Skip to main content

Theory and Modern Applications

General exponential dichotomies on time scales and parameter dependence of roughness

Abstract

This paper focuses on a new notion called the general exponential dichotomy on time scales, which is more general and contains as special cases most versions of dichotomies on the continuous systems and discrete systems. We establish the existence of parameter dependence of roughness for the general exponential dichotomy on time scales under sufficiently small linear perturbation. Moreover, we also show that the stable and unstable subspaces of general exponential dichotomies for the perturbed system are Lipschitz continuous for the parameters.

MSC:34N05, 34D09.

1 Introduction

The notion of exponential dichotomies extends the idea of hyperbolicity from autonomous systems to nonautonomous systems and gives a direct sum of the stable and unstable subspaces for the splitting of the state space [1, 2]. The exponential dichotomy together with its variants and extensions has been widely studied and discussed and plays a central role in the study of the nonautonomous systems [315]. In particular, the roughness of dichotomies states that the behavior of a dichotomy does not change much under sufficiently small linear perturbations and has been extensively studied for the continuous systems [1, 5, 6, 9, 14, 1620] and the discrete systems [6, 2123].

The theory of dynamic equations on time scales, which originates from [24, 25], is related not only to the set of real numbers (continuous systems) and the set of integers (discrete systems) but also to more general time scales (an arbitrary nonempty closed subset of the real numbers ) [26, 27]. The concept of exponential dichotomies on time scales is a very important method and tool to explore the dynamic behavior of nonautonomous dynamic systems on time scales [2838]. However, we note that there exist various different notions of dichotomies and different kinds of dichotomic behavior in the continuous systems and the discrete systems. It is of great interest to look for more general types of dichotomies on time scales in order to unify the notions of dichotomies in the continuous and discrete case. The main novelty of our work is that we introduce a new notion called the general exponential dichotomy on time scales, which includes and extends the existing notions of dichotomies for the continuous systems and the discrete systems usually found in the literature. Moreover, we also discuss parameter dependence of roughness for the general exponential dichotomy on time scales under sufficiently small linear perturbation.

The content of this paper is as follows. In Section 2, we define a new notion called the general exponential dichotomy on time scales for the linear dynamical system on time scales. Then we establish the existence of parameter dependence of roughness for the general exponential dichotomy on time scales in Section 3. Particularly, the stable and unstable subspaces of general exponential dichotomies for the perturbed system are Lipschitz continuous for the parameters.

2 General exponential dichotomy on time scales

In this section, we first introduce some basic knowledge and definitions on time scales, which can be found in [24, 25].

Let T be a time scale, i.e., an arbitrary nonempty closed subset of the real numbers . σ:TT is the forward jump operator of T and μ(t)=σ(t)t is a graininess function. Throughout this paper, the time scale T is assumed to be unbounded above and below. C rd (T,R) denotes the set of rd-continuous functions g:TR. R + (T,R):={g C rd (T,R):1+μ(t)g(t)>0,tT} is the space of positively regressive functions.

Define

( φ ψ ) ( t ) : = φ ( t ) + ψ ( t ) + μ ( t ) φ ( t ) ψ ( t ) , φ : = φ ( t ) 1 + μ ( t ) φ ( t ) , ( ω φ ) ( t ) : = lim h μ ( t ) ( 1 + h φ ( t ) ) ω 1 h

for a given ω R + and for any tT, φ,ψ R + (T,R). For any φ R + (T,R), define the exponential function by

e φ (t,s)=exp { s t ζ μ ( τ ) ( φ ( τ ) ) Δ τ } with  ζ h (z)= { z if  h = 0 , Log ( 1 + h z ) / h if  h 0

for s,tT, where Log is the principal logarithm.

Let

[ φ ] := sup t T ( φ ( t ) ) , [ φ ] := inf t T ( φ ( t ) )

for any bounded function φ C rd (T,R) and define

κ 1 :=min { t T R + } , κ 2 :=max { t T R } .

Then we have

lim t e φ ( t , τ ) = 0 , lim τ e φ ( t , τ ) = 0 , e φ ( t , κ 1 ) 1 for  κ 1 t , e φ ( κ 2 , t ) 1 for  t κ 2 ,

where 0< [ φ ] .

Let (X,) be a Banach space and B(X) be the space of bounded linear operators defined on X. We consider the linear system on time scales

x Δ =A(t)x,
(2.1)

where A C rd (T,B(X)). Let T(t,s) be the evolution operator satisfying T(t,s)x(s)=x(t) for t,sT and any solution x(t) of system (2.1). Moreover, we also assume that T(t,t)=1 and T(t,τ)T(τ,s)=T(t,s) for any t,τ,sT, which imply that T(t,s) is invertible.

Now we introduce a new notion called the general exponential dichotomy on time scales.

Definition 2.1 System (2.1) is said to admit a general exponential dichotomy on a time scale T if there exist projections P(t) such that

P(t)T(t,s)=T(t,s)P(s),t,sT,

and there exist a constant K>0, L 1 , L 2 :T×T R + and bounded functions a,b C rd (T, R + ) with 0< [ a ] , 0< [ b ] such that, for κ 1 s,

T ( t , s ) P ( s ) K L 1 ( s , κ 1 ) e a ( t , s ) , s t , T ( t , s ) Q ( s ) K L 2 ( s , κ 1 ) e b ( s , t ) , t s
(2.2)

hold and for s κ 2 ,

T ( t , s ) P ( s ) K L 1 ( κ 2 , s ) e a ( t , s ) , s t , T ( t , s ) Q ( s ) K L 2 ( κ 2 , s ) e b ( s , t ) , t s
(2.3)

hold, where Q(t)=IdP(t) is the complementary projection of P(t).

In order to facilitate the reader’s understanding, we now consider some specific examples of general exponential dichotomies on different time scales.

Example 2.1 Let T=R, then μ(t)=0, κ 1 = κ 2 =0.

If functions a, b are positive constants, then the general exponential dichotomy on time scales reduces to the exponential dichotomy ( L 1 and L 2 are positive constants) [1] by

T ( t , s ) P ( s ) K L 1 e a ( t s ) ,st, T ( t , s ) Q ( s ) K L 2 e b ( s t ) ,ts

and the nonuniform exponential dichotomy ( L 1 ( t 1 , t 2 )= L 2 ( t 1 , t 2 )= e ε ( t 1 t 2 ) and ε is a positive constant) [5] by

T ( t , s ) P ( s ) K e a ( t s ) + ε | s | ,st, T ( t , s ) Q ( s ) K e b ( s t ) + ε | s | ,ts.

If functions a=b, then we get the generalized exponential dichotomy ( L 1 , L 2 are positive constants) [10, 11] by

T ( t , s ) P ( s ) K L 1 exp ( s t a ( τ ) d τ ) , s t , T ( t , s ) Q ( s ) K L 2 exp ( t s a ( τ ) d τ ) , t s .

Let h,k: R + R + , and let the functions L 1 , L 2 be positive constants. If a(t)= h (t)/h(t), b(t)= k (t)/k(t), then we obtain the (h,k)-dichotomy [14] by

T ( t , s ) P ( s ) K L 1 ( h ( t ) / h ( s ) ) 1 , s t , T ( t , s ) Q ( s ) K L 2 ( k ( s ) / k ( t ) ) 1 , t s .

If T= R + and η i , i=1,2,3, are positive constants, then Definition 2.1 agrees with the nonuniform polynomial dichotomy (a(t)= η 1 /(t+1), b(t)= η 2 /(t+1) and L 1 ( t 1 , t 2 )= L 2 ( t 1 , t 2 )= ( t 1 t 2 + 1 ) η 3 ) [7] by

T ( t , s ) P ( s ) K ( t + 1 s + 1 ) η 1 ( s + 1 ) η 3 , s t , T ( t , s ) Q ( s ) K ( s + 1 t + 1 ) η 2 ( s + 1 ) η 3 , t s ,

the ρ-nonuniform exponential dichotomy (a(t)= η 1 ρ (t), b(t)= η 2 ρ (t), L 1 ( t 1 , t 2 )= L 2 ( t 1 , t 2 )= e η 3 ρ ( t 1 t 2 ) ) [6] by

T ( t , s ) P ( s ) K e η 1 ( ρ ( t ) ρ ( s ) ) + η 3 ρ ( s ) , s t , T ( t , s ) Q ( s ) K e η 2 ( ρ ( s ) ρ ( t ) ) + η 3 ρ ( s ) , t s

and the nonuniform (μ,ν)-dichotomy (a(t)= η 1 μ (t)/μ(t), b(t)= η 2 μ (t)/μ(t), L 1 ( t 1 , t 2 )= L 2 ( t 1 , t 2 )=ν ( t 1 t 2 ) η 3 ) [9] by

T ( t , s ) P ( s ) K ( μ ( t ) / μ ( s ) ) η 1 ν ( s ) η 3 , s t , T ( t , s ) Q ( s ) K ( μ ( s ) / μ ( t ) ) η 2 ν ( s ) η 3 , t s .

Example 2.2 If T=Z, then μ(t)=1, κ 1 = κ 2 =0.

Carrying out similar arguments as those in Example 2.1, we conclude that the general exponential dichotomy on time scales includes the existing dichotomies for the linear discrete system as special cases such as the uniform exponential dichotomy [1], (h,k)-dichotomy [23], nonuniform exponential dichotomy [5], nonuniform polynomial dichotomy [21], ρ-nonuniform exponential dichotomy [6], nonuniform (μ,ν)-dichotomy [8, 22].

Example 2.3 Let T=hZ, h>0, and let the functions a, b be positive constants.

We have μ(t)=h, κ 1 = κ 2 =0. Let c be a positive constant and L 1 ( t 1 , t 2 )= L 2 ( t 1 , t 2 )= e c ( t 1 , t 2 ). Then (2.2) and (2.3) reduce to

T ( t , s ) P ( s ) ( 1 1 + a h ) ( t s ) / h ( 1 + c h ) | s | / h , s t , T ( t , s ) Q ( s ) ( 1 1 + b h ) ( s t ) / h ( 1 + c h ) | s | / h , t s .

Example 2.4 Let T= q N 0 , q>1, and let the functions a, b be positive constants, where N 0 =N{0}.

We get μ(t)=(q1)t and κ 1 =1. If L 1 ( t 1 , t 2 )= L 2 ( t 1 , t 2 )= e c ( t 1 , t 2 ), where c is a positive constant, then (2.2) reduces to

T ( t , s ) P ( s ) τ [ s , t ) [ 1 / ( 1 + ( q 1 ) a τ ) ] τ [ 0 , s ) [ 1 + ( q 1 ) c τ ] , s t , T ( t , s ) Q ( s ) τ [ t , s ) [ 1 / ( 1 + ( q 1 ) b τ ) ] τ [ 0 , s ) [ 1 + ( q 1 ) c τ ] , t s .

3 Parameter dependence of roughness

The section focuses on parameter dependence of roughness for the general exponential dichotomy on time scales under the sufficiently small linear perturbation. We consider the linear perturbed system

x Δ =A(t)x+B(t,λ)x,
(3.1)

where B:T×YB(X), Y=(Y,||) is an open subset of a Banach space (the parameter space). In the rest of the section, we let T ˆ λ (t,s) be the evolution operator associated to system (3.1) for each λY.

To obtain our conclusion, we let

L:= { L : T × T R + | L ( t , t ) = 1 , L ( t , s )  is increasing for the first variable and decreasing for the second variable }

and assume that the following conditions hold:

  • (a1) there exist a positive constant c and a function L :T×T R + such that

    B ( t , λ ) c / L ( σ ( t ) , κ 1 ) , B ( t , λ ) B ( t , ν ) ( c / L ( σ ( t ) , κ 1 ) ) | λ ν | , κ 1 t ,

    and

    B ( t , λ ) c / L ( κ 2 , σ ( t ) ) , B ( t , λ ) B ( t , ν ) ( c / L ( κ 2 , σ ( t ) ) ) | λ ν | , t κ 2 ,

    where λ,νY;

  • (a2) there exist positive constants M 1 , M 2 such that

    κ 1 max { L 1 ( σ ( τ ) , κ 1 ) , L 2 ( σ ( τ ) , κ 1 ) } L 2 ( τ , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ < M 1 , κ 2 max { L 1 ( κ 2 , σ ( τ ) ) , L 2 ( κ 2 , σ ( τ ) ) } L 2 ( κ 2 , τ ) L ( κ 2 , σ ( τ ) ) Δ τ < M 2 ;
  • (a3) lim t L 1 (s,t) e a (s,t)=0 and lim t L 2 (t,s) e b (t,s)=0 for each fixed sT;

  • (a4) e ( a b ) (, κ 1 ) L 2 (, κ 1 ) is a decreasing function and e ( a b ) ( κ 2 ,) L 1 ( κ 2 ,) is an increasing function.

Now we state our main result in this section.

Theorem 3.1 Assume that system (2.1) admits a general exponential dichotomy on a time scale T with L 1 , L 2 L and conditions (a1)-(a4) hold with sufficiently small c. Then system (3.1) also admits a general exponential dichotomy on the time scale T, i.e., for each λY, there exist projections P ˆ λ (t) such that

P ˆ λ (t) T ˆ λ (t,s)= T ˆ λ (t,s) P ˆ λ (s)
(3.2)

and

T ˆ λ ( t , s ) P ˆ λ ( s ) { K K ˆ L 1 ( s , κ 1 ) ( L 1 ( s , κ 1 ) + L 2 ( s , κ 1 ) ) 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) e a ( t , s ) , κ 1 s , K K ˆ L 1 ( κ 2 , s ) ( L 1 ( κ 2 , s ) + L 2 ( κ 2 , s ) ) 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) e a ( t , s ) , s κ 2 , st,
(3.3)
T ˆ λ ( t , s ) Q ˆ λ ( s ) { K K ˆ L 2 ( s , κ 1 ) ( L 1 ( s , κ 1 ) + L 2 ( s , κ 1 ) ) 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) e b ( s , t ) , κ 1 s , K K ˆ L 2 ( κ 2 , s ) ( L 1 ( κ 2 , s ) + L 2 ( κ 2 , s ) ) 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) e b ( s , t ) , s κ 2 , ts,
(3.4)

where Q ˆ λ (t)=Id P ˆ λ (t) are the complementary projections of P ˆ (t),

K ˆ =K/ ( 1 K c ( ( 2 + [ a μ ] ) M 1 + ( 2 + [ a μ ] ) M 2 ) ) .
(3.5)

Moreover, if Y is a finite-dimensional space and T ˆ λ is Lipschitz continuous for the parameter λ, then the stable subspace P ˆ λ (X) and the unstable subspace Q ˆ λ (X) are Lipschitz continuous for the parameter λ.

The proof of Theorem 3.1 is nontrivial and is achieved in several steps:

  1. (i)

    construct some bounded solutions of perturbed system (3.1) (Lemmas 3.1, 3.2);

  2. (ii)

    semigroup properties of the bounded solutions of system (3.1) (Lemma 3.3);

  3. (iii)

    construction of the projections P ˆ λ in (3.2) (Lemmas 3.4, 3.5 and (3.15));

  4. (iv)

    norm bounds for the evolution operator T ˆ λ (Lemmas 3.6, 3.7, 3.8);

  5. (v)

    P ˆ λ and Q ˆ λ are Lipschitz continuous for the parameter λ (Lemma 3.9).

We set

Ω 1 : = { U ( t , s ) ( s t ) B ( X ) : U 1 = max { U 1 1 , U 1 2 } < K ˆ } , Ω 2 : = { V ( t , s ) ( t s ) B ( X ) : V 2 = max { V 2 1 , V 2 2 } < K ˆ } ,

where

U 1 1 : = sup { U ( t , s ) e a ( t , s ) / L 1 ( s , κ 1 ) : s t , κ 1 s } , U 1 2 : = sup { U ( t , s ) e a ( t , s ) / L 1 ( κ 2 , s ) : s t , s κ 2 } , V 2 1 : = sup { V ( t , s ) e b ( s , t ) / L 2 ( s , κ 1 ) : t s , κ 1 s } , V 2 2 : = sup { V ( t , s ) e b ( s , t ) / L 2 ( κ 2 , s ) : t s , s κ 2 } .

It is not difficult to show that ( Ω 1 , 1 ) and ( Ω 2 , 2 ) are both Banach spaces.

Lemma 3.1 For each λY, there exists a unique bounded solution U λ Ω 1 satisfying

U λ ( t , s ) = T ( t , s ) P ( s ) + s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) U λ ( τ , s ) Δ τ t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) U λ ( τ , s ) Δ τ , s t
(3.6)

and U λ is Lipschitz continuous for the parameter λ.

Proof Direct calculation shows that U λ satisfying (3.6) is a solution of (3.1). For each λY, we define an operator J λ on Ω 1 by

( J λ U ) ( t , s ) = T ( t , s ) P ( s ) + s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) U ( τ , s ) Δ τ t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) U ( τ , s ) Δ τ .

By (2.2), (2.3), (a1) and (a2), we have

( J λ U ) ( t , s ) K L 1 ( s , κ 1 ) e a ( t , s ) + K c s t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) U ( τ , s ) Δ τ + K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) U ( τ , s ) Δ τ K L 1 ( s , κ 1 ) e a ( t , s ) + K c s t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( s , κ 1 ) Δ τ U 1 1 + K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( s , κ 1 ) Δ τ U 1 1 K L 1 ( s , κ 1 ) e a ( t , s ) ( 1 + c U 1 1 s t ( 1 + a μ ( τ ) ) L 1 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ + c U 1 1 t 1 1 + b μ ( τ ) L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ ) K L 1 ( s , κ 1 ) e a ( t , s ) ( 1 + c ( 2 + [ a μ ] ) M 1 U 1 1 )

for κ 1 s and

( J λ U ) ( t , s ) K L 1 ( κ 2 , s ) e a ( t , s ) + K c s t L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) U ( τ , s ) Δ τ + K c t κ 2 L 2 ( κ 2 , σ ( τ ) ) e b ( σ ( τ ) , t ) L ( κ 2 , σ ( τ ) ) U ( τ , s ) Δ τ + K c κ 1 L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) U ( τ , s ) Δ τ K L 1 ( κ 2 , s ) e a ( t , s ) + K c s t L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ U 1 2 + K c t κ 2 L 2 ( κ 2 , σ ( τ ) ) e b ( σ ( τ ) , t ) L ( κ 2 , σ ( τ ) ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ U 1 2 + K c κ 1 L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ U 1 2 K L 1 ( κ 2 , s ) e a ( t , s ) ( 1 + c U 1 2 s t ( 1 + a μ ( τ ) ) L 1 ( κ 2 , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) Δ τ + c U 1 2 t κ 2 1 1 + b μ ( τ ) L 2 ( κ 2 , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) Δ τ + c U 1 2 κ 1 1 1 + b μ ( τ ) L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ ) K L 1 ( κ 2 , s ) e a ( t , s ) ( 1 + c ( M 1 + ( 2 + [ a μ ] ) M 2 ) U 1 2 )

for t κ 2 . For s κ 2 κ 1 t, we get

( J λ U ) ( t , s ) K L 1 ( κ 2 , s ) e a ( t , s ) + K c s κ 2 L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) U ( τ , s ) Δ τ + K c κ 1 t L 2 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) U ( τ , s ) Δ τ + K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) U ( τ , s ) Δ τ K L 1 ( κ 2 , s ) e a ( t , s ) + K c s κ 2 L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ U 1 2 + K c κ 1 t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ U 1 2 + K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ U 1 2 K L 1 ( κ 2 , s ) e a ( t , s ) ( 1 + c U 1 2 s κ 2 ( 1 + a μ ( τ ) ) L 1 ( κ 2 , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) Δ τ + c U 1 2 κ 1 t ( 1 + a μ ( τ ) ) L 1 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ + c U 1 2 t 1 1 + b μ ( τ ) L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ ) K L 1 ( κ 2 , s ) e a ( t , s ) ( 1 + c ( ( 2 + [ a μ ] ) M 1 + ( 1 + [ a μ ] ) M 2 ) U 1 2 ) .

Then

J λ U 1 1 K ( 1 + c ( 2 + [ a μ ] ) M 1 U 1 1 ) K ˆ

and

J λ U 1 2 K ( 1 + c ( ( 2 + [ a μ ] ) M 1 + ( 2 + [ a μ ] ) M 2 ) U 1 2 ) K ˆ ,

that is,

J λ U 1 max { ( J λ U ) 1 1 , ( J λ U ) 1 2 } K ˆ .
(3.7)

This implies that J λ ( Ω 1 ) Ω 1 . Similarly, for each U 1 , U 2 Ω 1 , we get

J λ U 1 Kc ( ( 2 + [ a μ ] ) M 1 + ( 2 + [ a μ ] ) M 2 ) U 1 U 2 1 .

If c is sufficiently small, then J λ is a contraction and for each λY, there exists a unique U λ Ω 1 such that J λ U λ = U λ and (3.6) holds.

Next we show that U λ is Lipschitz continuous for the parameter λ. For any λ 1 , λ 2 Y, there exist bounded solutions U λ 1 , U λ 2 Ω 1 satisfying (3.6). It follows from (a2) that

A 1 ( τ ) : = B ( τ , λ 1 ) U λ 1 ( τ , s ) B ( τ , λ 2 ) U λ 2 ( τ , s ) B ( τ , λ 1 ) U λ 1 ( τ , s ) B ( τ , λ 1 ) U λ 2 ( τ , s ) + B ( τ , λ 1 ) U λ 2 ( τ , s ) B ( τ , λ 2 ) U λ 2 ( τ , s ) c e a ( τ , s ) L 1 ( s , κ 1 ) L ( σ ( τ ) , κ 1 ) U λ 1 U λ 2 1 1 + K ˆ c e a ( τ , s ) L 1 ( s , κ 1 ) | λ 1 λ 2 | L ( σ ( τ ) , κ 1 )

for τs κ 1 and

A 2 ( τ ) : = B ( τ , λ 1 ) U λ 1 ( τ , s ) B ( τ , λ 2 ) U λ 2 ( τ , s ) B ( τ , λ 1 ) U λ 1 ( τ , s ) B ( τ , λ 1 ) U λ 2 ( τ , s ) + B ( τ , λ 1 ) U λ 2 ( τ , s ) B ( τ , λ 2 ) U λ 2 ( τ , s ) c e a ( τ , s ) L 1 ( κ 2 , s ) L ( κ 2 , σ ( τ ) ) U λ 1 U λ 2 1 2 + K ˆ c e a ( τ , s ) L 1 ( κ 2 , s ) | λ 1 λ 2 | L ( κ 2 , σ ( τ ) )

for sτ κ 2 . Moreover, we also have

A 3 ( τ ) : = B ( τ , λ 1 ) U λ 1 ( τ , s ) B ( τ , λ 2 ) U λ 2 ( τ , s ) B ( τ , λ 1 ) U λ 1 ( τ , s ) B ( τ , λ 1 ) U λ 2 ( τ , s ) + B ( τ , λ 1 ) U λ 2 ( τ , s ) B ( τ , λ 2 ) U λ 2 ( τ , s ) c e a ( τ , s ) L 1 ( κ 2 , s ) L ( σ ( τ ) , κ 1 ) U λ 1 U λ 2 1 2 + K ˆ c e a ( τ , s ) L 1 ( κ 2 , s ) | λ 1 λ 2 | L ( σ ( τ ) , κ 1 )

for s κ 2 κ 1 τ. It follows from (2.2), (2.3), (a1) and (a2) that

U λ 1 ( t , s ) U λ 2 ( t , s ) s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) A 1 ( τ ) Δ τ + t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) A 1 ( τ ) Δ τ K c L 1 ( s , κ 1 ) e a ( t , s ) ( 2 + [ a μ ] ) M 1 ( U λ 1 U λ 2 1 1 + K ˆ | λ 1 λ 2 | )

for s κ 1 and

U λ 1 ( t , s ) U λ 2 ( t , s ) s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) A 2 ( τ ) Δ τ + t κ 2 T ( t , σ ( τ ) ) Q ( σ ( τ ) ) A 2 ( τ ) Δ τ + κ 1 T ( t , σ ( τ ) ) Q ( σ ( τ ) ) A 3 ( τ ) Δ τ K c L 1 ( κ 2 , s ) e a ( t , s ) ( M 1 + ( 2 + [ a μ ] ) M 2 ) × ( U λ 1 U λ 2 1 2 + K ˆ | λ 1 λ 2 | )

for t κ 2 . For s κ 2 κ 1 t, we get

U λ 1 ( t , s ) U λ 2 ( t , s ) s κ 2 T ( t , σ ( τ ) ) P ( σ ( τ ) ) A 2 ( τ ) Δ τ + κ 1 t T ( t , σ ( τ ) ) P ( σ ( τ ) ) A 3 ( τ ) Δ τ + t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) A 3 ( τ ) Δ τ K c L 1 ( κ 2 , s ) e a ( t , s ) ( ( 2 + [ a μ ] ) M 1 + ( 1 + [ a μ ] ) M 2 ) × ( U λ 1 U λ 2 1 2 + K ˆ | λ 1 λ 2 | ) .

Then

U λ 1 U λ 2 1 K ˆ 2 c ( ( 2 + [ a μ ] ) M 1 + ( 2 + [ a μ ] ) M 2 ) | λ 1 λ 2 |.

The proof of the lemma is complete. □

Similarly, we have the following lemma.

Lemma 3.2 For each λY, there exists a unique bounded solution V λ Ω 2 satisfying

V λ ( t , s ) = T ( t , s ) Q ( s ) + t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) V λ ( τ , s ) Δ τ t s T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) V λ ( τ , s ) Δ τ , t s
(3.8)

and V λ is Lipschitz continuous for the parameter λ.

Lemma 3.3 For each λY, the bounded solutions U λ and V λ of system (3.1) satisfy

U λ ( t , l ) U λ ( l , s ) = U λ ( t , s ) , s l t , V λ ( t , l ) V λ ( l , s ) = V λ ( t , s ) , t l s .
(3.9)

Proof From (3.6), we get

U λ ( t , l ) U λ ( l , s ) = T ( t , s ) P ( s ) + s l T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) U λ ( τ , s ) Δ τ + l t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) U λ ( τ , l ) Δ τ U λ ( l , s ) t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) U λ ( τ , l ) Δ τ U λ ( l , s )

for slt, and let H λ (t,l)= U λ (t,l) U λ (l,s) U λ (t,s). We define the operator L λ by

( L λ h ) ( t , l ) = l t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) h ( τ , l ) Δ τ t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) h ( τ , l ) Δ τ

for any h Ω 1 l and each λY, where Ω 1 l is obtained from Ω 1 replacing s by l. Obviously, L λ H λ = H λ . Carrying out similar arguments to the proof of Lemma 3.1, we have

L λ h 1 Kc ( ( 2 + [ a μ ] ) M 1 + ( 2 + [ a μ ] ) M 2 ) h 1 K ˆ

and

L λ h 1 L λ h 2 1 Kc ( ( 2 + [ a μ ] ) M 1 + ( 2 + [ a μ ] ) M 2 ) h 1 h 2 1

for any h, h 1 , h 2 Ω 1 l . This means that there exists a unique h λ Ω 1 l such that L h λ = h λ . On the other hand, we also note that 0 Ω 1 l and L λ 0=0. Therefore, H λ = h λ =0. Similarly, the second identity of (3.9) holds. □

Now we construct the projections P ˆ λ (t) for each λY. We first set

P ˜ λ ( t ) = T ˆ λ ( t , κ 1 ) U λ ( κ 1 , κ 1 ) T ˆ λ ( κ 1 , t ) , Q ˜ λ ( t ) = T ˆ λ ( t , κ 1 ) V λ ( κ 1 , κ 1 ) T ˆ λ ( κ 1 , t ) .
(3.10)

Lemma 3.4 For each λY, we have

  • (b1) P ˜ λ (t), Q ˜ λ (t) are projections for each tT and λY;

  • (b2) P ˜ λ (t) T ˆ λ (t,s)= T ˆ λ (t,s) P ˜ λ (s), Q ˜ λ (t) T ˆ λ (t,s)= T ˆ λ (t,s) Q ˜ λ (s), t,sT;

  • (b3) P( κ 1 ) P ˜ λ ( κ 1 )=P( κ 1 ), Q( κ 1 ) Q ˜ λ ( κ 1 )=Q( κ 1 ), Q( κ 1 )(Id P ˜ λ ( κ 1 ))=Id P ˜ λ ( κ 1 ), P( κ 1 )(Id Q ˜ λ ( κ 1 ))=Id Q ˜ λ ( κ 1 );

  • (b4) P ˜ λ ( κ 1 )P( κ 1 )= P ˜ λ ( κ 1 ), Q ˜ λ ( κ 1 )Q( κ 1 )= Q ˜ λ ( κ 1 ).

Proof It follows from Lemma 3.3 that (b1) and (b2) hold. By (3.6) and (3.8), we get

P ˜ λ ( κ 1 )= U λ ( κ 1 , κ 1 )=P( κ 1 ) κ 1 T ( κ 1 , σ ( τ ) ) Q ( σ ( τ ) ) B(τ,λ) U λ (τ, κ 1 )Δτ,
(3.11)
Q ˜ λ ( κ 1 )= V λ ( κ 1 , κ 1 )=Q( κ 1 )+ κ 1 T ( κ 1 , σ ( τ ) ) P ( σ ( τ ) ) B(τ,λ) V λ (τ, κ 1 )Δτ,
(3.12)

which imply that (b3) holds. By Lemma 3.1 and Lemma 3.2, we have U λ (t, κ 1 )P( κ 1 )= U λ (t, κ 1 ) and V λ (t, κ 1 )Q( κ 1 )= V λ (t, κ 1 ) since U λ (t, κ 1 )P( κ 1 ) Ω 1 satisfies identity (3.6) with s= κ 1 and V λ (t, κ 1 )Q( κ 1 ) Ω 2 satisfies identity (3.8) with s= κ 1 . Therefore, (b4) holds. □

Lemma 3.5 For each λY, S λ ( κ 1 )= P ˜ λ ( κ 1 )+ Q ˜ λ ( κ 1 ) is invertible.

Proof For each λY, combining (b3) and (b4) together gives

P ˜ λ ( κ 1 )+ Q ˜ λ ( κ 1 )Id=Q( κ 1 ) P ˜ λ ( κ 1 )+P( κ 1 ) Q ˜ λ ( κ 1 ).

It follows from (3.11) and (3.12) that

P ( κ 1 ) Q ˜ λ ( κ 1 ) = P ( κ 1 ) V λ ( κ 1 , κ 1 ) = κ 1 T ( κ 1 , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) V λ ( τ , κ 1 ) Δ τ , Q ( κ 1 ) P ˜ λ ( κ 1 ) = Q ( κ 1 ) U λ ( κ 1 , κ 1 ) = κ 1 T ( κ 1 , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) U λ ( τ , κ 1 ) Δ τ .

Note that

U λ ( t , s ) K ˆ L 1 ( s , κ 1 ) e a ( t , s ) , s t , κ 1 s , U λ ( t , s ) K ˆ L 1 ( κ 2 , s ) e a ( t , s ) , s t , s κ 2 ,
(3.13)

and

V λ ( t , s ) K ˆ L 2 ( s , κ 1 ) e b ( s , t ) , t s , κ 1 s , V λ ( t , s ) K ˆ L 2 ( κ 2 , s ) e b ( s , t ) , t s , s κ 2 .
(3.14)

Then

κ 1 T ( κ 1 , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) V λ ( τ , κ 1 ) Δ τ = κ 2 T ( κ 1 , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) V λ ( τ , κ 1 ) Δ τ K K ˆ κ 2 L 1 ( κ 2 , σ ( τ ) ) e a ( κ 1 , σ ( τ ) ) ( c / L ( κ 2 , σ ( τ ) ) ) L 2 ( κ 1 , κ 1 ) e b ( κ 1 , τ ) Δ τ K K ˆ c κ 2 L 1 ( κ 2 , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) Δ τ K K ˆ c M 2

and

κ 1 T ( κ 1 , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) U λ ( τ , κ 1 ) Δ τ K K ˆ κ 1 L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , κ 1 ) ( c / L ( σ ( τ ) , κ 1 ) ) L 1 ( κ 1 , κ 1 ) e a ( τ , κ 1 ) Δ τ K K ˆ c κ 1 L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ K K ˆ c M 1 .

Then

P ˜ λ ( κ 1 ) + Q ˜ λ ( κ 1 ) Id K K ˆ c( M 1 + M 2 ),

which means that S λ ( κ 1 ) is invertible if c is sufficiently small. □

We set

P ˆ λ ( t ) = T ˆ λ ( t , κ 1 ) S λ ( κ 1 ) P ( κ 1 ) S λ 1 ( κ 1 ) T ˆ λ ( κ 1 , t ) , Q ˆ λ ( t ) = T ˆ λ ( t , κ 1 ) S λ ( κ 1 ) Q ( κ 1 ) S λ 1 ( κ 1 ) T ˆ λ ( κ 1 , t )
(3.15)

for each λY and tT. It is not difficult to show that P ˆ λ (t)+ Q ˆ λ (t)=Id, λY, tT. Then P ˆ λ (t), Q ˆ λ (t) are projections and (3.2) is valid.

Lemma 3.6 We have

T ˆ λ ( t , s ) | Im P ˜ λ ( s ) { K ˆ L 1 ( s , κ 1 ) e a ( t , s ) , κ 1 s , K ˆ L 1 ( κ 2 , s ) e a ( t , s ) , s κ 2 , st,
(3.16)
T ˆ λ ( t , s ) | Im Q ˜ λ ( s ) { K ˆ L 2 ( s , κ 1 ) e b ( s , t ) , κ 1 s , K ˆ L 2 ( κ 2 , s ) e b ( s , t ) , s κ 2 , ts.
(3.17)

Proof We first prove that for each λY, if z λ ( t ) ( t s ) is a bounded solution of (3.1), then

z λ ( t ) = T ( t , s ) P ( s ) z λ ( s ) + s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) z λ ( τ ) Δ τ t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) z λ ( τ ) Δ τ , s t .
(3.18)

A straightforward calculation shows that

P(t) z λ (t)=T(t,s)P(s) z λ (s)+ s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B(τ,λ) z λ (τ)Δτ,
(3.19)
Q(t) z λ (t)=T(t,s)Q(s) z λ (s)+ s t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B(τ,λ) z λ (τ)Δτ
(3.20)

and

z λ (t)=P(t) z λ (t)+Q(t) z λ (t),tT.

It follows from (3.20), (2.2) and (2.3) that

Q(s) z λ (s)=T(s,t)Q(t) z λ (t) s t T ( s , σ ( τ ) ) Q ( σ ( τ ) ) B(τ,λ) z λ (τ)Δτ
(3.21)

and

T ( s , t ) Q ( t ) K L 2 (t, κ 1 ) e b (t,s)K L 2 (t, κ 1 ) e b (t, κ 1 ) e b ( κ 1 ,s), κ 1 t.

We note that

s T ( s , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) z λ ( τ ) Δ τ K c s e b ( σ ( τ ) , s ) L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ sup τ s z λ ( τ ) K c M 1 sup τ s z λ ( τ ) <

for κ 1 s and

s T ( s , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) z λ ( τ ) Δ τ K c ( s κ 2 e b ( σ ( τ ) , s ) L 2 ( κ 2 , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) Δ τ + κ 1 e b ( σ ( τ ) , s ) L 1 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ ) sup τ s z λ ( τ ) K c ( M 1 + M 2 ) sup τ s z λ ( τ ) < .

for s κ 2 . Then

Q(s) z λ (s)= s T ( s , σ ( τ ) ) Q ( σ ( τ ) ) B(τ,λ) z λ (τ)Δτ

when letting t in (3.21). Consequently,

Q ( t ) z λ ( t ) = s T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) z λ ( τ ) Δ τ + s t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) z λ ( τ ) Δ τ = t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) z λ ( τ ) Δ τ ,

which means that (3.18) holds.

For each λY, we let z λ (t)= T ˆ λ (t,s) P ˜ λ (s)ξ, ts, ξX. It is clear that T ˆ λ (t, κ 1 ) U λ ( κ 1 , κ 1 ) and U λ (t, κ 1 ) are solutions of (3.1) with the same initial value U λ ( κ 1 , κ 1 ). Then

z λ ( t ) = T ˆ λ ( t , s ) P ˜ λ ( s ) ξ = P ˜ λ ( t ) T ˆ λ ( t , s ) ξ = T ˆ λ ( t , κ 1 ) U λ ( κ 1 , κ 1 ) T ˆ λ ( κ 1 , t ) T ˆ λ ( t , s ) ξ = T ˆ λ ( t , κ 1 ) U λ ( κ 1 , κ 1 ) T ˆ λ ( κ 1 , s ) ξ = U λ ( t , κ 1 ) T ˆ λ ( κ 1 , s ) ξ

is a bounded solution of (3.1) with the initial value z λ (s)= P ˜ λ (s)ξ since U λ (t, κ 1 ) is bounded for tT. It follows from (3.18) that

T ˆ λ ( t , s ) P ˜ λ ( s ) ξ = T ( t , s ) P ( s ) P ˜ λ ( s ) ξ + s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ , t s .

By (2.2), (2.3), (a1) and (a2), we get

s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ K c s t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ K c s t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( s , κ 1 ) Δ τ P ˜ λ T ˆ λ 1 1 P ˜ λ ( s ) ξ K c e a ( t , s ) L 1 ( s , κ 1 ) s t ( 1 + a μ ( τ ) ) L 1 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ P ˜ λ T ˆ λ 1 1 P ˜ λ ( s ) ξ K c ( 1 + [ a μ ] ) M 1 L 1 ( s , κ 1 ) e a ( t , s ) P ˜ λ T ˆ λ 1 1 P ˜ λ ( s ) ξ

and

t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( s , κ 1 ) Δ τ P ˜ λ T ˆ λ 1 1 P ˜ λ ( s ) ξ K c e a ( t , s ) L 1 ( s , κ 1 ) t 1 1 + b μ ( τ ) L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ P ˜ λ T ˆ λ 1 1 P ˜ λ ( s ) ξ K c M 1 L 1 ( s , κ 1 ) e a ( t , s ) P ˜ λ T ˆ λ 1 1 P ˜ λ ( s ) ξ

for κ 1 s. Then

T ˆ λ ( t , s ) P ˜ λ ( s ) ξ K L 1 ( s , κ 1 ) e a ( t , s ) P ˜ λ ( s ) ξ + K c ( 2 + [ a μ ] ) M 1 L 1 ( s , κ 1 ) e a ( t , s ) P ˜ λ T ˆ λ 1 1 P ˜ λ ( s ) ξ , s κ 1 .
(3.22)

For s κ 2 κ 1 t, we have

s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ K c s κ 2 L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ + K c κ 1 t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ K c s κ 2 L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ + K c κ 1 t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ K c L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ s κ 2 ( 1 + a μ ( τ ) ) L 1 ( κ 2 , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) Δ τ + K c L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ κ 1 t ( 1 + a μ ( τ ) ) L 1 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ K c ( 1 + [ a μ ] ) ( M 1 + M 2 ) L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ

and

t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ K c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ K c L 1 ( κ 2 , s ) e a ( t , s ) t 1 1 + b μ ( τ ) L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ K c M 1 L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ .

For st κ 2 , we get

s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ K c s t L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ K c s t L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) e a ( τ , s ) L 1 ( κ 2 , s ) Δ τ P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ K c ( 1 + [ a μ ] ) M 2 L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ

and

t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ K c t κ 2 L 2 ( κ 2 , σ ( τ ) ) e b ( σ ( τ ) , t ) L ( κ 2 , σ ( τ ) ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ + K c κ 1 L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) P ˜ λ ( τ ) T ˆ λ ( τ , s ) P ˜ λ ( s ) ξ Δ τ K c L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ t κ 2 1 1 + b μ ( τ ) L 2 ( κ 2 , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) Δ τ + K c L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ κ 1 1 1 + b μ ( τ ) L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) Δ τ K c ( M 1 + M 2 ) L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ .

Then

T ˆ λ ( t , s ) P ˜ λ ( s ) ξ K L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ ( s ) ξ + K c ( 2 + [ a μ ] ) M 1 L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ + K c ( 2 + [ a μ ] ) M 2 L 1 ( κ 2 , s ) e a ( t , s ) P ˜ λ T ˆ λ 1 2 P ˜ λ ( s ) ξ
(3.23)

for s κ 2 . Combining (3.22) and (3.23) together gives (3.16). Similarly, (3.17) holds. □

Lemma 3.7 We have

T ˆ λ ( t , s ) P ˆ λ ( s ) { K ˆ L 1 ( s , κ 1 ) e a ( t , s ) P ˆ λ ( s ) , κ 1 s , K ˆ L 1 ( κ 2 , s ) e a ( t , s ) P ˆ λ ( s ) , s κ 2 , s t , T ˆ λ ( t , s ) Q ˆ λ ( s ) { K ˆ L 2 ( s , κ 1 ) e b ( s , t ) Q ˆ λ ( s ) , κ 1 s , K ˆ L 2 ( κ 2 , s ) e b ( s , t ) Q ˆ λ ( s ) , s κ 2 , t s .
(3.24)

Proof According to Lemma 3.4, we get

S λ ( κ 1 ) P ( κ 1 ) = ( P ˜ λ ( κ 1 ) + Q ˜ λ ( κ 1 ) ) P ( κ 1 ) = P ˜ λ ( κ 1 ) , S λ ( κ 1 ) Q ( κ 1 ) = ( P ˜ λ ( κ 1 ) + Q ˜ λ ( κ 1 ) ) Q ( κ 1 ) = Q ˜ λ ( κ 1 ) .

Let S λ (t)= T ˆ λ (t, κ 1 ) S λ ( κ 1 ) T ˆ λ ( κ 1 ,t), tT, λY. By using (3.15), we obtain

P ˆ λ ( t ) S λ ( t ) = T ˆ λ ( t , κ 1 ) S λ ( κ 1 ) P ( κ 1 ) S λ 1 ( κ 1 ) T ˆ λ ( κ 1 , t ) T ˆ λ ( t , κ 1 ) S λ ( κ 1 ) T ˆ λ ( κ 1 , t ) = T ˆ λ ( t , κ 1 ) S λ ( κ 1 ) P ( κ 1 ) T ˆ λ ( κ 1 , t ) = T ˆ λ ( t , κ 1 ) P ˜ λ ( κ 1 ) T ˆ λ ( κ 1 , t ) = P ˜ λ ( t ) .

On the other hand,

Q ˆ λ (t) S λ (t)= T ˆ λ (t, κ 1 ) S λ ( κ 1 )Q( κ 1 ) T ˆ λ ( κ 1 ,t)= T ˆ λ (t, κ 1 ) Q ˜ λ ( κ 1 ) T ˆ λ ( κ 1 ,t)= Q ˜ λ (t).

Then Im P ˆ λ (t)=Im P ˜ λ (t) and Im Q ˆ λ (t)=Im Q ˜ λ (t) since S λ (t) is invertible. It follows from Lemma 3.6 that

T ˆ λ ( t , s ) P ˆ λ ( s ) T ˆ λ ( t , s ) | Im P ˆ λ ( s ) P ˆ λ ( s ) T ˆ λ ( t , s ) | Im P ˜ λ ( s ) P ˆ λ ( s ) ,st

and

T ˆ λ ( t , s ) Q ˆ λ ( s ) T ˆ λ ( t , s ) | Im Q ˆ λ ( s ) Q ˆ λ ( s ) T ˆ λ ( t , s ) | Im Q ˜ λ ( s ) Q ˆ λ ( s ) ,ts,

which yield the desired inequalities. □

Lemma 3.8 For each λY, we have

P ˆ λ ( t ) { K ( L 1 ( t , κ 1 ) + L 2 ( t , κ 1 ) ) / ( 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) ) , κ 1 t , K ( L 1 ( κ 2 , t ) + L 2 ( κ 2 , t ) ) / ( 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) ) , t κ 2 , Q ˆ λ ( t ) { K ( L 1 ( t , κ 1 ) + L 2 ( t , κ 1 ) ) / ( 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) ) , κ 1 t , K ( L 1 ( κ 2 , t ) + L 2 ( κ 2 , t ) ) / ( 1 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) ) , t κ 2 .
(3.25)

Proof For each λY and any ξX, we set

z λ (t)= T ˆ λ (t,s) P ˆ λ (s)ξ,stand z λ (t)= T ˆ λ (t,s) Q ˆ λ (s)ξ,ts.

It follows from Lemma 3.7 that z λ ( t ) ( s t ) and z λ ( t ) ( t s ) are bounded solutions of (3.1). Combining (3.6) and (3.8) together gives

T ˆ λ ( t , s ) P ˆ λ ( s ) ξ = T ( t , s ) P ( s ) P ˆ λ ( s ) ξ + s t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) P ˆ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) P ˆ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ ,

and

T ˆ λ ( t , s ) Q ˆ λ ( s ) ξ = T ( t , s ) Q ( s ) Q ˆ λ ( s ) ξ + t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B ( τ , λ ) Q ˆ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ t s T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B ( τ , λ ) Q ˆ λ ( τ ) T ˆ λ ( τ , s ) ξ Δ τ .

Taking t=s leads to

Q(t) P ˆ λ (t)ξ= t T ( t , σ ( τ ) ) Q ( σ ( τ ) ) B(τ,λ) P ˆ λ (τ) T ˆ λ (τ,t)ξΔτ

and

P(t) Q ˆ λ (t)ξ= t T ( t , σ ( τ ) ) P ( σ ( τ ) ) B(τ,λ) Q ˆ λ (τ) T ˆ λ (τ,t)ξΔτ.

By using Lemma 3.7 and (a2), for κ 1 t, we have

Q ( t ) P ˆ λ ( t ) K K ˆ c t L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) L 1 ( t , κ 1 ) e a ( τ , t ) Δ τ P ˆ λ ( t ) K K ˆ c t L 2 ( σ ( τ ) , κ 1 ) L ( σ ( τ ) , κ 1 ) L 1 ( t , κ 1 ) Δ τ P ˆ λ ( t ) K K ˆ c t L 2 ( σ ( τ ) , κ 1 ) L 1 ( τ , κ 1 ) L ( σ ( τ ) , κ 1 ) L 1 ( t , κ 1 ) L 1 ( τ , κ 1 ) Δ τ P ˆ λ ( t ) K K ˆ c M 1 P ˆ λ ( t )

and

P ( t ) Q ˆ λ ( t ) K K ˆ c κ 2 L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) L 2 ( t , κ 1 ) e b ( t , τ ) Δ τ Q ˆ λ ( t ) + K K ˆ c κ 1 t L 1 ( σ ( τ ) , κ 1 ) e a ( t , σ ( τ ) ) L ( σ ( τ ) , κ 1 ) L 2 ( t , κ 1 ) e b ( t , τ ) Δ τ Q ˆ λ ( t ) K K ˆ c ( 1 + [ a μ ] ) Q ˆ λ ( t ) × ( κ 2 L 1 ( κ 2 , σ ( τ ) ) L 2 ( τ , κ 1 ) L ( κ 2 , σ ( τ ) ) e ( a b ) ( t , κ 1 ) L 2 ( t , κ 1 ) e ( a b ) ( τ , κ 1 ) L 2 ( τ , κ 1 ) Δ τ + κ 1 t L 1 ( σ ( τ ) , κ 1 ) L 2 ( τ , κ 1 ) L ( σ ( τ ) , κ 1 ) e ( a b ) ( t , κ 1 ) L 2 ( t , κ 1 ) e ( a b ) ( τ , κ 1 ) L 2 ( τ , κ 1 ) Δ τ ) K K ˆ c Q ˆ λ ( t ) ( 1 + [ a μ ] ) ( M 1 + M 2 ) .

For t κ 2 , we get

P ( t ) Q ˆ λ ( t ) K K ˆ c Q ˆ λ ( t ) t L 1 ( κ 2 , σ ( τ ) ) e a ( t , σ ( τ ) ) L ( κ 2 , σ ( τ ) ) L 2 ( κ 2 , t ) e b ( t , τ ) Δ τ K K ˆ c Q ˆ λ ( t ) t L 1 ( κ 2 , σ ( τ ) ) L 2 ( κ 2 , τ ) L ( κ 2 , σ ( τ ) ) L 2 ( κ 2 , t ) L 2 ( κ 2 , τ ) Δ τ K K ˆ c Q ˆ λ ( t ) M 2

and

Q ( t ) P ˆ λ ( t ) K K ˆ c P ˆ λ ( t ) t κ 2 L 2 ( κ 2 , σ ( τ ) ) e b ( σ ( τ ) , t ) L ( κ 2 , σ ( τ ) ) L 1 ( κ 2 , t ) e a ( τ , t ) Δ τ + K K ˆ c P ˆ λ ( t ) κ 1 L 2 ( σ ( τ ) , κ 1 ) e b ( σ ( τ ) , t ) L ( σ ( τ ) , κ 1 ) L 1 ( κ 2 , t ) e a ( τ , t ) Δ τ K K ˆ c P ˆ λ ( t ) t κ 2 L 2 ( κ 2 , σ ( τ ) ) L 1 ( κ 2 , τ ) L ( κ 2 , σ ( τ ) ) e ( a b ) ( κ 2 , t ) L 1 ( κ 2 , t ) e ( a b ) ( κ 2 , τ ) L 1 ( κ 2 , τ ) Δ τ + K K ˆ c P ˆ λ ( t ) κ 1 L 2 ( σ ( τ ) , κ 1 ) L 1 ( κ 2 , τ ) L ( σ ( τ ) , κ 1 ) e ( a b ) ( κ 2 , t ) L 1 ( κ 2 , t ) e ( a b ) ( κ 2 , τ ) L 1 ( κ 2 , τ ) Δ τ K K ˆ c P ˆ λ ( t ) ( M 1 + M 2 ) .

Then

Q ( t ) P ˆ λ ( t ) K K ˆ c P ˆ λ ( t ) ( M 1 + M 2 )

and

P ( t ) Q ˆ λ ( t ) K K ˆ c Q ˆ λ ( t ) ( 1 + [ a μ ] ) ( M 1 + M 2 ).

For κ 1 t, one has

P ˆ λ ( t ) P ˆ λ ( t ) P ( t ) + P ( t ) = P ˆ λ ( t ) P ( t ) P ˆ λ ( t ) P ( t ) + P ( t ) P ˆ λ ( t ) + P ( t ) = Q ( t ) P ˆ λ ( t ) P ( t ) Q ˆ λ ( t ) + P ( t ) Q ( t ) P ˆ λ ( t ) + P ( t ) Q ˆ λ ( t ) + P ( t ) K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) ( P ˆ λ ( t ) + Q ˆ λ ( t ) ) + K L 1 ( t , κ 1 )

and

Q ˆ λ ( t ) Q ˆ λ ( t ) Q ( t ) + Q ( t ) = P ˆ λ ( t ) P ( t ) + Q ( t ) K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) ( P ˆ λ ( t ) + Q ˆ λ ( t ) ) + K L 2 ( t , κ 1 )

since P(t)K L 1 (t, κ 1 ) and Q(t)K L 2 (t, κ 1 ) for κ 1 t.

P ˆ λ ( t ) + Q ˆ λ ( t ) 2 K K ˆ c ( 1 + [ a μ ] ) ( M 1 + M 2 ) ( P ˆ λ ( t ) + Q ˆ ( t ) ) + K ( L 1 ( t , κ 1 ) + L 2 ( t , κ 1 ) ) .

Similarly, (3.25) holds for t κ 2 . □

It follows from Lemma 3.7 and Lemma 3.8 that (3.3) and (3.4) hold. Next we show that the stable subspace P ˆ λ (X) and the unstable subspace Q ˆ λ (X) are Lipschitz continuous for the parameter λ.

Lemma 3.9 P ˆ λ and Q ˆ λ are Lipschitz continuous for the parameter λ.

Proof By using Lemma 3.1 and Lemma 3.2, U λ and V λ are Lipschitz continuous for the parameter λ. It follows from (3.10) that P ˜ λ (t) and Q ˜ λ (t) are Lipschitz continuous since T ˆ λ is Lipschitz continuous for the parameter λ. If Y is a finite-dimensional space, then S λ ( κ 1 ) and S λ 1 ( κ 1 ) are both Lipschitz continuous for the parameter λ. Equation (3.15) implies that the conclusion of lemma holds. □

References

  1. Coppel WA Lecture Notes in Mathematics 629. In Dichotomies in Stability Theory. Springer, Berlin; 1978.

    Google Scholar 

  2. Perron O: Die Stabilitätsfrage bei Differentialgleichungen. Math. Z. 1930, 32: 703-728. 10.1007/BF01194662

    Article  MathSciNet  MATH  Google Scholar 

  3. Barreira L, Fan M, Valls C, Zhang JM: Parameter dependence of stable manifolds for delay equations with polynomial dichotomies. J. Dyn. Differ. Equ. 2012, 24: 101-118. 10.1007/s10884-011-9232-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira L, Fan M, Valls C, Zhang JM: Stable manifolds for delay equations and parameter dependence. Nonlinear Anal. TMA 2012, 75: 5824-5835. 10.1016/j.na.2012.05.025

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreira L, Valls C Lecture Notes in Math. 1926. In Stability of Nonautonomous Differential Equations. Springer, Berlin; 2008.

    Chapter  Google Scholar 

  6. Barreira L, Valls C: Robustness of general dichotomies. J. Funct. Anal. 2009, 257: 464-484. 10.1016/j.jfa.2008.11.018

    Article  MathSciNet  MATH  Google Scholar 

  7. Barreira L, Valls C: Polynomial growth rates. Nonlinear Anal. TMA 2009, 71: 5208-5219. 10.1016/j.na.2009.04.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Bento A, Silva C:Nonuniform (μ,ν)-dichotomies and local dynamics of difference equations. Nonlinear Anal. TMA 2012, 75: 78-90. 10.1016/j.na.2011.08.008

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang XY, Zhang JM, Qin JH:Robustness of nonuniform (μ,ν)-dichotomies in Banach spaces. J. Math. Anal. Appl. 2012, 387: 582-594. 10.1016/j.jmaa.2011.09.026

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang LP: Generalized exponential dichotomy and global linearization. J. Math. Anal. Appl. 2006, 315: 474-490. 10.1016/j.jmaa.2005.05.042

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang LP: Strongly topological linearization with generalized exponential dichotomy. Nonlinear Anal. TMA 2007, 67: 1102-1110. 10.1016/j.na.2006.06.054

    Article  MathSciNet  MATH  Google Scholar 

  12. Megan M, Sasu B, Sasu A: On nonuniform exponential dichotomy of evolution operators in Banach spaces. Integral Equ. Oper. Theory 2002, 44: 71-78. 10.1007/BF01197861

    Article  MathSciNet  MATH  Google Scholar 

  13. Minda A, Megan M:On (h,k)-stability of evolution operators in Banach spaces. Appl. Math. Lett. 2011, 24: 44-48. 10.1016/j.aml.2010.08.009

    Article  MathSciNet  MATH  Google Scholar 

  14. Naulin R, Pinto M:Roughness of (h,k)-dichotomies. J. Differ. Equ. 1995, 118: 20-35. 10.1006/jdeq.1995.1065

    Article  MathSciNet  MATH  Google Scholar 

  15. Sasu AL, Babuţia MG, Sasu B: Admissibility and nonuniform exponential dichotomy on the half-line. Bull. Sci. Math. 2013, 137: 466-484. 10.1016/j.bulsci.2012.11.002

    Article  MathSciNet  MATH  Google Scholar 

  16. Barreira L, Valls C: Robust nonuniform dichotomies and parameter dependence. J. Math. Anal. Appl. 2011, 373: 690-708. 10.1016/j.jmaa.2010.08.026

    Article  MathSciNet  MATH  Google Scholar 

  17. Chow SN, Leiva H: Existence and roughness of the exponential dichotomy for skew-product semiflows in Banach spaces. J. Differ. Equ. 1995, 120: 429-477. 10.1006/jdeq.1995.1117

    Article  MathSciNet  MATH  Google Scholar 

  18. Naulin R, Pinto M: Admissible perturbations of exponential dichotomy roughness. Nonlinear Anal. TMA 1998, 31: 559-571. 10.1016/S0362-546X(97)00423-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Popescu L: Exponential dichotomy roughness on Banach spaces. J. Math. Anal. Appl. 2006, 314: 436-454. 10.1016/j.jmaa.2005.04.011

    Article  MathSciNet  MATH  Google Scholar 

  20. Popescu L: Exponential dichotomy roughness and structural stability for evolution families without bounded growth and decay. Nonlinear Anal. TMA 2009, 71: 935-947. 10.1016/j.na.2008.11.009

    Article  MathSciNet  MATH  Google Scholar 

  21. Barreira L, Fan M, Valls C, Zhang JM: Robustness of nonuniform polynomial dichotomies for difference equations. Topol. Methods Nonlinear Anal. 2011, 37: 357-376.

    MathSciNet  MATH  Google Scholar 

  22. Chu, J: Robustness of nonuniform behavior for discrete dynamics. Bull. Sci. Math. (2013, in press)

    Google Scholar 

  23. Naulin R, Pinto M: Stability of discrete dichotomies for linear difference systems. J. Differ. Equ. Appl. 1997, 3: 101-123. 10.1080/10236199708808090

    Article  MathSciNet  MATH  Google Scholar 

  24. Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.

    Book  MATH  Google Scholar 

  25. Hilger S: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 1990, 18: 18-56. 10.1007/BF03323153

    Article  MathSciNet  MATH  Google Scholar 

  26. Agarwal RP, Bohner M, O’Regan D, Peterson A: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 2002, 141: 1-26. 10.1016/S0377-0427(01)00432-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Agarwal RP, Bohner M: Basic calculus on time scales and some of its applications. Results Math. 1998, 35: 3-22.

    Article  MathSciNet  MATH  Google Scholar 

  28. Bohner M, Lutz DA: Asymptotic behavior of dynamic equations on time scales. J. Differ. Equ. Appl. 2001, 7: 21-50. 10.1080/10236190108808261

    Article  MathSciNet  MATH  Google Scholar 

  29. Hamza AE, Oraby KM: Stability of abstract dynamic equations on time scales. Adv. Differ. Equ. 2012, 143: 1-15.

    MathSciNet  Google Scholar 

  30. Li YK, Wang C: Pseudo almost periodic functions and pseudo almost periodic solutions to dynamic equations on time scales. Adv. Differ. Equ. 2012, 77: 1-24.

    Article  MathSciNet  MATH  Google Scholar 

  31. Pötzsche C: Exponential dichotomies for dynamic equations on measure chains. Nonlinear Anal. TMA 2001, 47: 873-884. 10.1016/S0362-546X(01)00230-9

    Article  MathSciNet  MATH  Google Scholar 

  32. Pötzsche C: Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients. J. Math. Anal. Appl. 2004, 289: 317-335. 10.1016/j.jmaa.2003.09.063

    Article  MathSciNet  MATH  Google Scholar 

  33. Siegmund S: A spectral notion for dynamic equations on time scales. J. Comput. Appl. Math. 2002, 141: 255-265. 10.1016/S0377-0427(01)00451-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia Y, Cao J, Han M: A new analytical method for the linearization of dynamic equations on measure chains. J. Differ. Equ. 2007, 235: 527-543. 10.1016/j.jde.2007.01.004

    Article  MathSciNet  MATH  Google Scholar 

  35. Xia YH, Li JB, Wong PJY: On the topological classification of dynamic equations on time scales. Nonlinear Anal., Real World Appl. 2013, 14: 2231-2248. 10.1016/j.nonrwa.2013.05.001

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang JM, Fan M, Zhu HP: Existence and roughness of exponential dichotomies of linear dynamic equations on time scales. Comput. Math. Appl. 2010, 59: 2658-2675. 10.1016/j.camwa.2010.01.035

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang JM, Fan M, Zhu HP: Necessary and sufficient criteria for the existence of exponential dichotomy on time scales. Comput. Math. Appl. 2010, 60: 2387-2398. 10.1016/j.camwa.2010.08.034

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang JM, Fan M, Chang XY: Nonlinear perturbations of nonuniform exponential dichotomy on measure chains. Nonlinear Anal. TMA 2012, 75: 670-683. 10.1016/j.na.2011.09.001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for carefully reading the manuscript and for important suggestions and comments. This research is supported by the National Natural Science Foundation of China (No. 11201128) and (No. 11126269) and the youth scientific funds of Heilongjiang University (QL201007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Zhao.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each author’s contribution in the paper is equal, and all authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhang, J., Song, Y. & Zhao, Z. General exponential dichotomies on time scales and parameter dependence of roughness. Adv Differ Equ 2013, 339 (2013). https://doi.org/10.1186/1687-1847-2013-339

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-339

Keywords