Skip to main content

Theory and Modern Applications

On oscillation of second-order neutral dynamic equations

Abstract

Assuming

∫ t 0 ∞ Δ t r 1 / γ ( t ) <∞,

a new oscillation criterion for a half-linear second-order neutral dynamic equation

( r ( t ) ( ( x ( t ) + p ( t ) x ( t − τ ) ) Δ ) γ ) Δ +q(t)|x(t−δ) | γ − 1 x(t−δ)=0

is presented. An interesting example is provided to show that the delayed function δ(t)=t−δ plays an important role in the oscillatory behavior.

MSC:34K11, 34N05, 39A10.

1 Introduction

This work is concerned with the oscillatory behavior of solutions to a second-order half-linear neutral delay dynamic equation

( r ( t ) ( ( x ( t ) + p ( t ) x ( t − τ ) ) Δ ) γ ) Δ +q(t)|x(t−δ) | γ − 1 x(t−δ)=0
(1.1)

on a time scale T, where t∈ [ t 0 , ∞ ) T :=[ t 0 ,∞)∩T. In what follows, we assume that γ≥1 is a quotient of odd positive integers, τ≥0, δ≥0, t−τ:T→T, t−δ:T→T, r, p, and q are real-valued rd-continuous functions defined on T such that r(t)>0, ∫ t 0 ∞ r − 1 / γ (t)Δt<∞, 0≤p(t)≤ p 0 <∞, and q(t)>0 for t∈ [ t 0 , ∞ ) T .

By a solution of (1.1) we mean a nontrivial real-valued function x which has the properties x(t)+p(t)x(t−τ)∈ C rd 1 [ t x , ∞ ) T and r(t) ( ( x ( t ) + p ( t ) x ( t − τ ) ) Δ ) γ ∈ C rd 1 [ t x , ∞ ) T , t x ∈ [ t 0 , ∞ ) T and satisfying (1.1) for all t∈ [ t x , ∞ ) T . Our attention is restricted to those solutions of (1.1) which exist on some half-line [ t x , ∞ ) T and satisfy sup{|x(t)|:t∈ [ t 1 , ∞ ) T }>0 for any t 1 ∈ [ t x , ∞ ) T . A solution x of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

The theory of time scales, which has recently received a lot of attention, was introduced by Hilger in order to unify continuous and discrete analysis (see Hilger [1]). Several authors have expounded on various aspects of this new theory; see the survey paper by Agarwal et al. [2] and the references cited therein. The books on the subject of time scales, by Bohner and Peterson [3, 4], summarize and organize much of time scale calculus and some applications of dynamic equations on time scales.

In recent years, there has been much research activity concerning the oscillatory and nonoscillatory behavior of solutions to various classes of differential, difference, and dynamic equations. We refer the reader to [5–28] and the references therein. If T=R, then σ(t)=t, μ(t)=0, x Δ (t)= x ′ (t), ∫ a b f(t)Δt= ∫ a b f(t)dt, and equation (1.1) becomes a second-order neutral delay differential equation

( r ( t ) ( ( x ( t ) + p ( t ) x ( t − τ ) ) ′ ) γ ) ′ +q(t)|x(t−δ) | γ − 1 x(t−δ)=0.
(1.2)

If T=Z, then σ(t)=t+1, μ(t)=1, x Δ (t)=x(t+1)−x(t), ∫ a b f(t)Δt= ∑ t = a b − 1 f(t), and equation (1.1) reduces to a second-order neutral delay difference equation

Δ ( r ( t ) ( Δ ( x ( t ) + p ( t ) x ( t − τ ) ) ) γ ) +q(t)|x(t−δ) | γ − 1 x(t−δ)=0.
(1.3)

If T=hZ where h>0, then σ(t)=t+h, μ(t)=h, x Δ (t)= Δ h x(t)=(x(t+h)−x(t))/h, ∫ a b f(t)Δt= ∑ k = 0 ( b − a − h ) / h f(a+kh)h, and equation (1.1) becomes a second-order neutral delay difference equation

Δ h ( r ( t ) ( Δ h ( x ( t ) + p ( t ) x ( t − τ ) ) ) γ ) +q(t)|x(t−δ) | γ − 1 x(t−δ)=0.
(1.4)

In what follows, we present some background details that motivate the contents of this note. Jiang and Li [5] studied oscillatory properties of equation (1.2) in the case ∫ t 0 ∞ r − 1 / γ (t)dt=∞. Saker [6] and Sun and Saker [7] considered oscillation of equation (1.3) and established some criteria under the assumption that ∑ t = t 0 ∞ r − 1 / γ (t)=∞. To the best of our knowledge, there are few results for oscillation of equation (1.3) in the case where ∑ i = t 0 / h ∞ r − 1 / γ (ih)<∞. Agarwal et al. [9], Saker [12], and Tripathy [15] studied oscillatory behavior of (1.1) in the case where ∫ t 0 ∞ r − 1 / γ (t)Δt=∞. In particular, Tripathy [15] established some oscillation tests for (1.1) assuming that 0≤p(t)≤ p 0 <∞.

The purpose of this paper is to obtain a new sufficient condition for oscillation of (1.1). The result obtained is essentially new for equations (1.2)-(1.4). This paper is organized as follows. In Section 2, we use the Riccati transformation technique to prove the main results. In Section 3, we apply our criterion in equations (1.2)-(1.4) to establish some new oscillation criteria.

2 Oscillation results

To prove the main results, we use the formula

( y γ ) Δ (t)=γ ∫ 0 1 [ h y σ ( t ) + ( 1 − h ) y ( t ) ] γ − 1 y Δ (t)dh,
(2.1)

which is a simple consequence of Keller’s chain rule (see [[3], Theorem 1.90]). We also need the following lemma.

Lemma 2.1 (See [[22], Lemma 1])

Assume γ≥1 and a,b∈R. If a≥0, b≥0, then

a γ + b γ ≥ ( a + b ) γ 2 γ − 1 .
(2.2)

In what follows, all functional inequalities are assumed to be satisfied for all sufficiently large t.

Theorem 2.2 Let T ˜ :={t−τ:t∈T}. Suppose also that

∫ t 0 ∞ Q(t)Δt=∞
(2.3)

and

lim sup t → ∞ ∫ t 0 t [ f γ ( σ ( s ) ) Q ( s ) 2 γ − 1 − ( 1 + p 0 γ ) ( γ γ + 1 ) γ + 1 ( f ( s ) ) γ 2 − 1 f γ 2 ( σ ( s ) ) r 1 / γ ( s ) ] Δs=∞,
(2.4)

where

Q(t):=min { q ( t ) , q ( t − τ ) } andf(t):= ∫ t ∞ Δ s r 1 / γ ( s ) .

Then equation (1.1) is oscillatory.

Proof Suppose to the contrary that (1.1) has a nonoscillatory solution x. Without loss of generality, we may assume that there exists t 1 ∈ [ t 0 , ∞ ) T such that x(t−N)>0 for all t∈ [ t 1 , ∞ ) T , where N:=max{τ,δ}. Set

z(t):=x(t)+p(t)x(t−τ).

Then z(t)>0 and

( r ( t ) ( z Δ ( t ) ) γ ) Δ =−q(t) x γ (t−δ)<0

for t∈ [ t 1 , ∞ ) T . Hence, r ( z Δ ) γ is of one sign. On the other hand, we have by (1.1) and [[3], Theorem 1.93] that

( r ( t ) ( z Δ ( t ) ) γ ) Δ + q ( t ) x γ ( t − δ ) + p 0 γ q ( t − τ ) x γ ( t − τ − δ ) + p 0 γ ( r ( t − τ ) ( z Δ ( t − τ ) ) γ ) Δ = 0 .

Thus, we get by (2.2) that

( r ( t ) ( z Δ ( t ) ) γ ) Δ + p 0 γ ( r ( t − τ ) ( z Δ ( t − τ ) ) γ ) Δ + Q ( t ) 2 γ − 1 z γ (t−δ)≤0.
(2.5)

If z Δ >0, then by (2.5) there exist a constant k>0 and t 2 ∈ [ t 1 , ∞ ) T such that for t∈ [ t 2 , ∞ ) T ,

Q(t)≤−k ( r ( t ) ( z Δ ( t ) ) γ ) Δ −k p 0 γ ( r ( t − τ ) ( z Δ ( t − τ ) ) γ ) Δ .

Integrating the latter inequality from t 2 to t, we have

∫ t 2 t Q ( s ) Δ s ≤ k ( r ( t 2 ) ( z Δ ( t 2 ) ) γ − r ( t ) ( z Δ ( t ) ) γ ) + k p 0 γ ( r ( t 2 − τ ) ( z Δ ( t 2 − τ ) ) γ − r ( t − τ ) ( z Δ ( t − τ ) ) γ ) ≤ k r ( t 2 ) ( z Δ ( t 2 ) ) γ + k p 0 γ r ( t 2 − τ ) ( z Δ ( t 2 − τ ) ) γ ,

which contradicts (2.3).

Assume now that z Δ <0. Define a Riccati substitution

ω(t):= r ( t ) ( z Δ ( t ) ) γ z γ ( t ) .
(2.6)

Then ω(t)<0. Noticing that r ( z Δ ) γ is decreasing, we have

( r ( s ) ) 1 / γ z Δ (s)≤ ( r ( t ) ) 1 / γ z Δ (t),s≥t.

Dividing the latter inequality by ( r ( s ) ) 1 / γ and integrating the resulting inequality from t to l, we get

z(l)≤z(t)+ ( r ( t ) ) 1 / γ z Δ (t) ∫ t l ( 1 r ( s ) ) 1 / γ Δs.

Note that lim l → ∞ z(l)≥0. Letting l→∞ in the above inequality, we obtain 0≤z(t)+ ( r ( t ) ) 1 / γ z Δ (t)f(t), which implies that

( r ( t ) ) 1 / γ z Δ ( t ) z ( t ) f(t)≥−1.

Then we have by (2.6) that

−1≤ω(t) f γ (t)≤0.
(2.7)

Similarly, we define another Riccati transformation

u(t):= r ( t − τ ) ( z Δ ( t − τ ) ) γ z γ ( t ) .
(2.8)

Then u(t)<0. Noting that r ( z Δ ) γ is decreasing, we have r(t−τ) ( z Δ ( t − τ ) ) γ ≥r(t) ( z Δ ( t ) ) γ , and so u(t)≥ω(t). From (2.7), we have

−1≤u(t) f γ (t)≤0.
(2.9)

Differentiating (2.6), we get

ω Δ (t)= ( r ( t ) ( z Δ ( t ) ) γ ) Δ z γ ( t ) − r ( t ) ( z Δ ( t ) ) γ ( z γ ( t ) ) Δ z γ ( t ) z γ ( σ ( t ) ) .
(2.10)

By virtue of (2.1), we obtain

( z γ ( t ) ) Δ ≤γ z Δ (t) ( z σ ( t ) ) γ − 1 .
(2.11)

Using (2.11) in (2.10), we have

ω Δ (t)≤ ( r ( t ) ( z Δ ( t ) ) γ ) Δ z γ ( σ ( t ) ) −γ r ( t ) ( z Δ ( t ) ) γ + 1 z γ ( t ) z ( σ ( t ) ) .

By (2.6) and the latter inequality, we find

ω Δ (t)≤ ( r ( t ) ( z Δ ( t ) ) γ ) Δ z γ ( σ ( t ) ) −γ ( ω ( t ) ) ( γ + 1 ) / γ ( r ( t ) ) 1 / γ
(2.12)

due to z(t)≥z(σ(t)). Differentiating (2.8), we obtain

u Δ (t)= ( r ( t − τ ) ( z Δ ( t − τ ) ) γ ) Δ z γ ( t ) − r ( t − τ ) ( z Δ ( t − τ ) ) γ ( z γ ( t ) ) Δ z γ ( t ) z γ ( σ ( t ) ) .
(2.13)

Using (2.11) in (2.13), we have

u Δ ( t ) ≤ ( r ( t − τ ) ( z Δ ( t − τ ) ) γ ) Δ z γ ( σ ( t ) ) − γ r ( t − τ ) ( z Δ ( t − τ ) ) γ z Δ ( t ) z γ ( t ) z ( σ ( t ) ) .
(2.14)

From (2.8), (2.14), and the fact that r(t) ( z Δ ( t ) ) γ ≤r(t−τ) ( z Δ ( t − τ ) ) γ , we get

u Δ (t)≤ ( r ( t − τ ) ( z Δ ( t − τ ) ) γ ) Δ z γ ( σ ( t ) ) −γ ( u ( t ) ) ( γ + 1 ) / γ ( r ( t ) ) 1 / γ .
(2.15)

Thus, by (2.12) and (2.15), we have

ω Δ ( t ) + p 0 γ u Δ ( t ) ≤ ( r ( t ) ( z Δ ( t ) ) γ ) Δ + p 0 γ ( r ( t − τ ) ( z Δ ( t − τ ) ) γ ) Δ z γ ( σ ( t ) ) − γ ( ω ( t ) ) ( γ + 1 ) / γ ( r ( t ) ) 1 / γ − p 0 γ γ ( u ( t ) ) ( γ + 1 ) / γ ( r ( t ) ) 1 / γ .

Using z(t−δ)≥z(σ(t)) and (2.5) yields

ω Δ (t)+ p 0 γ u Δ (t)≤− Q ( t ) 2 γ − 1 −γ ( ω ( t ) ) ( γ + 1 ) / γ ( r ( t ) ) 1 / γ − p 0 γ γ ( u ( t ) ) ( γ + 1 ) / γ ( r ( t ) ) 1 / γ .

Multiplying the latter inequality by f γ (σ(t)) and integrating the resulting inequality on [ t 2 , t ] T ( t 2 ∈ [ t 1 , ∞ ) T sufficiently large), we obtain

ω ( t ) f γ ( t ) − ω ( t 2 ) f γ ( t 2 ) − ∫ t 2 t ( f γ ( s ) ) Δ ω ( s ) Δ s + p 0 γ u ( t ) f γ ( t ) − p 0 γ u ( t 2 ) f γ ( t 2 ) − p 0 γ ∫ t 2 t ( f γ ( s ) ) Δ u ( s ) Δ s ≤ − ∫ t 2 t f γ ( σ ( s ) ) Q ( s ) 2 γ − 1 Δ s − γ ∫ t 2 t ( ω ( s ) ) ( γ + 1 ) / γ ( r ( s ) ) 1 / γ f γ ( σ ( s ) ) Δ s − γ p 0 γ ∫ t 2 t ( u ( s ) ) ( γ + 1 ) / γ ( r ( s ) ) 1 / γ f γ ( σ ( s ) ) Δ s .
(2.16)

Hence, by (2.1) and f Δ =− r − 1 / γ <0, we get

∫ t 2 t ( f γ ( s ) ) Δ ω(s)Δs≤−γ ∫ t 2 t ( f ( s ) ) γ − 1 ω ( s ) ( r ( s ) ) 1 / γ Δs.

Similarly, we have

∫ t 2 t ( f γ ( s ) ) Δ u(s)Δs≤−γ ∫ t 2 t ( f ( s ) ) γ − 1 u ( s ) ( r ( s ) ) 1 / γ Δs.

Therefore, we obtain by (2.16) that

γ ∫ t 2 t ( f ( s ) ) γ − 1 ω ( s ) ( r ( s ) ) 1 / γ Δ s + γ ∫ t 2 t ( ω ( s ) ) ( γ + 1 ) / γ ( r ( s ) ) 1 / γ f γ ( σ ( s ) ) Δ s + γ p 0 γ ∫ t 2 t ( f ( s ) ) γ − 1 u ( s ) ( r ( s ) ) 1 / γ Δ s + γ p 0 γ ∫ t 2 t ( u ( s ) ) ( γ + 1 ) / γ ( r ( s ) ) 1 / γ f γ ( σ ( s ) ) Δ s + ∫ t 2 t f γ ( σ ( s ) ) Q ( s ) 2 γ − 1 Δ s ≤ − ω ( t ) f γ ( t ) + ω ( t 2 ) f γ ( t 2 ) − p 0 γ u ( t ) f γ ( t ) + p 0 γ u ( t 2 ) f γ ( t 2 ) .
(2.17)

Let χ=−ω(t),

A= γ f γ ( σ ( s ) ) ( r ( s ) ) 1 / γ ,andB= γ ( f ( s ) ) γ − 1 ( r ( s ) ) 1 / γ .

Using the inequality

A χ ( γ + 1 ) / γ −Bχ≥− γ γ ( γ + 1 ) γ + 1 B γ + 1 A γ ,

where A>0 is a constant, we get

γ ∫ t 2 t ( f ( s ) ) γ − 1 ω ( s ) ( r ( s ) ) 1 / γ Δ s + γ ∫ t 2 t ( ω ( s ) ) ( γ + 1 ) / γ ( r ( s ) ) 1 / γ f γ ( σ ( s ) ) Δ s ≥ − ( γ γ + 1 ) γ + 1 ∫ t 2 t ( f ( s ) ) γ 2 − 1 f γ 2 ( σ ( s ) ) r 1 / γ ( s ) Δ s .

Similarly, we have

γ ∫ t 2 t ( f ( s ) ) γ − 1 u ( s ) ( r ( s ) ) 1 / γ Δ s + γ ∫ t 2 t ( u ( s ) ) ( γ + 1 ) / γ ( r ( s ) ) 1 / γ f γ ( σ ( s ) ) Δ s ≥ − ( γ γ + 1 ) γ + 1 ∫ t 2 t ( f ( s ) ) γ 2 − 1 f γ 2 ( σ ( s ) ) r 1 / γ ( s ) Δ s .

Therefore, (2.17) implies that

∫ t 2 t [ f γ ( σ ( s ) ) Q ( s ) 2 γ − 1 − ( 1 + p 0 γ ) ( γ γ + 1 ) γ + 1 ( f ( s ) ) γ 2 − 1 f γ 2 ( σ ( s ) ) r 1 / γ ( s ) ] Δ s ≤ − ω ( t ) f γ ( t ) − p 0 γ u ( t ) f γ ( t ) ≤ 1 + p 0 γ

due to (2.7) and (2.9), which contradicts (2.4). The proof is complete. □

Remark 2.3 Theorem 2.2 complements the results obtained in [23] since it can be applied in the case where γ>1.

3 Applications

Due to Theorem 2.2, we present the following results for oscillation of equations (1.2)-(1.4).

Corollary 3.1 Assume T=R and let

∫ t 0 ∞ Q(t)dt=∞

and

lim sup t → ∞ ∫ t 0 t [ θ γ ( s ) Q ( s ) 2 γ − 1 − ( 1 + p 0 γ ) ( γ γ + 1 ) γ + 1 1 θ ( s ) r 1 / γ ( s ) ] ds=∞,

where Q is defined as in Theorem  2.2 and

θ(t):= ∫ t ∞ d s r 1 / γ ( s ) .

Then equation (1.2) oscillates.

Corollary 3.2 Assume T=Z and let

∑ t = t 0 ∞ Q(t)=∞

and

lim sup t → ∞ ∑ s = t 0 t − 1 [ β γ ( s + 1 ) Q ( s ) 2 γ − 1 − ( 1 + p 0 γ ) ( γ γ + 1 ) γ + 1 ( β ( s ) ) γ 2 − 1 β γ 2 ( s + 1 ) r 1 / γ ( s ) ] =∞,

where Q is defined as in Theorem  2.2 and

β(t):= ∑ s = t ∞ 1 r 1 / γ ( s ) .

Then equation (1.3) oscillates.

Corollary 3.3 Assume T=hZ, h>0, and let

∑ i = t 0 h ∞ Q(ih)=∞

and

lim sup t → ∞ ∑ i = t 0 h t h − 1 [ ξ γ ( ( i + 1 ) h ) Q ( i h ) 2 γ − 1 − ( 1 + p 0 γ ) ( γ γ + 1 ) γ + 1 ( ξ ( i h ) ) γ 2 − 1 ξ γ 2 ( ( i + 1 ) h ) r 1 / γ ( i h ) ] =∞,

where Q is defined as in Theorem  2.2 and

ξ(t):= ∑ i = t h ∞ 1 r 1 / γ ( i h ) .

Then equation (1.4) oscillates.

Example 3.4 For t≥1, consider a second-order neutral delay differential equation

( e 2 t ( x ( t ) + 1 2 x ( t − 2 ) ) ′ ) ′ + ( e 2 t + 1 2 e 2 t + 2 ) x(t−3)=0.
(3.1)

It is not difficult to verify that all conditions of Theorem 2.2 are satisfied. Hence, equation (3.1) is oscillatory. However, the equation

( e 2 t ( x ( t ) + 1 2 x ( t − 2 ) ) ′ ) ′ + ( e 2 t + 1 2 e 2 t + 2 ) x(t)=0

has a nonoscillatory solution x(t)= e − t . Therefore, the delayed argument δ(t)=t−δ plays an important role in oscillation of equation (1.1).

Remark 3.5 It would be of interest to find another method to study the equation

( r ( t ) ( ( x ( t ) + p ( t ) x ( τ ( t ) ) ) Δ ) γ ) Δ +q(t)|x ( δ ( t ) ) | γ − 1 x ( δ ( t ) ) =0,

where p(t)<0 or p(t)>0.

References

  1. Hilger S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 1990, 18: 18-56. 10.1007/BF03323153

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal RP, Bohner M, O’Regan D, Peterson A: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 2002, 141: 1-26. 10.1016/S0377-0427(01)00432-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.

    Book  MATH  Google Scholar 

  4. Bohner M, Peterson A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston; 2003.

    Book  MATH  Google Scholar 

  5. Jiang JC, Li XP: Oscillation of second order nonlinear neutral differential equations. Appl. Math. Comput. 2003, 135: 531-540. 10.1016/S0096-3003(02)00066-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Saker SH: New oscillation criteria for second-order nonlinear neutral delay difference equations. Appl. Math. Comput. 2003, 142: 99-111. 10.1016/S0096-3003(02)00286-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun YG, Saker SH: Oscillation for second-order nonlinear neutral delay difference equations. Appl. Math. Comput. 2005, 163: 909-918. 10.1016/j.amc.2004.04.017

    Article  MathSciNet  MATH  Google Scholar 

  8. Han Z, Li T, Sun S, Zhang C: Oscillation for second-order nonlinear delay dynamic equations on time scales. Adv. Differ. Equ. 2009, 2009: 1-13.

    Article  MathSciNet  Google Scholar 

  9. Agarwal RP, O’Regan D, Saker SH: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. Appl. 2004, 300: 203-217. 10.1016/j.jmaa.2004.06.041

    Article  MathSciNet  MATH  Google Scholar 

  10. Erbe L, Hassan TS, Peterson A: Oscillation criteria for nonlinear functional neutral dynamic equations on time scales. J. Differ. Equ. Appl. 2009, 15: 1097-1116. 10.1080/10236190902785199

    Article  MathSciNet  MATH  Google Scholar 

  11. Åžahiner Y: Oscillation of second order neutral delay and mixed type dynamic equations on time scales. Adv. Differ. Equ. 2006, 2006: 1-9.

    MathSciNet  MATH  Google Scholar 

  12. Saker SH: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 2006, 187: 123-141. 10.1016/j.cam.2005.03.039

    Article  MathSciNet  MATH  Google Scholar 

  13. Saker SH, Agarwal RP, O’Regan D: Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Anal. 2007, 86: 1-17. 10.1081/00036810601091630

    Article  MathSciNet  MATH  Google Scholar 

  14. Saker SH, O’Regan D: New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution. Commun. Nonlinear Sci. Numer. Simul. 2011, 16: 423-434. 10.1016/j.cnsns.2009.11.032

    Article  MathSciNet  MATH  Google Scholar 

  15. Tripathy AK: Some oscillation results for second order nonlinear dynamic equations of neutral type. Nonlinear Anal. 2009, 71: e1727-e1735. 10.1016/j.na.2009.02.046

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen DX: Oscillation of second-order Emden-Fowler neutral delay dynamic equations on time scales. Math. Comput. Model. 2010, 51: 1221-1229. 10.1016/j.mcm.2010.01.004

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang SY, Wang QR: Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 2010, 216: 2837-2848. 10.1016/j.amc.2010.03.134

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu HW, Zhuang RK, Mathsen RM: Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl. Math. Comput. 2006, 178: 321-331. 10.1016/j.amc.2005.11.049

    Article  MathSciNet  MATH  Google Scholar 

  19. Li T, Agarwal RP, Bohner M: Some oscillation results for second-order neutral dynamic equations. Hacet. J. Math. Stat. 2012, 41: 715-721.

    MathSciNet  MATH  Google Scholar 

  20. Li T, Han Z, Sun S, Yang D: Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales. Adv. Differ. Equ. 2009, 2009: 1-10.

    MathSciNet  MATH  Google Scholar 

  21. Gao C, Li T, Tang S, Thandapani E: Oscillation theorems for second-order neutral functional dynamic equations on time scales. Electron. J. Differ. Equ. 2011, 2011: 1-9.

    MathSciNet  MATH  Google Scholar 

  22. Baculíková B, Džurina J: Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62: 4472-4478. 10.1016/j.camwa.2011.10.024

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang C, Agarwal RP, Bohner M, Li T: New oscillation results for second-order neutral delay dynamic equations. Adv. Differ. Equ. 2012, 2012: 1-14. 10.1186/1687-1847-2012-1

    Article  MathSciNet  Google Scholar 

  24. Candan T: Oscillation criteria for second-order nonlinear neutral dynamic equations with distributed deviating arguments on time scales. Adv. Differ. Equ. 2013, 2013: 1-8. 10.1186/1687-1847-2013-1

    Article  MathSciNet  Google Scholar 

  25. Candan T: Oscillation of second-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments. Comput. Math. Appl. 2011, 62: 4118-4125. 10.1016/j.camwa.2011.09.062

    Article  MathSciNet  MATH  Google Scholar 

  26. Karpuz B: Li type oscillation theorem for delay dynamic equations. Math. Methods Appl. Sci. 2013, 36: 993-1002. 10.1002/mma.2518

    Article  MathSciNet  MATH  Google Scholar 

  27. Åženel MT: Kamenev-type oscillation criteria for the second-order nonlinear dynamic equations with damping on time scales. Abstr. Appl. Anal. 2012, 2012: 1-18.

    MathSciNet  MATH  Google Scholar 

  28. Åženel MT, Candan T: Oscillation of second order nonlinear neutral differential equation. J. Comput. Anal. Appl. 2012, 14: 1112-1117.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to reviewers for their comments and suggestions. This research is supported by Natural Science Foundation of Shandong Province (Z2007F08) and also by Weifang University Research Funds for Doctors (2012BS25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhong Tang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this paper and also read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ji, T., Tang, S. & Thandapani, E. On oscillation of second-order neutral dynamic equations. Adv Differ Equ 2013, 340 (2013). https://doi.org/10.1186/1687-1847-2013-340

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-340

Keywords