α ( q n ) ] [ α γ β γ + α δ ( q n + 1 ) ] 2 + 4 α β γ [ γ + δ ( q n + 1 ) ] = 4 ρ α γ δ [ β ( q n + 1 ) + α ( q n ) ] ζ ,
and
inf 0 < s < 1 G 0 ( 0 , s ) φ ( s ) = inf 0 < s < 1 ρ [ β γ ( 1 s ) + β δ ( q n + 1 ) ] ( β + α s ) [ γ ( 1 s ) + δ ( q n + 1 ) ] 4 ρ 1 α β γ δ ( q n + 1 ) [ α γ β γ + α δ ( q n + 1 ) ] 2 + 4 α β γ [ γ + δ ( q n + 1 ) ] = 4 ρ α β γ δ ( q n + 1 ) ζ ,
then we get
λ φ ( s ) G ( t , s ) G ( s , s ) ρ φ ( s ) .

 □

Lemma 3.4 Let u ( t ) = I 0 + n 2 x ( t ) , x C [ I , E ] . Then problem (1.1) can be transformed into the following modified problem:
{ D 0 + q n + 2 x ( t ) + f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) = θ , α x ( 0 ) β x ( 0 ) = θ , γ x ( 1 ) + δ x ( 1 ) = θ ,
(3.4)

where 0 < t < 1 , n 1 < q n , n 2 . Moreover, if x C [ I , E ] is a solution of problem (3.3) and x θ , x θ , then the function u ( t ) = I 0 + n 2 x ( s ) is a positive solution of (1.1).

To obtain a positive solution, we construct a cone Ω by
Ω = { x ( t ) P : x ( t ) λ ρ x ( s ) , t , s I } ,
(3.5)

where P = { x C [ I , E ] : x ( t ) θ , t I } .

Define an integral operator T : Ω E by
( T x ) ( t ) = 0 1 G ( t , s ) f ( s , I 0 + n 2 x ( s ) , I 0 + n 3 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) d s , 0 t 1 .
(3.6)

Lemma 3.5 Assume that (H0)-(H2) hold. Then T : Ω Ω is a strict-set contraction operator.

Proof From Lemma 3.3 and (3.6), we obtain
( T x ) ( t ) λ 0 1 φ ( s ) f ( s , I 0 + n 2 x j ( s ) , , I 0 + 1 x j ( s ) , x j ( s ) ) d s .
On the other hand,
( T x ) ( s ) = 0 1 G ( s , s ) f ( s , I 0 + n 2 x j ( s ) , , I 0 + 1 x j ( s ) , x j ( s ) ) d s ρ 0 1 φ ( s ) f ( s , I 0 + n 2 x j ( s ) , , I 0 + 1 x j ( s ) , x j ( s ) ) d s = ρ λ 0 1 λ φ ( s ) f ( s , I 0 + n 2 x j ( s ) , , I 0 + 1 x j ( s ) , x j ( s ) ) d s ρ λ ( T x ) ( t ) .

Then ( T x ) ( t ) λ ρ ( T x ) ( s ) , which implies ( T x ) Ω , i.e., T ( Ω ) Ω .

Next we prove that T is continuous on Ω. Let { x j } , { x } Ω and x j x Ω 0 ( j ). Hence { x j } is a bounded subset of Ω. Thus, there exists r > 0 such that r = sup j x j Ω < and x Ω r .

According to the properties of f, for ε > 0 , there exists J > 0 such that
f ( s , I 0 + n 2 x j ( s ) , , I 0 + 1 x j ( s ) , x j ( s ) ) f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) ε ρ

for j J , t I .

Then
( T x j ) ( t ) ( T x ) ( t ) 0 1 G ( t , s ) f ( s , I 0 + n 2 x j ( s ) , , I 0 + 1 x j ( s ) , x j ( s ) ) f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) d s ρ 0 1 φ ( s ) d s f ( s , I 0 + n 2 x j ( s ) , , I 0 + 1 x j ( s ) , x j ( s ) ) f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) < ε .
Therefore, ε > 0 for any t I and j J . We get
( T x j ) ( t ) ( T x ) ( t ) 0 .

This implies T is continuous on Ω.

By the properties of continuity of G ( t , s ) , it is easy to see that T is equicontinuous on I.

Finally, we are going to show that T is a strict-set contraction operator. Let D Ω be bounded. Then, by condition (H1), Lemma 3.1 implies α C ( T D ) = max t I α ( ( T D ) ( t ) ) . It follows from (3.6) that
α ( ( T D ) ( t ) ) = α ( { 0 1 G ( t , s ) f ( s , ( T 1 x ) ( s ) , , ( T n 2 x ) ( s ) , x ( s ) ) d s D } ) 0 1 α ( { G ( t , s ) f ( s , ( T 1 x ) ( s ) , , ( T n 2 x ) ( s ) , x ( s ) ) d s D } ) ρ 0 1 φ ( s ) α ( f ( I × ( I 0 + n 2 D ) ( I ) × × ( I 0 + 1 D ) ( I ) × D ( I ) ) ) d s ρ ( k = 1 n 2 L k α ( ( I 0 + n 1 k D ) ( I ) ) + L n 1 α ( D ( I ) ) ) ,
which implies
α C ( T D ) ρ ( k = 1 n 2 L k α ( ( I 0 + n 1 k D ) ( I ) ) + L n 1 α ( D ( I ) ) ) .
(3.7)
Obviously,
α ( I 0 + n 1 k D ) ( I ) = α ( { 0 s ( s ν ) n 2 k ( n 2 k ) ! x ( s ) d s : ν [ 0 , s ] , s I , k = 1 , , n 2 } ) 1 ( n 2 k ) ! α ( D ( I ) ) .
(3.8)
Using a similar method as in the proof of Theorem 2.1.1 in [25], we have
α ( D ( I ) ) 2 α C ( D ) .
(3.9)
Therefore, it follows from (3.7), (3.8) and (3.9) that
α C ( T D ) 2 ρ ( k = 1 n 2 L k ( n 2 k ) ! + L n 1 ) α C ( D ) .

Noticing that (2.3), we obtain that T is a strict-set contraction operator. This completes the proof. □

Now we are in a position to give the main result of this work.

Theorem 3.6 Let the cone P be normal and conditions (H0)-(H2) hold. In addition, assume that the following conditions are satisfied:
  • (H3) There exist u P { θ } , c 1 C [ I , R + ] and h 1 C [ P n 1 , R + ] such that
    f ( t , u 1 , , u n 1 ) c 1 ( t ) h 1 ( u 1 , , u n 1 ) u , t I , u k P ,
    and
    h 1 = lim k = 1 n 1 u k h 1 ( u 1 , , u n 1 ) k = 1 n 1 u k > 1 , as u k P ,

    where : = N 2 ρ 1 ( λ 2 0 1 φ ( s ) c 1 ( s ) d s u ) .

  • (H4) There exist u P { θ } , c 2 C [ I , R + ] and h 2 C [ P n 1 , R + ] such that
    f ( t , u 1 , , u n 2 ) c 2 ( t ) h 2 ( u 1 , , u n 1 ) u , t I , u k P ,
    and
    h 1 0 = lim k = 1 n 1 u k 0 h 2 ( u 1 , , u n 1 ) k = 1 n 1 u i > 1 , as u k P ,

    where : = N 2 ρ 1 ( λ 2 0 1 φ ( s ) c 2 ( s ) d s u ) .

  • (H5) There exists ξ > 0 such that
    ρ N M ξ 0 1 φ ( s ) a ( s ) d s < ξ ,

    where M ξ = max u k P ξ { h ( u 1 , , u n 1 ) } .

Then problem (1.1) has at least two different positive solutions.

Proof Consider condition (H3), there exists r 1 > 0 such that
h 1 ( u 1 , , u n 1 ) ( h 1 ε 1 ) k = 1 n 1 u k , u k P , k = 1 n 1 u k r 1 ,

where ε 1 > 0 satisfies ( h 1 ε 1 ) 1 .

Therefore,
f ( t , u 1 , , u n 1 ) ( h 1 ε 1 ) k = 1 n 1 u k c 1 ( t ) u , u k P , k = 1 n 1 u k r 1 .
Take
R > max { N ρ λ 1 r 1 , ξ } .
Then, for t I , x Ω , x Ω = R , we have by (3.5)
x ( t ) λ ( ρ N ) 1 x Ω λ ( ρ N ) 1 R > r 1 .
Thus
( T x ) ( t ) = 0 1 G ( t , s ) f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) d s 0 1 λ φ ( s ) f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) d s ( h 1 ε 1 ) λ 0 u 1 φ ( s ) ( k = 1 n 2 I 0 + n 1 k x ( s ) + x ( s ) ) c 1 ( s ) d s u ( h 1 ε 1 ) λ 0 1 φ ( s ) c 1 ( s ) x ( s ) d s u ( h 1 ε 1 ) λ 2 ( ρ N ) 1 x Ω ( 0 1 φ ( s ) c 1 ( s ) d s ) u = ( h 1 ε 1 ) λ 2 ρ N 2 ( 0 1 φ ( s ) c 1 ( s ) d s u ) N x Ω u u N x Ω u u ,
(3.10)
and consequently,
T x Ω x Ω , x Ω , x Ω = R .
(3.11)
Similarly, by condition (H4), there exists r 2 > 0 such that
h 2 ( u 1 , , u n 1 ) ( h 1 0 ε 2 ) k = 1 n 1 u k , u k P , 0 < k = 1 n 1 u k r 2 ,

where ε 2 > 0 satisfies ( h 1 0 ε 2 ) 1 .

Therefore,
f ( t , u 1 , , u n 1 ) ( h 1 0 ε 2 ) k = 1 n 1 u k c 2 ( t ) u , u k P , 0 < k = 1 n 1 u k r 2 .
Choose
0 < r < min { ( k = 0 n 2 1 k ! ) 1 r 2 , ξ } .
Then, for t I τ , x Ω , x Ω = r , similar to (3.10), we have
( T x ) ( t ) ( h 1 0 ε 2 ) λ 0 1 φ ( s ) c 2 ( s ) x ( s ) d s u ( h 1 0 ε 2 ) λ 2 ( ρ N ) 1 x Ω ( 0 1 φ ( s ) c 2 ( s ) d s ) u = ( h 1 0 ε 2 ) λ 2 ρ N 2 ( 0 1 φ ( s ) c 2 ( s ) d s u ) N x Ω u u N x Ω u u ,
which implies
T x Ω x ( s ) Ω , x Ω , x Ω = r .
(3.12)
On the other hand, according to Lemma 3.3 and (3.6), we get
( T x ) ( t ) ρ 0 1 φ ( s ) f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) d s .
(3.13)
By condition (H1), for t I , x Ω , x Ω = ξ , we have
f ( t , u 1 , , u n 1 ) a ( t ) h ( u 1 , , u n 1 ) M ξ a ( t ) .
Therefore,
( T x ) ( t ) Ω ρ N M ξ 0 1 φ ( s ) a ( s ) d s < ξ = x Ω .
(3.14)

Applying Lemma 2.7 to (3.12), (3.13) and (3.14) yields that T has a fixed point x 1 Ω ¯ r , ξ , r x 1 ξ , and a fixed point x 2 Ω ¯ ξ , R , ξ x 2 R . Noticing (3.13), we get x 1 ξ and x 2 ξ . This and Lemma 3.4 complete the proof. □

Theorem 3.7 Let the cone P be normal and conditions (H0) (H3) hold. In addition, assume that the following condition is satisfied:

(H6)
h ( u 1 , , u n 1 ) k = 1 n 1 u k 0 , as u k P , k = 1 n 1 u k 0 + .
(3.15)

Then problem (1.1) has at least one positive solution.

Proof By (H3), we can choose R > N ρ λ 1 r 1 . As in the proof of Theorem 3.6, it is easy to see that (3.11) holds. On the other hand, considering (3.15), there exists r 3 > 0 such that
h ( u 1 , , u n 1 ) ε 3 k = 1 n 1 u k , for  t I , u k P , 0 < k = 1 n 1 u k r 3 ,
where ε 3 > 0 satisfies
ε 3 = ( N ρ k = 1 n 1 1 k ! 0 1 φ ( s ) a ( s ) d s ) 1 .
Choose 0 < r < min { ( k = 0 n 2 1 k ! ) 1 r 3 , R } . For t I , x Ω , x Ω = r , it follows from (3.5) that
0 < ( ρ N ) 1 λ r x < r 3 , 0 < ( ρ N ) 1 λ r k = 1 n 1 I 0 + n 1 k x ( t ) k = 1 n 1 1 k ! x < r 3 .
(3.16)
Then, for t I , x Ω , x Ω = r , we have
( T x ) ( t ) ρ 0 1 φ ( s ) f ( s , I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) d s ρ 0 1 φ ( s ) a ( s ) h ( I 0 + n 2 x ( s ) , , I 0 + 1 x ( s ) , x ( s ) ) d s ε 3 ρ 0 1 φ ( s ) a ( s ) ( k = 1 n 2 I 0 + n 1 k x ( s ) + x ( s ) ) d s N ε 3 ρ k = 0 n 1 1 k ! r 0 1 φ ( s ) a ( s ) d s = r ,
and consequently,
( T x ) ( t ) Ω x Ω , x Ω , x r .
(3.17)

Since 0 < r < R , applying Lemma 2.7 to (3.11) and (3.17) yields that T has a fixed point x 0 Ω ¯ r , R , r x 0 R . This and Lemma 3.5 complete the proof. □

4 An example

Consider the following system of scalar differential equations of fractional order:
{ D 5 2 u k ( t ) = 1 24 u k ( t ) + 1 + t 324 k 2 { [ 2 u k + 2 ( t ) + 2 u k + 1 ( t ) + j = 1 u j ( t ) + j = 1 u 2 j ( t ) ] 3 D 5 2 u k ( t ) = + 3 u 2 k ( t ) + 3 u k + 1 ( t ) + j = 1 u j ( t ) + j = 1 u j ( t ) } , t I , u k ( 0 ) = u k ( 0 ) = 0 , 1 4 u k ( 0 ) 1 2 u k ( 0 ) = 0 , u k ( 1 ) + 1 2 u k ( 1 ) = 0 , k = 1 , 2 , 3 , .
(4.1)

Conclusion Problem (4.1) has at least two positive solutions.

Proof Let E = l 1 = { u = ( u 1 , u 2 , , u k , ) : k = 1 | u k | < } with the norm u = k = 1 | u k | , and P = { ( u 1 , , u k , ) : u k 0 , k = 1 , 2 , 3 , } . Then P is a normal cone in E with a normal constant N = 1 , and system (4.1) can be regarded as a boundary value problem of the form (1.1). In this situation, q = 5 2 , n = 3 , α = 1 4 , β = 1 2 , γ = 1 , δ = 1 2 , u = ( u 1 , , u n , ) , f = ( f 1 , f 2 , , f n , ) , in which
f k ( t , u k , u k ) = 1 24 u k ( t ) + 1 + t 324 k 2 { [ 2 u k + 2 ( t ) + 2 u k + 1 ( t ) + j = 1 u j ( t ) + j = 1 u 2 j ( t ) ] 3 + 3 u 2 k ( t ) + 3 u k + 1 ( t ) + j = 1 u j ( t ) + j = 1 u j ( t ) } .
(4.2)
By calculating, we have ρ = 4 5 , λ 0.1515 , and
1 2 = β > n q q n + 1 α = 1 4 ,
and
ρ = ρ 0 1 φ ( s ) d s = 1 5 π 0 1 ( 2 + s ) ( 1 s + 1 4 1 s ) d s = 44 75 π 0.3310 ,
which implies that condition (H0) is satisfied. Observing the inequality k = 1 1 k 2 < 2 , we get, by (4.2),
f ( t , u , v ) = k = 1 | f k ( t , u k , v k ) | 1 + t 3 ( 1 8 u + 1 2 ( u + v ) 3 + 1 27 u + v ) .
(4.3)
Hence (H1) is satisfied for a ( t ) = 1 + t 3 , and
h ( x , y ) = 1 8 x + 1 2 ( x + y ) 3 + 1 27 x + y .
Now, we check condition (H2). Obviously, f : I × P r 2 P for any r > 0 , and f is uniformly continuous on I × P r 2 . Let f = f ( 1 ) + f ( 2 ) , where f ( 1 ) = ( f 1 ( 1 ) , , f k ( 1 ) , ) and f ( 2 ) = ( f 1 ( 2 ) , , f k ( 2 ) , ) , in which
f k ( 1 ) ( t , u , v ) = 1 + t 324 k 2 { [ 2 u k + 2 ( t ) + 2 u k + 1 ( t ) + j = 1 u j ( t ) + j = 1 u 2 j ( t ) ] 3 + 3 u 2 k ( t ) + 3 u k + 1 ( t ) + j = 1 u j ( t ) + j = 1 u j ( t ) } ( k = 1 , 2 , 3 , ) ,
(4.4)
and
f k ( 2 ) ( t , u , v ) = 1 24 u k ( t ) ( k = 1 , 2 , 3 , ) .
(4.5)
For any t I and bounded subsets D 1 , D 2 E , by (4.4), (4.5), we know
α ( f ( 2 ) ( I , D 1 , D 2 ) ) 1 24 α ( D 1 ) , t I , D 1 , D 2 E ,
(4.6)
and
0 f ( 1 ) ( t , u , v ) = k = 1 | f k ( 1 ) ( t , u k , v k ) | ( u + v ) 3 + 2 27 u + v , t I , u , v E .
Similar to the proof of [[25], Example 2.12], we have
α ( f ( 1 ) ( t , D 1 , D 2 ) ) = 0 , t I ,  bounded sets  D 1 , D 2 E .
(4.7)
It follows from (4.6) and (4.7) that
α ( f ( I , D 1 , D 2 ) ) 1 24 α ( D 1 ) , t I , D 1 , D 2 E ,
and
2 ρ ( k = 1 n 2 L k ( n 2 k ) ! + L n 1 ) = 24 29 π 0.2518 < 1 ,

i.e., condition (H2) holds for L 1 = 1 24 , L 2 = 0 .

On the other hand, by (4.2), we have
f k ( t , u , v ) 1 + t 324 k 2 ( u + v ) 3 , t I τ , u , v P ( k = 1 , 2 , 3 , ) ,
and
f k ( t , u , v ) 1 + t 324 k 2 u + v , t I τ , u , v P ( k = 1 , 2 , 3 , ) .
Hence condition (H3) is satisfied for
c 1 ( t ) = 1 + t 324 k 2 , h 1 , k ( u , v ) = ( u + v ) 3 , and u = ( 1 , , 1 k 2 , ) ,
in this situation,
h 1 , k = lim u + v ( u + v ) 3 u + v = > 1 .
And condition (H4) is also satisfied for
c 2 ( t ) = 1 + t 324 k 2 , h 2 , k ( u , v ) = u + v , and u = ( 1 , , 1 k 2 , ) ,
in this situation,
h 2 , k = lim u + v 0 u + v u + v = > 1 .
Finally, choose ξ = 1 . It is easy to check that condition (H5) is satisfied. In this case, M ξ 4.1774 , and so
ρ N M ξ 0 1 φ ( s ) a ( s ) d s 0.9604 < ξ = 1 .

From Theorem 3.6, the conclusion follows and the proof is complete. □

Declarations

Acknowledgements

The authors are highly grateful for the referees’s careful reading and comments on this paper. The first author is supported financially by Hunan Provincial Natural Science Foundation of China (Grant No: 13JJ3106).

Authors’ Affiliations

(1)
School of Science, Hunan University of Technology

References

  1. Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.MATHGoogle Scholar
  2. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.Google Scholar
  3. Sabatier J, Agrawal OP, Machado JAT (Eds): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht; 2007.MATHGoogle Scholar
  4. Baleanu D, Diethelm K, Scalas E, Trujillo JJ Series on Complexity, Nonlinearity and Chaos. In Fractional Calculus Models and Numerical Methods. World Scientific, Boston; 2012.Google Scholar
  5. Lakshmikantham V: Theory of fractional functional differential equations. Nonlinear Anal. 2008, 69: 337-3343. 10.1016/j.na.2007.05.022MathSciNetView ArticleMATHGoogle Scholar
  6. Zhang S: Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 2010, 59: 1300-1309. 10.1016/j.camwa.2009.06.034MathSciNetView ArticleMATHGoogle Scholar
  7. Bai Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 2010, 72: 916-924. 10.1016/j.na.2009.07.033MathSciNetView ArticleMATHGoogle Scholar
  8. Jankowski T: Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative. Appl. Math. Comput. 2013, 219: 7772-7776. 10.1016/j.amc.2013.02.001MathSciNetView ArticleMATHGoogle Scholar
  9. Goodrich CS: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 2010, 23: 1050-1055. 10.1016/j.aml.2010.04.035MathSciNetView ArticleMATHGoogle Scholar
  10. Zhao Y, Chen H, Huang L: Existence of positive solutions for nonlinear fractional functional differential equation. Comput. Math. Appl. 2012, 64: 3456-3467. 10.1016/j.camwa.2012.01.081MathSciNetView ArticleMATHGoogle Scholar
  11. Zhang X, Liu L, Wu Y: Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 2012, 55: 1263-1274. 10.1016/j.mcm.2011.10.006MathSciNetView ArticleMATHGoogle Scholar
  12. Wang G: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments. J. Comput. Appl. Math. 2012, 236: 2425-2430. 10.1016/j.cam.2011.12.001MathSciNetView ArticleMATHGoogle Scholar
  13. Wang G, Baleanu D, Zhang L: Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 2012, 15: 244-252.MathSciNetView ArticleMATHGoogle Scholar
  14. Zhao Y, Ye G, Chen H: Multiple positive solutions of a singular semipositone integral boundary value problem for fractional q -derivatives equation. Abstr. Appl. Anal. 2013., 2013: Article ID 643571Google Scholar
  15. El-Shahed M, Nieto JJ: Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. Comput. Math. Appl. 2010, 59: 3438-3443. 10.1016/j.camwa.2010.03.031MathSciNetView ArticleMATHGoogle Scholar
  16. Zhao Y, Chen H, Zhang Q: Existence results for fractional q -difference equations with nonlocal q -integral boundary conditions. Adv. Differ. Equ. 2013., 2013: Article ID 48Google Scholar
  17. Ahmad B: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations. Appl. Math. Lett. 2010, 23: 390-394. 10.1016/j.aml.2009.11.004MathSciNetView ArticleMATHGoogle Scholar
  18. Wang J, Zhou Y, Fečkan M: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 2013, 71: 685-700. 10.1007/s11071-012-0452-9View ArticleMathSciNetMATHGoogle Scholar
  19. Salem AH: On the fractional order m -point boundary value problem in reflexive Banach spaces and weak topologies. J. Comput. Appl. Math. 2009, 224: 565-572. 10.1016/j.cam.2008.05.033MathSciNetView ArticleMATHGoogle Scholar
  20. Balachandran K, Trujillo JJ: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 2010, 72: 4587-4593. 10.1016/j.na.2010.02.035MathSciNetView ArticleMATHGoogle Scholar
  21. Balachandran K, Kiruthika S, Trujillo JJ: Existence results for fractional impulsive integrodifferential equations in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 2011, 16: 1970-1977. 10.1016/j.cnsns.2010.08.005MathSciNetView ArticleMATHGoogle Scholar
  22. Lv Z, Liang J, Xiao T: Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 2011, 62: 1303-1311. 10.1016/j.camwa.2011.04.027MathSciNetView ArticleMATHGoogle Scholar
  23. Su X: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 2011, 74: 2844-2852. 10.1016/j.na.2011.01.006MathSciNetView ArticleMATHGoogle Scholar
  24. Zhang L, Ahmad B, Wang G, Agarwal RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 2013, 249: 51-56.MathSciNetView ArticleMATHGoogle Scholar
  25. Guo D, Lakshmikantham V: Nonlinear Problems in Abstract Cones. Academic Press, New York; 1988.MATHGoogle Scholar

Copyright

© Zhao et al.; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.