Skip to main content

Theory and Modern Applications

Solvability for a coupled system of fractional differential equations with integral boundary conditions at resonance

Abstract

By constructing suitable operators, we investigate the existence of solutions for a coupled system of fractional differential equations with integral boundary conditions at resonance. Our analysis relies on the coincidence degree theory due to Mawhin. An example is given to illustrate our main result.

MSC:34A08, 70K30, 34B10.

1 Introduction

Fractional differential equations arise in a variety of different areas such as rheology, fluid flows, electrical networks, viscoelasticity, chemical physics, electron-analytical chemistry, biology, control theory etc. (see [1, 2]). Recently, more and more authors have paid their close attention to them (see [3–24]). The existence of solutions for differential equations at resonance has been studied by many authors (see [19–23, 25–29] and references cited therein). In papers [19–22], the authors investigated the fractional differential equations with multi-point boundary conditions at resonance. In paper [23], the authors discussed a coupled system of fractional differential equations with two-point boundary condition at resonance. In paper [24], the authors showed the existence of solutions for higher-order fractional differential inclusions with multi-strip fractional integral boundary conditions. In paper [26], the authors studied solvability of integer-order differential equations with integral boundary conditions at resonance, which was the generalization of two, three, multi-point and nonlocal boundary value problems.

Motivated by the excellent results mentioned above, in this paper, we discuss the existence of solutions for a coupled system of fractional differential equations with integral boundary conditions at resonance

{ D 0 + α x ( t ) = f 1 ( t , x ( t ) , y ( t ) , D 0 + α − 1 x ( t ) ) , 0 < t < 1 , D 0 + β y ( t ) = f 2 ( t , x ( t ) , y ( t ) , D 0 + β − 1 y ( t ) ) , 0 < t < 1 , x ( 0 ) = 0 , D 0 + α − 1 x ( 0 ) = ∫ 0 1 h 1 ( t ) D 0 + α − 1 x ( t ) d t , D 0 + α − 1 x ( 1 ) = ∫ 0 1 h 2 ( t ) D 0 + α − 1 x ( t ) d t , y ( 0 ) = 0 , D 0 + β − 1 y ( 0 ) = ∫ 0 1 g 1 ( t ) D 0 + β − 1 y ( t ) d t , D 0 + β − 1 y ( 1 ) = ∫ 0 1 g 2 ( t ) D 0 + β − 1 y ( t ) d t ,
(1.1)

where 2<α,β≤3, D 0 + α is the standard Riemann-Liouville fractional derivative, D 0 + γ u(ξ):= D 0 + γ u(t) | t = ξ . To the best of our knowledge, this is the first paper to study the boundary value problems of a coupled system of fractional differential equations with integral boundary conditions at resonance with dimKerL=4.

In this paper, we will always suppose that the following conditions hold.

( H 1 ) 2<α,β≤3, h i , g i ∈L[0,1], ∫ 0 1 h i (t)dt=1, ∫ 0 1 g i (t)dt=1, i=1,2.

( H 2 )

Δ 1 = | ∫ 0 1 t h 1 ( t ) d t 1 − ∫ 0 1 t h 2 ( t ) d t 1 2 ∫ 0 1 t 2 h 1 ( t ) d t 1 2 ( 1 − ∫ 0 1 t 2 h 2 ( t ) d t ) | : = | Δ 11 Δ 12 Δ 21 Δ 22 | ≠ 0 , Δ 2 = | ∫ 0 1 t g 1 ( t ) d t 1 − ∫ 0 1 t g 2 ( t ) d t 1 2 ∫ 0 1 t 2 g 1 ( t ) d t 1 2 ( 1 − ∫ 0 1 t 2 g 2 ( t ) d t ) | : = | δ 11 δ 12 δ 21 δ 22 | ≠ 0 .

( H 3 ) f i :[0,1]× R 3 →R satisfies the Carathéodory conditions and there exist functions a 0 i (t), b 0 i (t), c 0 i (t), d 0 i (t), r i (t)∈L[0,1] and constants η 1 , η 2 ∈(0,1) with c 0 <1, c 0 ′ <1, 1 Γ ( α ) ( 1 − c 0 ) (2+ 1 η 1 α − 2 ) a 0 <1, 1 Γ ( β ) ( 1 − c 0 ′ ) (2+ 1 η 2 β − 2 ) b 0 ′ <1, A 1 A 2 a 0 ′ b 0 <1 such that

| f 1 ( t , x , y , z ) | ≤ a 01 ( t ) | x | + b 01 ( t ) | y | + c 01 ( t ) | z | + d 01 ( t ) | x | θ 1 + r 1 ( t ) , | f 2 ( t , x , y , z ) | ≤ a 02 ( t ) | x | + b 02 ( t ) | y | + c 02 ( t ) | z | + d 02 ( t ) | y | θ 2 + r 2 ( t ) ,

where a 0 = ∫ 0 1 a 01 (t)dt, b 0 = ∫ 0 1 b 01 (t)dt, c 0 = ∫ 0 1 c 01 (t)dt, d 0 = ∫ 0 1 d 01 (t)dt, r 0 = ∫ 0 1 r 1 (t)dt, a 0 ′ = ∫ 0 1 a 02 (t)dt, b 0 ′ = ∫ 0 1 b 02 (t)dt, c 0 ′ = ∫ 0 1 c 02 (t)dt, d 0 ′ = ∫ 0 1 d 02 (t)dt, r 0 ′ = ∫ 0 1 r 2 (t)dt, 0≤ θ 1 , θ 2 <1, A 1 = 2 η 1 α − 2 + 1 Γ ( α ) ( 1 − c 0 ) η 1 α − 2 − a 0 ( 2 η 1 α − 2 + 1 ) , A 2 = 2 η 2 β − 2 + 1 Γ ( β ) ( 1 − c 0 ′ ) η 2 β − 2 − b 0 ′ ( 2 η 2 β − 2 + 1 ) .

2 Preliminaries

For convenience, we introduce some notations and a theorem. For more details, see [30].

Let X and Y be real Banach spaces and L:dom(L)⊂X→Y be a Fredholm operator with index zero, let P:X→X, Q:Y→Y be projectors such that

ImP=KerL,KerQ=ImL,X=KerL⊕KerP,Y=ImL⊕ImQ.

It follows that

L | dom L ∩ Ker P :domL∩KerP→ImL

is invertible. We denote the inverse by K P .

Assume that Ω is an open bounded subset of X, domL∩ Ω ¯ ≠∅. The map N:X→Y will be called L-compact on Ω ¯ if QN( Ω ¯ ) is bounded and K P (I−Q)N: Ω ¯ →X is compact.

Theorem 2.1 [30]

Let L:domL⊂X→Y be a Fredholm operator of index zero and N:X→Y L-compact on Ω ¯ . Assume that the following conditions are satisfied:

  1. (1)

    Lx≠λNx for every (x,λ)∈[(domL∖KerL)∩∂Ω]×(0,1);

  2. (2)

    Nx∉ImL for every x∈KerL∩∂Ω;

  3. (3)

    deg(QN | Ker L ,Ω∩KerL,0)≠0, where Q:Y→Y is a projection such that ImL=KerQ.

Then the equation Lx=Nx has at least one solution in domL∩ Ω ¯ .

The following definitions and lemmas can be found in [1, 2].

Definition 2.1 The fractional integral of order α>0 of a function y:(0,∞)→R is given by

I 0 + α y(t)= 1 Γ ( α ) ∫ 0 t ( t − s ) α − 1 y(s)ds,
(2.1)

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.2 The fractional derivative of order α>0 of a function y:(0,∞)→R is given by

D 0 + α y(t)= 1 Γ ( n − α ) d n d t n ∫ 0 t ( t − s ) n − α − 1 y(s)ds,
(2.2)

provided the right-hand side is pointwise defined on (0,∞), where n=[α]+1.

Lemma 2.1 Assume f∈L[0,1], q≥p≥0, q>1, then

D 0 + p I 0 + q f(t)= I 0 + q − p f(t).

Lemma 2.2 Assume α>0, λ>−1, then

D 0 + α t λ = Γ ( λ + 1 ) Γ ( n + λ − α + 1 ) d n d t n ( t n + λ − α ) ,

where n is the smallest integer greater than or equal to α.

Lemma 2.3 D 0 + α u(t)=0 if and only if

u(t)= c 1 t α − 1 + c 2 t α − 2 +⋯+ c n t α − n ,

where n is the smallest integer greater than or equal to α, c i ∈R, i=1,2,…,n.

Take X= C α − 1 [0,1]× C β − 1 [0,1] with the norm

∥ ( x , y ) ∥ =max { ∥ x ∥ ∞ , ∥ y ∥ ∞ , ∥ D 0 + α − 1 x ∥ ∞ , ∥ D 0 + β − 1 y ∥ ∞ } ,

where C α − 1 [0,1]={x∣x, D 0 + α − 1 x∈C[0,1]}, ∥ x ∥ ∞ = max t ∈ [ 0 , 1 ] |x(t)|. Set Y=L[0.1]×L[0.1] with the norm

∥ ( f , g ) ∥ =max { ∫ 0 1 | f ( x ) | d x , ∫ 0 1 | g ( x ) | d x } .

Define operators L:domL⊂X→Y, N:X→Y as follows:

L(x,y)= ( D 0 + α x , D 0 + β y ) ,(x,y)∈domL,N(x,y)= ( N 1 ( x , y ) , N 2 ( x , y ) ) ,(x,y)∈X,

where

dom L = { ( x , y ) | ( x , y ) ∈ X , ( D 0 + α x , D 0 + β y ) ∈ Y , x ( 0 ) = y ( 0 ) = 0 , D 0 + α − 1 x ( 0 ) = ∫ 0 1 h 1 ( t ) D 0 + α − 1 x ( t ) d t , D 0 + α − 1 x ( 1 ) = ∫ 0 1 h 2 ( t ) D 0 + α − 1 x ( t ) d t , D 0 + β − 1 y ( 0 ) = ∫ 0 1 g 1 ( t ) D 0 + β − 1 y ( t ) d t , D 0 + β − 1 y ( 1 ) = ∫ 0 1 g 2 ( t ) D 0 + β − 1 y ( t ) d t } ,

N 1 (x,y)= f 1 (t,x(t),y(t), D 0 + α − 1 x(t)), N 2 (x,y)= f 2 (t,x(t),y(t), D 0 + β − 1 y(t)). Then problem (1.1) is L(x,y)=N(x,y).

By Lemma 2.3 in [20], we get that X is a Banach space.

Definition 2.3 (x,y)∈domL is a solution of problem (1.1) if it satisfies (1.1), i.e., L(x,y)=N(x,y).

3 Main result

Define operators T i :L[0,1]→R, i=1,2,3,4, and Q j :L[0,1]→L[0,1], j=1,2 as follows:

T 1 u = ∫ 0 1 u ( t ) ∫ t 1 h 1 ( s ) d s d t , T 2 u = ∫ 0 1 u ( t ) ∫ 0 t h 2 ( s ) d s d t , T 3 u = ∫ 0 1 u ( t ) ∫ t 1 g 1 ( s ) d s d t , T 4 u = ∫ 0 1 u ( t ) ∫ 0 t g 2 ( s ) d s d t , Q 1 u = 1 Δ 1 ( Δ 22 T 1 u − Δ 21 T 2 u ) + 1 Δ 1 ( Δ 11 T 2 u − Δ 12 T 1 u ) t , Q 2 u = 1 Δ 2 ( δ 22 T 3 u − δ 21 T 4 u ) + 1 Δ 2 ( δ 11 T 4 u − δ 12 T 3 u ) t .

It is clear that Δ 11 = T 1 1, Δ 12 = T 2 1, Δ 21 = T 1 t, Δ 22 = T 2 t.

Lemma 3.1 If ( H 1 ) and ( H 2 ) hold, then L:domL⊂X→Y is a Fredholm operator of index zero, the linear continuous projectors P:X→X and Q:Y→Y can be defined as

P ( x , y ) = ( D 0 + α − 1 x ( 0 ) Γ ( α ) t α − 1 + D 0 + α − 2 x ( 0 ) Γ ( α − 1 ) t α − 2 , D 0 + β − 1 y ( 0 ) Γ ( β ) t β − 1 + D 0 + β − 2 y ( 0 ) Γ ( β − 1 ) t β − 2 ) , Q ( u , v ) = ( Q 1 u , Q 2 v ) ,

respectively, and the linear operator K P :ImL→domL∩KerP can be written by

K P (u,v)= ( I 0 + α u , I 0 + β v ) .

Proof We can easily get that

KerL= { ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) ∣ c 1 , c 2 , d 1 , d 2 ∈ R } .

Obviously, ImP=KerL, P 2 (u,v)=P(u,v).

By a simple calculation, we obtain that

ImL= { ( u , v ) ∈ Y ∣ T 1 u = T 2 u = T 3 v = T 4 v = 0 }

and Q 2 (u,v)=Q(u,v). By ( H 2 ), we have ImL=KerQ. It is clear that

X=KerP⊕KerL,Y=ImL⊕ImQ.

This means that L is a Fredholm operator of index zero.

For (u,v)∈ImL, we can easily get that K P (u,v)=( I 0 + α u, I 0 + β v)∈domL∩KerP. Obviously, L K P (u,v)=(u,v), (u,v)∈ImL. For (x,y)∈domL∩KerP, by Lemma 2.3 and K P L(x,y)∈domL, we get that

K P L(x,y)= ( x ( t ) + c 1 t α − 1 + c 2 t α − 2 , y ( t ) + d 1 t β − 1 + d 2 t β − 2 ) .

It follows from (x,y)∈KerP that D 0 + α − 1 x(0)= D 0 + α − 2 x(0)= D 0 + β − 1 y(0)= D 0 + β − 2 y(0)=0. This, together with K P L(x,y)∈KerP, means that c 1 = c 2 = d 1 = d 2 =0. So, K P L(x,y)=(x,y). Therefore, K P = ( L | dom L ∩ Ker P ) − 1 . The proof is completed. □

Lemma 3.2 Suppose that ( H 1 ), ( H 2 ) and ( H 3 ) hold. If Ω⊂X is an open bounded subset and domL∩ Ω ¯ ≠∅, then N is L-compact on Ω ¯ .

Proof Since Ω is bounded, there exists a constant r>0 such that ∥(x,y)∥<r, (x,y)∈ Ω ¯ . It follows from condition ( H 3 ) that there exist functions Φ i ∈L[0,1] such that | f i (t,x,y,z)|≤ Φ i (t) for all |x|,|y|,|z|∈[0,r], a.e. t∈[0,1], i=1,2. Thus,

| T 1 N 1 ( x , y ) | = | ∫ 0 1 N 1 ( x , y ) ∫ t 1 h 1 ( s ) d s d t | | T 1 N 1 ( x , y ) | ≤ ∫ 0 1 Φ 1 ( t ) d t ∫ 0 1 | h 1 ( s ) | d s < + ∞ , ( x , y ) ∈ Ω ¯ , | T 2 N 1 ( x , y ) | = | ∫ 0 1 N 1 ( x , y ) ∫ 0 t h 2 ( s ) d s d t | | T 2 N 1 ( x , y ) | ≤ ∫ 0 1 Φ 1 ( t ) d t ∫ 0 1 | h 2 ( s ) | d s < + ∞ , ( x , y ) ∈ Ω ¯ , | T 3 N 2 ( x , y ) | = | ∫ 0 1 N 2 ( x , y ) ∫ t 1 g 1 ( s ) d s d t | | T 3 N 2 ( x , y ) | ≤ ∫ 0 1 Φ 2 ( t ) d t ∫ 0 1 | g 1 ( s ) | d s < + ∞ , ( x , y ) ∈ Ω ¯ , | T 4 N 2 ( x , y ) | = | ∫ 0 1 N 2 ( x , y ) ∫ 0 t g 2 ( s ) d s d t | | T 4 N 2 ( x , y ) | ≤ ∫ 0 1 Φ 2 ( t ) d t ∫ 0 1 | g 2 ( s ) | d s < + ∞ , ( x , y ) ∈ Ω ¯ .

These mean that there exist constants a i >0, b i >0, i=1,2, such that

| Q 1 N 1 ( x , y ) | ≤ a 1 + b 1 t, | Q 2 N 2 ( x , y ) | ≤ a 2 + b 2 t,(x,y)∈ Ω ¯ ,t∈[0,1],

i.e., QN( Ω ¯ )⊂Y is bounded. Now we will prove that K P (I−Q)N: Ω ¯ →X is compact.

Obviously, K P (I−Q)N( Ω ¯ ) is bounded. For 0≤ t 1 < t 2 ≤1, (x,y)∈ Ω ¯ , we have

K P ( I − Q ) N ( x , y ) ( t 2 ) − K P ( I − Q ) N ( x , y ) ( t 1 ) = ( I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 2 ) , I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 2 ) ) − ( I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 1 ) , I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 1 ) ) = ( I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 2 ) − I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 1 ) , I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 2 ) − I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 1 ) ) ,

where I 0 :L[0,1]→L[0,1] is an identical mapping.

It follows from

| I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 2 ) − I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 1 ) | = 1 Γ ( α ) | ∫ 0 t 2 ( t 2 − s ) α − 1 ( I 0 − Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s − ∫ 0 t 1 ( t 1 − s ) α − 1 ( I 0 − Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s | ≤ 1 Γ ( α ) [ ∫ 0 t 1 ( ( t 2 − s ) α − 1 − ( t 1 − s ) α − 1 ) ( Φ 1 ( s ) + a 1 + b 1 s ) d s + ∫ t 1 t 2 ( Φ 1 ( s ) + a 1 + b 1 s ) d s ] , | D 0 + α − 1 I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 2 ) − D 0 + α − 1 I 0 + α ( I 0 − Q 1 ) N 1 ( x , y ) ( t 1 ) | = | ∫ 0 t 2 ( I 0 − Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s − ∫ 0 t 1 ( I 0 − Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s | ≤ ∫ t 1 t 2 ( Φ 1 ( s ) + a 1 + b 1 s ) d s , | I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 2 ) − I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 1 ) | = 1 Γ ( β ) | ∫ 0 t 2 ( t 2 − s ) β − 1 ( I 0 − Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s − ∫ 0 t 1 ( t 1 − s ) β − 1 ( I 0 − Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s | ≤ 1 Γ ( β ) [ ∫ 0 t 1 ( ( t 2 − s ) β − 1 − ( t 1 − s ) β − 1 ) ( Φ 2 ( s ) + a 2 + b 2 s ) d s + ∫ t 1 t 2 ( Φ 2 ( s ) + a 2 + b 2 s ) d s ] , | D 0 + β − 1 I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 2 ) − D 0 + β − 1 I 0 + β ( I 0 − Q 2 ) N 2 ( x , y ) ( t 1 ) | = | ∫ 0 t 2 ( I 0 − Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s − ∫ 0 t 1 ( I 0 − Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s | ≤ ∫ t 1 t 2 ( Φ 2 ( s ) + a 2 + b 2 s ) d s ,

the uniform continuity of ( t − s ) α − 1 and ( t − s ) β − 1 on [0,1]×[0,1], the absolute continuity of integral of Φ i + a i + b i t on [0,1], i=1,2, and the Ascoli-Arzela theorem that K P (I−Q)N: Ω ¯ →X is compact. The proof is completed. □

In order to obtain our main results, we present the following conditions.

( H 4 ) There exist constants M i >0, L i >0, i=1,2, such that if either

min t ∈ [ η 1 , 1 ] | x ( t ) | > M 1 or min t ∈ [ η 1 , 1 ] | D 0 + α − 1 x ( t ) | > L 1 ,

then either

∫ 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α − 1 x ( t ) ) ∫ t 1 h 1 (s)dsdt≠0

or

∫ 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α − 1 x ( t ) ) ∫ 0 t h 2 (s)dsdt≠0,

and if either

min t ∈ [ η 2 , 1 ] | y ( t ) | > M 2 or min t ∈ [ η 2 , 1 ] | D 0 + β − 1 y ( t ) | > L 2 ,

then either

∫ 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β − 1 y ( t ) ) ∫ t 1 g 1 (s)dsdt≠0

or

∫ 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β − 1 y ( t ) ) ∫ 0 t g 2 (s)dsdt≠0,

where η i , i=1,2, are the same as in ( H 3 ).

( H 5 ) For ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 )∈KerL, there exist constants k 1 , k 2 , l 1 , l 2 such that either (1) or (2) holds, where

( 1 ) c 1 T 1 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) > 0 , if  | c 1 | > k 1 , c 2 T 2 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) > 0 , if  | c 1 | ≤ k 1 , | c 2 | > k 2 , d 1 T 3 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) > 0 , if  | d 1 | > l 1 , d 2 T 4 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) > 0 , if  | d 1 | ≤ l 1 , | d 2 | > l 2 . ( 2 ) c 1 T 1 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) < 0 , if  | c 1 | > k 1 , c 2 T 2 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) < 0 , if  | c 1 | ≤ k 1 , | c 2 | > k 2 , d 1 T 3 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) < 0 , if  | d 1 | > l 1 , d 2 T 4 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) < 0 , if  | d 1 | ≤ l 1 , | d 2 | > l 2 .

Lemma 3.3 Suppose that ( H 1 )-( H 4 ) hold, then the set

Ω 1 = { ( x , y ) ∈ dom L ∖ Ker L ∣ L ( x , y ) = λ N ( x , y ) , λ ∈ ( 0 , 1 ) }

is bounded in X.

Proof Take (x,y)∈ Ω 1 . By L(x,y)=λN(x,y), we get

{ x ( t ) = λ Γ ( α ) ∫ 0 t ( t − s ) α − 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α − 1 x ( s ) ) d s + a 1 t α − 1 + a 2 t α − 2 , y ( t ) = λ Γ ( β ) ∫ 0 t ( t − s ) β − 1 f 2 ( s , x ( s ) , y ( s ) , D 0 + β − 1 y ( s ) ) d s + b 1 t β − 1 + b 2 t β − 2 .
(3.1)

By Lemmas 2.1, 2.2 and (3.1), we have

{ D 0 + α − 1 x ( t ) = λ ∫ 0 t f 1 ( s , x ( s ) , y ( s ) , D 0 + α − 1 x ( s ) ) d s + a 1 Γ ( α ) , D 0 + β − 1 y ( t ) = λ ∫ 0 t f 2 ( s , x ( s ) , y ( s ) , D 0 + β − 1 y ( s ) ) d s + b 1 Γ ( β ) .
(3.2)

It follows from N(x,y)∈ImL that

∫ 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α − 1 x ( t ) ) ∫ t 1 h 1 ( s ) d s d t = 0 , ∫ 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α − 1 x ( t ) ) ∫ 0 t h 2 ( s ) d s d t = 0 , ∫ 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β − 1 y ( t ) ) ∫ t 1 g 1 ( s ) d s d t = 0 , ∫ 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β − 1 y ( t ) ) ∫ 0 t g 2 ( s ) d s d t = 0 .

These, together with ( H 4 ), mean that there exist constants t 0 , t 1 ∈[ η 1 ,1] and t 0 ′ , t 1 ′ ∈[ η 2 ,1] such that

| x ( t 0 ) | ≤ M 1 , | D 0 + α − 1 x ( t 1 ) | ≤ L 1 , | y ( t 0 ′ ) | ≤ M 2 , | D 0 + β − 1 y ( t 1 ′ ) | ≤ L 2 .
(3.3)

By (3.2), we get

D 0 + α − 1 x ( t ) = λ ∫ t 1 t f 1 ( s , x ( s ) , y ( s ) , D 0 + α − 1 x ( s ) ) d s + D 0 + α − 1 x ( t 1 ) , D 0 + β − 1 y ( t ) = λ ∫ t 1 ′ t f 2 ( s , x ( s ) , y ( s ) , D 0 + β − 1 y ( s ) ) d s + D 0 + β − 1 y ( t 1 ′ ) .

By (3.3) and ( H 3 ), we obtain that

{ ∥ D 0 + α − 1 x ∥ ∞ ≤ 1 1 − c 0 ( a 0 ∥ x ∥ ∞ + b 0 ∥ y ∥ ∞ + d 0 ∥ x ∥ ∞ θ 1 + r 0 + L 1 ) , ∥ D 0 + β − 1 y ∥ ∞ ≤ 1 1 − c 0 ′ ( a 0 ′ ∥ x ∥ ∞ + b 0 ′ ∥ y ∥ ∞ + d 0 ′ ∥ y ∥ ∞ θ 2 + r 0 ′ + L 2 ) .
(3.4)

Instead of t by t 0 , t 0 ′ in (3.1) and t 1 , t 1 ′ in (3.2), respectively, we get

{ x ( t ) = λ Γ ( α ) [ ∫ 0 t ( t − s ) α − 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α − 1 x ( s ) ) d s x ( t ) = + t α − 2 ( t 0 − t ) ∫ 0 t 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α − 1 x ( s ) ) d s x ( t ) = − t α − 2 t 0 α − 2 ∫ 0 t 0 ( t 0 − s ) α − 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α − 1 x ( s ) ) d s ] x ( t ) = + t α − 2 Γ ( α ) D 0 + α − 1 x ( t 1 ) ( t − t 0 ) + t α − 2 t 0 α − 2 x ( t 0 ) , y ( t ) = λ Γ ( β ) [ ∫ 0 t ( t − s ) β − 1 f 2 ( s , x ( s ) , y ( s ) , D 0 + β − 1 y ( s ) ) d s y ( t ) = + t β − 2 ( t 0 ′ − t ) ∫ 0 t 1 ′ f 2 ( s , x ( s ) , y ( s ) , D 0 + β − 1 y ( s ) ) d s y ( t ) = − t β − 2 t 0 ′ β − 2 ∫ 0 t 0 ′ ( t 0 ′ − s ) β − 1 f 2 ( s , x ( s ) , y ( s ) , D 0 + β − 1 y ( s ) ) d s ] y ( t ) = + t β − 2 Γ ( β ) D 0 + β − 1 y ( t 1 ′ ) ( t − t 0 ′ ) + t β − 2 t 0 ′ β − 2 y ( t 0 ′ ) .
(3.5)

It follows from (3.4), (3.5) and ( H 3 ) that

| x ( t ) | ≤ 1 Γ ( α ) ( 2 + 1 η 1 α − 2 ) ∫ 0 1 | f 1 ( s , x ( s ) , y ( s ) , D 0 + α − 1 x ( s ) ) | d s + ( L 1 Γ ( α ) + M 1 η 1 α − 2 ) ≤ 1 Γ ( α ) ( 2 + 1 η 1 α − 2 ) ( a 0 ∥ x ∥ ∞ + b 0 ∥ y ∥ ∞ + c 0 ∥ D 0 + α − 1 x ∥ ∞ + d 0 ∥ x ∥ ∞ θ 1 + r 0 ) + ( L 1 Γ ( α ) + M 1 η 1 α − 2 ) ≤ 1 Γ ( α ) ( 1 − c 0 ) ( 2 + 1 η 1 α − 2 ) ( a 0 ∥ x ∥ ∞ + b 0 ∥ y ∥ ∞ + d 0 ∥ x ∥ ∞ θ 1 + r 0 + c 0 L 1 ) + ( L 1 Γ ( α ) + M 1 η 1 α − 2 )

and

| y ( t ) | ≤ 1 Γ ( β ) ( 2 + 1 η 2 β − 2 ) ∫ 0 1 | f 2 ( s , x ( s ) , y ( s ) , D 0 + β − 1 y ( s ) ) | d s + ( L 2 Γ ( β ) + M 2 η 2 β − 2 ) ≤ 1 Γ ( β ) ( 2 + 1 η 2 β − 2 ) ( a 0 ′ ∥ x ∥ ∞ + b 0 ′ ∥ y ∥ ∞ + c 0 ′ ∥ D 0 + β − 1 y ∥ ∞ + d 0 ′ ∥ y ∥ ∞ θ 2 + r 0 ′ ) + ( L 2 Γ ( β ) + M 2 η 2 β − 2 ) ≤ 1 Γ ( β ) ( 1 − c 0 ′ ) ( 2 + 1 η 2 β − 2 ) ( a 0 ′ ∥ x ∥ ∞ + b 0 ′ ∥ y ∥ ∞ + d 0 ′ ∥ y ∥ ∞ θ 2 + r 0 ′ + c 0 ′ L 2 ) + ( L 2 Γ ( β ) + M 2 η 2 β − 2 ) .

Thus,

∥ x ∥ ∞ ≤ A 1 [ b 0 ∥ y ∥ ∞ + d 0 ∥ x ∥ ∞ θ 1 ] + M 0 ,
(3.6)
∥ y ∥ ∞ ≤ A 2 [ a 0 ′ ∥ x ∥ ∞ + d 0 ′ ∥ y ∥ ∞ θ 2 ] + M 0 ′ ,
(3.7)

where M 0 = A 1 [( r 0 + c 0 L 1 )+( L 1 Γ ( α ) + M 1 η 1 α − 2 )/ 1 Γ ( α ) ( 1 − c 0 ) (2+ 1 η 1 α − 2 )], M 0 ′ = A 2 [( r 0 ′ + c 0 ′ L 2 )+( L 2 Γ ( β ) + M 2 η 2 β − 2 )/ 1 Γ ( β ) ( 1 − c 0 ′ ) (2+ 1 η 2 β − 2 )].

By ( H 3 ), (3.4), (3.6) and (3.7), we can get that Ω 1 is bounded in X. The proof is completed. □

Lemma 3.4 Suppose that ( H 1 ), ( H 2 ), ( H 3 ) and ( H 5 ) hold, then the set

Ω 2 = { ( x , y ) ∣ ( x , y ) ∈ Ker L , N ( x , y ) ∈ Im L }

is bounded in X.

Proof For (x,y)∈ Ω 2 , we have (x,y)=( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ), c 1 , c 2 , d 1 , d 2 ∈R and T 1 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) = T 2 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) = T 3 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) = T 4 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) = 0. By ( H 5 ), we get that | c 1 |≤ k 1 , | c 2 |≤ k 2 , | d 1 |≤ l 1 , | d 2 |≤ l 2 . These imply that Ω 2 is bounded in X. □

Lemma 3.5 Suppose that ( H 1 ), ( H 2 ), ( H 3 ) and ( H 5 ) hold. The set

Ω 3 = { ( x , y ) ∈ Ker L ∣ λ J ( x , y ) + ( 1 − λ ) θ Q N ( x , y ) = ( 0 , 0 ) , λ ∈ [ 0 , 1 ] }

is bounded in X, where J:KerL→ImQ is a linear isomorphism given by

J ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) = ( 1 Δ 1 ( Δ 22 c 1 − Δ 21 c 2 ) + 1 Δ 1 ( Δ 11 c 2 − Δ 12 c 1 ) t , 1 Δ 2 ( δ 22 d 1 − δ 21 d 2 ) + 1 Δ 2 ( δ 11 d 2 − δ 12 d 1 ) t ) , θ = { 1 , if ( H 5 ) ( 1 ) holds , − 1 , if ( H 5 ) ( 2 ) holds .

Proof For ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 )∈ Ω 3 , there exists λ∈[0,1] such that

λJ ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) =−(1−λ)θQN ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) .

This means that

λ c 1 = − ( 1 − λ ) θ T 1 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) , λ c 2 = − ( 1 − λ ) θ T 2 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) , λ d 1 = − ( 1 − λ ) θ T 3 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) , λ d 2 = − ( 1 − λ ) θ T 4 N 2 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) .

If λ=0, by ( H 5 ), we get | c 1 |≤ k 1 , | c 2 |≤ k 2 , | d 1 |≤ l 1 , | d 2 |≤ l 2 . If λ=1, then c 1 = c 2 = d 1 = d 2 =0. For λ∈(0,1), if | c 1 |> k 1 , we can get

λ c 1 2 =−(1−λ)θ c 1 T 1 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) <0,

a contradiction. If | c 1 |≤ k 1 and | c 2 |> k 2 , we can get

λ c 2 2 =−(1−λ)θ c 2 T 2 N 1 ( c 1 t α − 1 + c 2 t α − 2 , d 1 t β − 1 + d 2 t β − 2 ) <0.

This is a contradiction, too. Thus, | c i |≤ k i , i=1,2. By the same methods, we can obtain that | d i |≤ l i , i=1,2. This means that Ω 3 is bounded in X. □

Theorem 3.1 Suppose that ( H 1 )-( H 5 ) hold. Then problem (1.1) has at least one solution in X.

Proof Let Ω⊃ ⋃ i = 1 3 Ω i ¯ ∪{(0,0)} be a bounded open subset of X. It follows from Lemma 3.2 that N is L-compact on Ω ¯ . By Lemmas 3.3 and 3.4, we get

  1. (1)

    L(x,y)≠λN(x,y) for every (x,y,λ)∈[(domL∖KerL)∩∂Ω]×(0,1),

  2. (2)

    N(x,y)∉ImL for every (x,y)∈KerL∩∂Ω.

    We need only to prove

  3. (3)

    deg(QN | Ker L ,Ω∩KerL,(0,0))≠0.

Take

H(x,y,λ)=λJ(x,y)+θ(1−λ)QN(x,y).

According to Lemma 3.5, we know H(x,y,λ)≠(0,0) for (x,y)∈∂Ω∩KerL. By the homotopy of degree, we get that

deg ( Q N | Ker L , Ω ∩ Ker L , ( 0 , 0 ) ) = deg ( θ H ( ⋅ , 0 ) , Ω ∩ Ker L , ( 0 , 0 ) ) = deg ( θ H ( ⋅ , 1 ) , Ω ∩ Ker L , ( 0 , 0 ) ) = deg ( θ J , Ω ∩ Ker L , ( 0 , 0 ) ) ≠ 0 .

By Theorem 2.1, we can get that L(x,y)=N(x,y) has at least one solution in domL∩ Ω ¯ , i.e., (1.1) has at least one solution in X. The proof is completed. □

4 Example

Let us consider the following system of fractional differential equations at resonance:

{ D 0 + 5 2 x ( t ) = f 1 ( t , x ( t ) , y ( t ) , D 0 + 3 2 x ( t ) ) , 0 < t < 1 , D 0 + 5 2 y ( t ) = f 2 ( t , x ( t ) , y ( t ) , D 0 + 3 2 y ( t ) ) , 0 < t < 1 , x ( 0 ) = 0 , D 0 + 3 2 x ( 0 ) = ∫ 0 1 h 1 ( t ) D 0 + 3 2 x ( t ) d t , D 0 + 3 2 x ( 1 ) = ∫ 0 1 h 2 ( t ) D 0 + 3 2 x ( t ) d t , y ( 0 ) = 0 , D 0 + 3 2 y ( 0 ) = ∫ 0 1 g 1 ( t ) D 0 + 3 2 y ( t ) d t , D 0 + 3 2 y ( 1 ) = ∫ 0 1 g 2 ( t ) D 0 + 3 2 y ( t ) d t ,
(4.1)

where

f 1 ( t , x , y , z ) = { 1 4 t sin x + 1 8 t 3 sin y , t ∈ [ 0 , 1 4 ) , 1 4 t sin x + 1 8 t 3 sin y + t z , t ∈ [ 1 4 , 1 2 ) , 1 4 t x + 1 8 t 3 sin y + t sin z , t ∈ [ 1 2 , 1 ] , f 2 ( t , x , y , z ) = { 1 8 t 3 sin x + 1 10 sin y , t ∈ [ 0 , 1 9 ) , 1 8 t 3 sin x + 1 10 sin y + t z , t ∈ [ 1 9 , 1 4 ) , 1 8 t 3 sin x + 1 10 y + t sin z , t ∈ [ 1 4 , 1 ] , h 1 ( t ) = { 2 , t ∈ [ 0 , 1 2 ) , 0 , t ∈ [ 1 2 , 1 ] , h 2 ( t ) = { 0 , t ∈ [ 0 , 1 2 ) , 2 , t ∈ [ 1 2 , 1 ] , g 1 ( t ) = { 4 , t ∈ [ 0 , 1 4 ) , 0 , t ∈ [ 1 4 , 1 ] , g 2 ( t ) = { 0 , t ∈ [ 0 , 1 4 ) , 4 3 , t ∈ [ 1 4 , 1 ] .

Corresponding to problem (1.1), we have α=β= 5 2 ,

Δ 1 = | 1 4 1 4 1 24 5 24 | = 1 24 ≠0, Δ 2 = | 1 8 3 8 1 96 9 32 | = 1 32 ≠0.

Obviously, ∫ 0 1 h i (t)dt=1, ∫ 0 1 g i (t)dt=1, i=1,2. Thus, conditions ( H 1 ) and ( H 2 ) are satisfied. It is easy to get that a 0 = 1 8 , b 0 = 1 32 , c 0 = 15 32 , a 0 ′ = 1 32 , b 0 ′ = 1 10 , c 0 ′ = 40 81 . Take M 1 =8, L 1 =1, η 1 = 1 4 , M 2 =20, L 2 =4, η 2 = 1 9 . By a simple calculation, we can get that ( H 3 ) is satisfied and the following inequations hold

∫ 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α − 1 x ( t ) ) ∫ t 1 h 1 ( s ) d s d t ≠ 0 , if  min t ∈ [ η 1 , 1 ] | D 0 + α − 1 x ( t ) | > L 1 , ∫ 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α − 1 x ( t ) ) ∫ 0 t h 2 ( s ) d s d t ≠ 0 , if  min t ∈ [ η 1 , 1 ] | x ( t ) | > M 1 , ∫ 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β − 1 y ( t ) ) ∫ t 1 g 1 ( s ) d s d t ≠ 0 , if  min t ∈ [ η 2 , 1 ] | D 0 + β − 1 y ( t ) | > L 2 ,

and

∫ 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β − 1 y ( t ) ) ∫ 0 t g 2 (s)dsdt≠0,if  min t ∈ [ η 2 , 1 ] | y ( t ) | > M 2 .

So, ( H 4 ) holds. Set k 1 =1, k 2 =20, l 1 =4, l 2 =140. By a simple calculation, we can obtain that condition ( H 5 ) is satisfied.

By Theorem 3.1, problem (4.1) has at least one solution.

References

  1. Podlubny I: Fractional Differential Equations. Academic Press, New York; 1999.

    MATH  Google Scholar 

  2. Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.

    MATH  Google Scholar 

  3. Lakshmikantham V, Vatsala AS: Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69: 2677-2682. 10.1016/j.na.2007.08.042

    Article  MATH  MathSciNet  Google Scholar 

  4. Agarwal RP, Andrade Bd, Siracusa G: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 2011, 62: 1143-1149. 10.1016/j.camwa.2011.02.033

    Article  MATH  MathSciNet  Google Scholar 

  5. Lakshmikantham V, Vatsala AS: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 2008, 21: 828-834. 10.1016/j.aml.2007.09.006

    Article  MATH  MathSciNet  Google Scholar 

  6. Kou C, Zhou H, Yan Y: Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. 2011, 74: 5975-5986. 10.1016/j.na.2011.05.074

    Article  MATH  MathSciNet  Google Scholar 

  7. Agarwal RP, Zhou Y, He Y: Existence of fractional neutral functional differential equations. Nonlinear Anal. 2010, 59: 1095-1100.

    MATH  MathSciNet  Google Scholar 

  8. Zhou Y, Jiao F, Li J: Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal. 2009, 71: 3249-3256. 10.1016/j.na.2009.01.202

    Article  MATH  MathSciNet  Google Scholar 

  9. Agarwal RP, Lakshmikantham V, Nieto JJ: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72: 2859-2862. 10.1016/j.na.2009.11.029

    Article  MATH  MathSciNet  Google Scholar 

  10. Lakshmikantham V, Leela S: Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal. 2009, 71: 2886-2889. 10.1016/j.na.2009.01.169

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang Y, Liu L, Wu Y: Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity. Nonlinear Anal. 2011, 74: 6434-6441. 10.1016/j.na.2011.06.026

    Article  MATH  MathSciNet  Google Scholar 

  12. Staněk S: The existence of positive solutions of singular fractional boundary value problems. Comput. Math. Appl. 2011, 62: 1379-1388. 10.1016/j.camwa.2011.04.048

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006., 2006: Article ID 36

    Google Scholar 

  14. Jafari H, Daftardar-Gejji V: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 2006, 180: 700-706. 10.1016/j.amc.2006.01.007

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang D, Yuan C: The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 2010, 72: 710-719. 10.1016/j.na.2009.07.012

    Article  MATH  MathSciNet  Google Scholar 

  16. Su X: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 2011, 74: 2844-2852. 10.1016/j.na.2011.01.006

    Article  MATH  MathSciNet  Google Scholar 

  17. Rehman M, Khan RA, Asif NA: Three point boundary value problems for nonlinear fractional differential equations. Acta Math. Sci. B 2011, 31: 1337-1346. 10.1016/S0252-9602(11)60320-2

    Article  MATH  MathSciNet  Google Scholar 

  18. Liang S, Zhang J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 2009, 71: 5545-5550. 10.1016/j.na.2009.04.045

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang G, Liu W, Zhu S, Zheng T: Existence results for a coupled system of nonlinear fractional 2 m -point boundary value problems at resonance. Adv. Differ. Equ. 2011, 44: 1-17.

    Article  MathSciNet  Google Scholar 

  20. Jiang W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. TMA 2011, 74: 1987-1994. 10.1016/j.na.2010.11.005

    Article  MATH  Google Scholar 

  21. Jiang W: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal., Real World Appl. 2012, 13: 2285-2292. 10.1016/j.nonrwa.2012.01.023

    Article  MATH  MathSciNet  Google Scholar 

  22. Bai Z: Solvability for a class of fractional m -point boundary value problem at resonance. Comput. Math. Appl. 2011, 62: 1292-1302. 10.1016/j.camwa.2011.03.003

    Article  MATH  MathSciNet  Google Scholar 

  23. Hu Z, Liu W, Chen T: Existence of solutions for a coupled system of fractional differential equations at resonance. Bound. Value Probl. 2012, 98: 1-13.

    Google Scholar 

  24. Ahmad B, Ntouyas SK: Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2013, 20: 1-19.

    Article  MathSciNet  Google Scholar 

  25. Kosmatov N: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 2008, 68: 2158-2171. 10.1016/j.na.2007.01.038

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang X, Feng M, Ge W: Existence results of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl. 2009, 353: 311-319. 10.1016/j.jmaa.2008.11.082

    Article  MATH  MathSciNet  Google Scholar 

  27. Feng W, Webb JRL: Solvability of m -point boundary value problems with nonlinear growth. J. Math. Anal. Appl. 1997, 212: 467-480. 10.1006/jmaa.1997.5520

    Article  MATH  MathSciNet  Google Scholar 

  28. Ma R: Existence results of an m -point boundary value problem at resonance. J. Math. Anal. Appl. 2004, 294: 147-157. 10.1016/j.jmaa.2004.02.005

    Article  MATH  MathSciNet  Google Scholar 

  29. Du Z, Lin X, Ge W: Some higher-order multi-point boundary value problem at resonance. J. Comput. Appl. Math. 2005, 177: 55-65. 10.1016/j.cam.2004.08.003

    Article  MATH  MathSciNet  Google Scholar 

  30. Mawhin J NSFCBMS Regional Conference Series in Mathematics. In Topological Degree Methods in Nonlinear Boundary Value Problems. Am. Math. Soc., Providence; 1979.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (11171088) and the Natural Science Foundation of Hebei Province (A2013208108). The author is grateful to anonymous referees for their constructive comments and suggestions which led to improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Jiang.

Additional information

Competing interests

The author declares that she has no competing interests.

Author’s contributions

All results belong to WJ.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Jiang, W. Solvability for a coupled system of fractional differential equations with integral boundary conditions at resonance. Adv Differ Equ 2013, 324 (2013). https://doi.org/10.1186/1687-1847-2013-324

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-324

Keywords