Open Access

Solvability for a coupled system of fractional differential equations with integral boundary conditions at resonance

Advances in Difference Equations20132013:324

https://doi.org/10.1186/1687-1847-2013-324

Received: 5 June 2013

Accepted: 10 September 2013

Published: 19 November 2013

Abstract

By constructing suitable operators, we investigate the existence of solutions for a coupled system of fractional differential equations with integral boundary conditions at resonance. Our analysis relies on the coincidence degree theory due to Mawhin. An example is given to illustrate our main result.

MSC:34A08, 70K30, 34B10.

Keywords

fractional differential equationintegral boundary conditionsresonanceFredholm operatorcoincidence degree theory

1 Introduction

Fractional differential equations arise in a variety of different areas such as rheology, fluid flows, electrical networks, viscoelasticity, chemical physics, electron-analytical chemistry, biology, control theory etc. (see [1, 2]). Recently, more and more authors have paid their close attention to them (see [324]). The existence of solutions for differential equations at resonance has been studied by many authors (see [1923, 2529] and references cited therein). In papers [1922], the authors investigated the fractional differential equations with multi-point boundary conditions at resonance. In paper [23], the authors discussed a coupled system of fractional differential equations with two-point boundary condition at resonance. In paper [24], the authors showed the existence of solutions for higher-order fractional differential inclusions with multi-strip fractional integral boundary conditions. In paper [26], the authors studied solvability of integer-order differential equations with integral boundary conditions at resonance, which was the generalization of two, three, multi-point and nonlocal boundary value problems.

Motivated by the excellent results mentioned above, in this paper, we discuss the existence of solutions for a coupled system of fractional differential equations with integral boundary conditions at resonance
{ D 0 + α x ( t ) = f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) , 0 < t < 1 , D 0 + β y ( t ) = f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) , 0 < t < 1 , x ( 0 ) = 0 , D 0 + α 1 x ( 0 ) = 0 1 h 1 ( t ) D 0 + α 1 x ( t ) d t , D 0 + α 1 x ( 1 ) = 0 1 h 2 ( t ) D 0 + α 1 x ( t ) d t , y ( 0 ) = 0 , D 0 + β 1 y ( 0 ) = 0 1 g 1 ( t ) D 0 + β 1 y ( t ) d t , D 0 + β 1 y ( 1 ) = 0 1 g 2 ( t ) D 0 + β 1 y ( t ) d t ,
(1.1)

where 2 < α , β 3 , D 0 + α is the standard Riemann-Liouville fractional derivative, D 0 + γ u ( ξ ) : = D 0 + γ u ( t ) | t = ξ . To the best of our knowledge, this is the first paper to study the boundary value problems of a coupled system of fractional differential equations with integral boundary conditions at resonance with dim Ker L = 4 .

In this paper, we will always suppose that the following conditions hold.

( H 1 ) 2 < α , β 3 , h i , g i L [ 0 , 1 ] , 0 1 h i ( t ) d t = 1 , 0 1 g i ( t ) d t = 1 , i = 1 , 2 .

( H 2 )
Δ 1 = | 0 1 t h 1 ( t ) d t 1 0 1 t h 2 ( t ) d t 1 2 0 1 t 2 h 1 ( t ) d t 1 2 ( 1 0 1 t 2 h 2 ( t ) d t ) | : = | Δ 11 Δ 12 Δ 21 Δ 22 | 0 , Δ 2 = | 0 1 t g 1 ( t ) d t 1 0 1 t g 2 ( t ) d t 1 2 0 1 t 2 g 1 ( t ) d t 1 2 ( 1 0 1 t 2 g 2 ( t ) d t ) | : = | δ 11 δ 12 δ 21 δ 22 | 0 .
( H 3 ) f i : [ 0 , 1 ] × R 3 R satisfies the Carathéodory conditions and there exist functions a 0 i ( t ) , b 0 i ( t ) , c 0 i ( t ) , d 0 i ( t ) , r i ( t ) L [ 0 , 1 ] and constants η 1 , η 2 ( 0 , 1 ) with c 0 < 1 , c 0 < 1 , 1 Γ ( α ) ( 1 c 0 ) ( 2 + 1 η 1 α 2 ) a 0 < 1 , 1 Γ ( β ) ( 1 c 0 ) ( 2 + 1 η 2 β 2 ) b 0 < 1 , A 1 A 2 a 0 b 0 < 1 such that
| f 1 ( t , x , y , z ) | a 01 ( t ) | x | + b 01 ( t ) | y | + c 01 ( t ) | z | + d 01 ( t ) | x | θ 1 + r 1 ( t ) , | f 2 ( t , x , y , z ) | a 02 ( t ) | x | + b 02 ( t ) | y | + c 02 ( t ) | z | + d 02 ( t ) | y | θ 2 + r 2 ( t ) ,

where a 0 = 0 1 a 01 ( t ) d t , b 0 = 0 1 b 01 ( t ) d t , c 0 = 0 1 c 01 ( t ) d t , d 0 = 0 1 d 01 ( t ) d t , r 0 = 0 1 r 1 ( t ) d t , a 0 = 0 1 a 02 ( t ) d t , b 0 = 0 1 b 02 ( t ) d t , c 0 = 0 1 c 02 ( t ) d t , d 0 = 0 1 d 02 ( t ) d t , r 0 = 0 1 r 2 ( t ) d t , 0 θ 1 , θ 2 < 1 , A 1 = 2 η 1 α 2 + 1 Γ ( α ) ( 1 c 0 ) η 1 α 2 a 0 ( 2 η 1 α 2 + 1 ) , A 2 = 2 η 2 β 2 + 1 Γ ( β ) ( 1 c 0 ) η 2 β 2 b 0 ( 2 η 2 β 2 + 1 ) .

2 Preliminaries

For convenience, we introduce some notations and a theorem. For more details, see [30].

Let X and Y be real Banach spaces and L : dom ( L ) X Y be a Fredholm operator with index zero, let P : X X , Q : Y Y be projectors such that
Im P = Ker L , Ker Q = Im L , X = Ker L Ker P , Y = Im L Im Q .
It follows that
L | dom L Ker P : dom L Ker P Im L

is invertible. We denote the inverse by K P .

Assume that Ω is an open bounded subset of X, dom L Ω ¯ . The map N : X Y will be called L-compact on Ω ¯ if Q N ( Ω ¯ ) is bounded and K P ( I Q ) N : Ω ¯ X is compact.

Theorem 2.1 [30]

Let L : dom L X Y be a Fredholm operator of index zero and N : X Y L-compact on Ω ¯ . Assume that the following conditions are satisfied:
  1. (1)

    L x λ N x for every ( x , λ ) [ ( dom L Ker L ) Ω ] × ( 0 , 1 ) ;

     
  2. (2)

    N x Im L for every x Ker L Ω ;

     
  3. (3)

    deg ( Q N | Ker L , Ω Ker L , 0 ) 0 , where Q : Y Y is a projection such that Im L = Ker Q .

     

Then the equation L x = N x has at least one solution in dom L Ω ¯ .

The following definitions and lemmas can be found in [1, 2].

Definition 2.1 The fractional integral of order α > 0 of a function y : ( 0 , ) R is given by
I 0 + α y ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s ,
(2.1)

provided the right-hand side is pointwise defined on ( 0 , ) .

Definition 2.2 The fractional derivative of order α > 0 of a function y : ( 0 , ) R is given by
D 0 + α y ( t ) = 1 Γ ( n α ) d n d t n 0 t ( t s ) n α 1 y ( s ) d s ,
(2.2)

provided the right-hand side is pointwise defined on ( 0 , ) , where n = [ α ] + 1 .

Lemma 2.1 Assume f L [ 0 , 1 ] , q p 0 , q > 1 , then
D 0 + p I 0 + q f ( t ) = I 0 + q p f ( t ) .
Lemma 2.2 Assume α > 0 , λ > 1 , then
D 0 + α t λ = Γ ( λ + 1 ) Γ ( n + λ α + 1 ) d n d t n ( t n + λ α ) ,

where n is the smallest integer greater than or equal to α.

Lemma 2.3 D 0 + α u ( t ) = 0 if and only if
u ( t ) = c 1 t α 1 + c 2 t α 2 + + c n t α n ,

where n is the smallest integer greater than or equal to α, c i R , i = 1 , 2 , , n .

Take X = C α 1 [ 0 , 1 ] × C β 1 [ 0 , 1 ] with the norm
( x , y ) = max { x , y , D 0 + α 1 x , D 0 + β 1 y } ,
where C α 1 [ 0 , 1 ] = { x x , D 0 + α 1 x C [ 0 , 1 ] } , x = max t [ 0 , 1 ] | x ( t ) | . Set Y = L [ 0.1 ] × L [ 0.1 ] with the norm
( f , g ) = max { 0 1 | f ( x ) | d x , 0 1 | g ( x ) | d x } .
Define operators L : dom L X Y , N : X Y as follows:
L ( x , y ) = ( D 0 + α x , D 0 + β y ) , ( x , y ) dom L , N ( x , y ) = ( N 1 ( x , y ) , N 2 ( x , y ) ) , ( x , y ) X ,
where
dom L = { ( x , y ) | ( x , y ) X , ( D 0 + α x , D 0 + β y ) Y , x ( 0 ) = y ( 0 ) = 0 , D 0 + α 1 x ( 0 ) = 0 1 h 1 ( t ) D 0 + α 1 x ( t ) d t , D 0 + α 1 x ( 1 ) = 0 1 h 2 ( t ) D 0 + α 1 x ( t ) d t , D 0 + β 1 y ( 0 ) = 0 1 g 1 ( t ) D 0 + β 1 y ( t ) d t , D 0 + β 1 y ( 1 ) = 0 1 g 2 ( t ) D 0 + β 1 y ( t ) d t } ,

N 1 ( x , y ) = f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) , N 2 ( x , y ) = f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) . Then problem (1.1) is L ( x , y ) = N ( x , y ) .

By Lemma 2.3 in [20], we get that X is a Banach space.

Definition 2.3 ( x , y ) dom L is a solution of problem (1.1) if it satisfies (1.1), i.e., L ( x , y ) = N ( x , y ) .

3 Main result

Define operators T i : L [ 0 , 1 ] R , i = 1 , 2 , 3 , 4 , and Q j : L [ 0 , 1 ] L [ 0 , 1 ] , j = 1 , 2 as follows:
T 1 u = 0 1 u ( t ) t 1 h 1 ( s ) d s d t , T 2 u = 0 1 u ( t ) 0 t h 2 ( s ) d s d t , T 3 u = 0 1 u ( t ) t 1 g 1 ( s ) d s d t , T 4 u = 0 1 u ( t ) 0 t g 2 ( s ) d s d t , Q 1 u = 1 Δ 1 ( Δ 22 T 1 u Δ 21 T 2 u ) + 1 Δ 1 ( Δ 11 T 2 u Δ 12 T 1 u ) t , Q 2 u = 1 Δ 2 ( δ 22 T 3 u δ 21 T 4 u ) + 1 Δ 2 ( δ 11 T 4 u δ 12 T 3 u ) t .

It is clear that Δ 11 = T 1 1 , Δ 12 = T 2 1 , Δ 21 = T 1 t , Δ 22 = T 2 t .

Lemma 3.1 If ( H 1 ) and ( H 2 ) hold, then L : dom L X Y is a Fredholm operator of index zero, the linear continuous projectors P : X X and Q : Y Y can be defined as
P ( x , y ) = ( D 0 + α 1 x ( 0 ) Γ ( α ) t α 1 + D 0 + α 2 x ( 0 ) Γ ( α 1 ) t α 2 , D 0 + β 1 y ( 0 ) Γ ( β ) t β 1 + D 0 + β 2 y ( 0 ) Γ ( β 1 ) t β 2 ) , Q ( u , v ) = ( Q 1 u , Q 2 v ) ,
respectively, and the linear operator K P : Im L dom L Ker P can be written by
K P ( u , v ) = ( I 0 + α u , I 0 + β v ) .
Proof We can easily get that
Ker L = { ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) c 1 , c 2 , d 1 , d 2 R } .

Obviously, Im P = Ker L , P 2 ( u , v ) = P ( u , v ) .

By a simple calculation, we obtain that
Im L = { ( u , v ) Y T 1 u = T 2 u = T 3 v = T 4 v = 0 }
and Q 2 ( u , v ) = Q ( u , v ) . By ( H 2 ), we have Im L = Ker Q . It is clear that
X = Ker P Ker L , Y = Im L Im Q .

This means that L is a Fredholm operator of index zero.

For ( u , v ) Im L , we can easily get that K P ( u , v ) = ( I 0 + α u , I 0 + β v ) dom L Ker P . Obviously, L K P ( u , v ) = ( u , v ) , ( u , v ) Im L . For ( x , y ) dom L Ker P , by Lemma 2.3 and K P L ( x , y ) dom L , we get that
K P L ( x , y ) = ( x ( t ) + c 1 t α 1 + c 2 t α 2 , y ( t ) + d 1 t β 1 + d 2 t β 2 ) .

It follows from ( x , y ) Ker P that D 0 + α 1 x ( 0 ) = D 0 + α 2 x ( 0 ) = D 0 + β 1 y ( 0 ) = D 0 + β 2 y ( 0 ) = 0 . This, together with K P L ( x , y ) Ker P , means that c 1 = c 2 = d 1 = d 2 = 0 . So, K P L ( x , y ) = ( x , y ) . Therefore, K P = ( L | dom L Ker P ) 1 . The proof is completed. □

Lemma 3.2 Suppose that ( H 1 ), ( H 2 ) and ( H 3 ) hold. If Ω X is an open bounded subset and dom L Ω ¯ , then N is L-compact on Ω ¯ .

Proof Since Ω is bounded, there exists a constant r > 0 such that ( x , y ) < r , ( x , y ) Ω ¯ . It follows from condition ( H 3 ) that there exist functions Φ i L [ 0 , 1 ] such that | f i ( t , x , y , z ) | Φ i ( t ) for all | x | , | y | , | z | [ 0 , r ] , a.e. t [ 0 , 1 ] , i = 1 , 2 . Thus,
| T 1 N 1 ( x , y ) | = | 0 1 N 1 ( x , y ) t 1 h 1 ( s ) d s d t | | T 1 N 1 ( x , y ) | 0 1 Φ 1 ( t ) d t 0 1 | h 1 ( s ) | d s < + , ( x , y ) Ω ¯ , | T 2 N 1 ( x , y ) | = | 0 1 N 1 ( x , y ) 0 t h 2 ( s ) d s d t | | T 2 N 1 ( x , y ) | 0 1 Φ 1 ( t ) d t 0 1 | h 2 ( s ) | d s < + , ( x , y ) Ω ¯ , | T 3 N 2 ( x , y ) | = | 0 1 N 2 ( x , y ) t 1 g 1 ( s ) d s d t | | T 3 N 2 ( x , y ) | 0 1 Φ 2 ( t ) d t 0 1 | g 1 ( s ) | d s < + , ( x , y ) Ω ¯ , | T 4 N 2 ( x , y ) | = | 0 1 N 2 ( x , y ) 0 t g 2 ( s ) d s d t | | T 4 N 2 ( x , y ) | 0 1 Φ 2 ( t ) d t 0 1 | g 2 ( s ) | d s < + , ( x , y ) Ω ¯ .
These mean that there exist constants a i > 0 , b i > 0 , i = 1 , 2 , such that
| Q 1 N 1 ( x , y ) | a 1 + b 1 t , | Q 2 N 2 ( x , y ) | a 2 + b 2 t , ( x , y ) Ω ¯ , t [ 0 , 1 ] ,

i.e., Q N ( Ω ¯ ) Y is bounded. Now we will prove that K P ( I Q ) N : Ω ¯ X is compact.

Obviously, K P ( I Q ) N ( Ω ¯ ) is bounded. For 0 t 1 < t 2 1 , ( x , y ) Ω ¯ , we have
K P ( I Q ) N ( x , y ) ( t 2 ) K P ( I Q ) N ( x , y ) ( t 1 ) = ( I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 2 ) , I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 2 ) ) ( I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 1 ) , I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 1 ) ) = ( I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 2 ) I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 1 ) , I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 2 ) I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 1 ) ) ,

where I 0 : L [ 0 , 1 ] L [ 0 , 1 ] is an identical mapping.

It follows from
| I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 2 ) I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 1 ) | = 1 Γ ( α ) | 0 t 2 ( t 2 s ) α 1 ( I 0 Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s 0 t 1 ( t 1 s ) α 1 ( I 0 Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s | 1 Γ ( α ) [ 0 t 1 ( ( t 2 s ) α 1 ( t 1 s ) α 1 ) ( Φ 1 ( s ) + a 1 + b 1 s ) d s + t 1 t 2 ( Φ 1 ( s ) + a 1 + b 1 s ) d s ] , | D 0 + α 1 I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 2 ) D 0 + α 1 I 0 + α ( I 0 Q 1 ) N 1 ( x , y ) ( t 1 ) | = | 0 t 2 ( I 0 Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s 0 t 1 ( I 0 Q 1 ) N 1 ( x ( s ) , y ( s ) ) d s | t 1 t 2 ( Φ 1 ( s ) + a 1 + b 1 s ) d s , | I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 2 ) I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 1 ) | = 1 Γ ( β ) | 0 t 2 ( t 2 s ) β 1 ( I 0 Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s 0 t 1 ( t 1 s ) β 1 ( I 0 Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s | 1 Γ ( β ) [ 0 t 1 ( ( t 2 s ) β 1 ( t 1 s ) β 1 ) ( Φ 2 ( s ) + a 2 + b 2 s ) d s + t 1 t 2 ( Φ 2 ( s ) + a 2 + b 2 s ) d s ] , | D 0 + β 1 I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 2 ) D 0 + β 1 I 0 + β ( I 0 Q 2 ) N 2 ( x , y ) ( t 1 ) | = | 0 t 2 ( I 0 Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s 0 t 1 ( I 0 Q 2 ) N 2 ( x ( s ) , y ( s ) ) d s | t 1 t 2 ( Φ 2 ( s ) + a 2 + b 2 s ) d s ,

the uniform continuity of ( t s ) α 1 and ( t s ) β 1 on [ 0 , 1 ] × [ 0 , 1 ] , the absolute continuity of integral of Φ i + a i + b i t on [ 0 , 1 ] , i = 1 , 2 , and the Ascoli-Arzela theorem that K P ( I Q ) N : Ω ¯ X is compact. The proof is completed. □

In order to obtain our main results, we present the following conditions.

( H 4 ) There exist constants M i > 0 , L i > 0 , i = 1 , 2 , such that if either
min t [ η 1 , 1 ] | x ( t ) | > M 1 or min t [ η 1 , 1 ] | D 0 + α 1 x ( t ) | > L 1 ,
then either
0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) t 1 h 1 ( s ) d s d t 0
or
0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) 0 t h 2 ( s ) d s d t 0 ,
and if either
min t [ η 2 , 1 ] | y ( t ) | > M 2 or min t [ η 2 , 1 ] | D 0 + β 1 y ( t ) | > L 2 ,
then either
0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) t 1 g 1 ( s ) d s d t 0
or
0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) 0 t g 2 ( s ) d s d t 0 ,

where η i , i = 1 , 2 , are the same as in ( H 3 ).

( H 5 ) For ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) Ker L , there exist constants k 1 , k 2 , l 1 , l 2 such that either (1) or (2) holds, where
( 1 ) c 1 T 1 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) > 0 , if  | c 1 | > k 1 , c 2 T 2 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) > 0 , if  | c 1 | k 1 , | c 2 | > k 2 , d 1 T 3 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) > 0 , if  | d 1 | > l 1 , d 2 T 4 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) > 0 , if  | d 1 | l 1 , | d 2 | > l 2 . ( 2 ) c 1 T 1 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) < 0 , if  | c 1 | > k 1 , c 2 T 2 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) < 0 , if  | c 1 | k 1 , | c 2 | > k 2 , d 1 T 3 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) < 0 , if  | d 1 | > l 1 , d 2 T 4 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) < 0 , if  | d 1 | l 1 , | d 2 | > l 2 .
Lemma 3.3 Suppose that ( H 1 )-( H 4 ) hold, then the set
Ω 1 = { ( x , y ) dom L Ker L L ( x , y ) = λ N ( x , y ) , λ ( 0 , 1 ) }

is bounded in X.

Proof Take ( x , y ) Ω 1 . By L ( x , y ) = λ N ( x , y ) , we get
{ x ( t ) = λ Γ ( α ) 0 t ( t s ) α 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α 1 x ( s ) ) d s + a 1 t α 1 + a 2 t α 2 , y ( t ) = λ Γ ( β ) 0 t ( t s ) β 1 f 2 ( s , x ( s ) , y ( s ) , D 0 + β 1 y ( s ) ) d s + b 1 t β 1 + b 2 t β 2 .
(3.1)
By Lemmas 2.1, 2.2 and (3.1), we have
{ D 0 + α 1 x ( t ) = λ 0 t f 1 ( s , x ( s ) , y ( s ) , D 0 + α 1 x ( s ) ) d s + a 1 Γ ( α ) , D 0 + β 1 y ( t ) = λ 0 t f 2 ( s , x ( s ) , y ( s ) , D 0 + β 1 y ( s ) ) d s + b 1 Γ ( β ) .
(3.2)
It follows from N ( x , y ) Im L that
0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) t 1 h 1 ( s ) d s d t = 0 , 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) 0 t h 2 ( s ) d s d t = 0 , 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) t 1 g 1 ( s ) d s d t = 0 , 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) 0 t g 2 ( s ) d s d t = 0 .
These, together with ( H 4 ), mean that there exist constants t 0 , t 1 [ η 1 , 1 ] and t 0 , t 1 [ η 2 , 1 ] such that
| x ( t 0 ) | M 1 , | D 0 + α 1 x ( t 1 ) | L 1 , | y ( t 0 ) | M 2 , | D 0 + β 1 y ( t 1 ) | L 2 .
(3.3)
By (3.2), we get
D 0 + α 1 x ( t ) = λ t 1 t f 1 ( s , x ( s ) , y ( s ) , D 0 + α 1 x ( s ) ) d s + D 0 + α 1 x ( t 1 ) , D 0 + β 1 y ( t ) = λ t 1 t f 2 ( s , x ( s ) , y ( s ) , D 0 + β 1 y ( s ) ) d s + D 0 + β 1 y ( t 1 ) .
By (3.3) and ( H 3 ), we obtain that
{ D 0 + α 1 x 1 1 c 0 ( a 0 x + b 0 y + d 0 x θ 1 + r 0 + L 1 ) , D 0 + β 1 y 1 1 c 0 ( a 0 x + b 0 y + d 0 y θ 2 + r 0 + L 2 ) .
(3.4)
Instead of t by t 0 , t 0 in (3.1) and t 1 , t 1 in (3.2), respectively, we get
{ x ( t ) = λ Γ ( α ) [ 0 t ( t s ) α 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α 1 x ( s ) ) d s x ( t ) = + t α 2 ( t 0 t ) 0 t 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α 1 x ( s ) ) d s x ( t ) = t α 2 t 0 α 2 0 t 0 ( t 0 s ) α 1 f 1 ( s , x ( s ) , y ( s ) , D 0 + α 1 x ( s ) ) d s ] x ( t ) = + t α 2 Γ ( α ) D 0 + α 1 x ( t 1 ) ( t t 0 ) + t α 2 t 0 α 2 x ( t 0 ) , y ( t ) = λ Γ ( β ) [ 0 t ( t s ) β 1 f 2 ( s , x ( s ) , y ( s ) , D 0 + β 1 y ( s ) ) d s y ( t ) = + t β 2 ( t 0 t ) 0 t 1 f 2 ( s , x ( s ) , y ( s ) , D 0 + β 1 y ( s ) ) d s y ( t ) = t β 2 t 0 β 2 0 t 0 ( t 0 s ) β 1 f 2 ( s , x ( s ) , y ( s ) , D 0 + β 1 y ( s ) ) d s ] y ( t ) = + t β 2 Γ ( β ) D 0 + β 1 y ( t 1 ) ( t t 0 ) + t β 2 t 0 β 2 y ( t 0 ) .
(3.5)
It follows from (3.4), (3.5) and ( H 3 ) that
| x ( t ) | 1 Γ ( α ) ( 2 + 1 η 1 α 2 ) 0 1 | f 1 ( s , x ( s ) , y ( s ) , D 0 + α 1 x ( s ) ) | d s + ( L 1 Γ ( α ) + M 1 η 1 α 2 ) 1 Γ ( α ) ( 2 + 1 η 1 α 2 ) ( a 0 x + b 0 y + c 0 D 0 + α 1 x + d 0 x θ 1 + r 0 ) + ( L 1 Γ ( α ) + M 1 η 1 α 2 ) 1 Γ ( α ) ( 1 c 0 ) ( 2 + 1 η 1 α 2 ) ( a 0 x + b 0 y + d 0 x θ 1 + r 0 + c 0 L 1 ) + ( L 1 Γ ( α ) + M 1 η 1 α 2 )
and
| y ( t ) | 1 Γ ( β ) ( 2 + 1 η 2 β 2 ) 0 1 | f 2 ( s , x ( s ) , y ( s ) , D 0 + β 1 y ( s ) ) | d s + ( L 2 Γ ( β ) + M 2 η 2 β 2 ) 1 Γ ( β ) ( 2 + 1 η 2 β 2 ) ( a 0 x + b 0 y + c 0 D 0 + β 1 y + d 0 y θ 2 + r 0 ) + ( L 2 Γ ( β ) + M 2 η 2 β 2 ) 1 Γ ( β ) ( 1 c 0 ) ( 2 + 1 η 2 β 2 ) ( a 0 x + b 0 y + d 0 y θ 2 + r 0 + c 0 L 2 ) + ( L 2 Γ ( β ) + M 2 η 2 β 2 ) .
Thus,
x A 1 [ b 0 y + d 0 x θ 1 ] + M 0 ,
(3.6)
y A 2 [ a 0 x + d 0 y θ 2 ] + M 0 ,
(3.7)

where M 0 = A 1 [ ( r 0 + c 0 L 1 ) + ( L 1 Γ ( α ) + M 1 η 1 α 2 ) / 1 Γ ( α ) ( 1 c 0 ) ( 2 + 1 η 1 α 2 ) ] , M 0 = A 2 [ ( r 0 + c 0 L 2 ) + ( L 2 Γ ( β ) + M 2 η 2 β 2 ) / 1 Γ ( β ) ( 1 c 0 ) ( 2 + 1 η 2 β 2 ) ] .

By ( H 3 ), (3.4), (3.6) and (3.7), we can get that Ω 1 is bounded in X. The proof is completed. □

Lemma 3.4 Suppose that ( H 1 ), ( H 2 ), ( H 3 ) and ( H 5 ) hold, then the set
Ω 2 = { ( x , y ) ( x , y ) Ker L , N ( x , y ) Im L }

is bounded in X.

Proof For ( x , y ) Ω 2 , we have ( x , y ) = ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) , c 1 , c 2 , d 1 , d 2 R and T 1 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) = T 2 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) = T 3 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) = T 4 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) = 0. By ( H 5 ), we get that | c 1 | k 1 , | c 2 | k 2 , | d 1 | l 1 , | d 2 | l 2 . These imply that Ω 2 is bounded in X. □

Lemma 3.5 Suppose that ( H 1 ), ( H 2 ), ( H 3 ) and ( H 5 ) hold. The set
Ω 3 = { ( x , y ) Ker L λ J ( x , y ) + ( 1 λ ) θ Q N ( x , y ) = ( 0 , 0 ) , λ [ 0 , 1 ] }
is bounded in X, where J : Ker L Im Q is a linear isomorphism given by
J ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) = ( 1 Δ 1 ( Δ 22 c 1 Δ 21 c 2 ) + 1 Δ 1 ( Δ 11 c 2 Δ 12 c 1 ) t , 1 Δ 2 ( δ 22 d 1 δ 21 d 2 ) + 1 Δ 2 ( δ 11 d 2 δ 12 d 1 ) t ) , θ = { 1 , if ( H 5 ) ( 1 ) holds , 1 , if ( H 5 ) ( 2 ) holds .
Proof For ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) Ω 3 , there exists λ [ 0 , 1 ] such that
λ J ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) = ( 1 λ ) θ Q N ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) .
This means that
λ c 1 = ( 1 λ ) θ T 1 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) , λ c 2 = ( 1 λ ) θ T 2 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) , λ d 1 = ( 1 λ ) θ T 3 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) , λ d 2 = ( 1 λ ) θ T 4 N 2 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) .
If λ = 0 , by ( H 5 ), we get | c 1 | k 1 , | c 2 | k 2 , | d 1 | l 1 , | d 2 | l 2 . If λ = 1 , then c 1 = c 2 = d 1 = d 2 = 0 . For λ ( 0 , 1 ) , if | c 1 | > k 1 , we can get
λ c 1 2 = ( 1 λ ) θ c 1 T 1 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) < 0 ,
a contradiction. If | c 1 | k 1 and | c 2 | > k 2 , we can get
λ c 2 2 = ( 1 λ ) θ c 2 T 2 N 1 ( c 1 t α 1 + c 2 t α 2 , d 1 t β 1 + d 2 t β 2 ) < 0 .

This is a contradiction, too. Thus, | c i | k i , i = 1 , 2 . By the same methods, we can obtain that | d i | l i , i = 1 , 2 . This means that Ω 3 is bounded in X. □

Theorem 3.1 Suppose that ( H 1 )-( H 5 ) hold. Then problem (1.1) has at least one solution in X.

Proof Let Ω i = 1 3 Ω i ¯ { ( 0 , 0 ) } be a bounded open subset of X. It follows from Lemma 3.2 that N is L-compact on Ω ¯ . By Lemmas 3.3 and 3.4, we get
  1. (1)

    L ( x , y ) λ N ( x , y ) for every ( x , y , λ ) [ ( dom L Ker L ) Ω ] × ( 0 , 1 ) ,

     
  2. (2)

    N ( x , y ) Im L for every ( x , y ) Ker L Ω .

    We need only to prove

     
  3. (3)

    deg ( Q N | Ker L , Ω Ker L , ( 0 , 0 ) ) 0 .

     
Take
H ( x , y , λ ) = λ J ( x , y ) + θ ( 1 λ ) Q N ( x , y ) .
According to Lemma 3.5, we know H ( x , y , λ ) ( 0 , 0 ) for ( x , y ) Ω Ker L . By the homotopy of degree, we get that
deg ( Q N | Ker L , Ω Ker L , ( 0 , 0 ) ) = deg ( θ H ( , 0 ) , Ω Ker L , ( 0 , 0 ) ) = deg ( θ H ( , 1 ) , Ω Ker L , ( 0 , 0 ) ) = deg ( θ J , Ω Ker L , ( 0 , 0 ) ) 0 .

By Theorem 2.1, we can get that L ( x , y ) = N ( x , y ) has at least one solution in dom L Ω ¯ , i.e., (1.1) has at least one solution in X. The proof is completed. □

4 Example

Let us consider the following system of fractional differential equations at resonance:
{ D 0 + 5 2 x ( t ) = f 1 ( t , x ( t ) , y ( t ) , D 0 + 3 2 x ( t ) ) , 0 < t < 1 , D 0 + 5 2 y ( t ) = f 2 ( t , x ( t ) , y ( t ) , D 0 + 3 2 y ( t ) ) , 0 < t < 1 , x ( 0 ) = 0 , D 0 + 3 2 x ( 0 ) = 0 1 h 1 ( t ) D 0 + 3 2 x ( t ) d t , D 0 + 3 2 x ( 1 ) = 0 1 h 2 ( t ) D 0 + 3 2 x ( t ) d t , y ( 0 ) = 0 , D 0 + 3 2 y ( 0 ) = 0 1 g 1 ( t ) D 0 + 3 2 y ( t ) d t , D 0 + 3 2 y ( 1 ) = 0 1 g 2 ( t ) D 0 + 3 2 y ( t ) d t ,
(4.1)
where
f 1 ( t , x , y , z ) = { 1 4 t sin x + 1 8 t 3 sin y , t [ 0 , 1 4 ) , 1 4 t sin x + 1 8 t 3 sin y + t z , t [ 1 4 , 1 2 ) , 1 4 t x + 1 8 t 3 sin y + t sin z , t [ 1 2 , 1 ] , f 2 ( t , x , y , z ) = { 1 8 t 3 sin x + 1 10 sin y , t [ 0 , 1 9 ) , 1 8 t 3 sin x + 1 10 sin y + t z , t [ 1 9 , 1 4 ) , 1 8 t 3 sin x + 1 10 y + t sin z , t [ 1 4 , 1 ] , h 1 ( t ) = { 2 , t [ 0 , 1 2 ) , 0 , t [ 1 2 , 1 ] , h 2 ( t ) = { 0 , t [ 0 , 1 2 ) , 2 , t [ 1 2 , 1 ] , g 1 ( t ) = { 4 , t [ 0 , 1 4 ) , 0 , t [ 1 4 , 1 ] , g 2 ( t ) = { 0 , t [ 0 , 1 4 ) , 4 3 , t [ 1 4 , 1 ] .
Corresponding to problem (1.1), we have α = β = 5 2 ,
Δ 1 = | 1 4 1 4 1 24 5 24 | = 1 24 0 , Δ 2 = | 1 8 3 8 1 96 9 32 | = 1 32 0 .
Obviously, 0 1 h i ( t ) d t = 1 , 0 1 g i ( t ) d t = 1 , i = 1 , 2 . Thus, conditions ( H 1 ) and ( H 2 ) are satisfied. It is easy to get that a 0 = 1 8 , b 0 = 1 32 , c 0 = 15 32 , a 0 = 1 32 , b 0 = 1 10 , c 0 = 40 81 . Take M 1 = 8 , L 1 = 1 , η 1 = 1 4 , M 2 = 20 , L 2 = 4 , η 2 = 1 9 . By a simple calculation, we can get that ( H 3 ) is satisfied and the following inequations hold
0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) t 1 h 1 ( s ) d s d t 0 , if  min t [ η 1 , 1 ] | D 0 + α 1 x ( t ) | > L 1 , 0 1 f 1 ( t , x ( t ) , y ( t ) , D 0 + α 1 x ( t ) ) 0 t h 2 ( s ) d s d t 0 , if  min t [ η 1 , 1 ] | x ( t ) | > M 1 , 0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) t 1 g 1 ( s ) d s d t 0 , if  min t [ η 2 , 1 ] | D 0 + β 1 y ( t ) | > L 2 ,
and
0 1 f 2 ( t , x ( t ) , y ( t ) , D 0 + β 1 y ( t ) ) 0 t g 2 ( s ) d s d t 0 , if  min t [ η 2 , 1 ] | y ( t ) | > M 2 .

So, ( H 4 ) holds. Set k 1 = 1 , k 2 = 20 , l 1 = 4 , l 2 = 140 . By a simple calculation, we can obtain that condition ( H 5 ) is satisfied.

By Theorem 3.1, problem (4.1) has at least one solution.

Declarations

Acknowledgements

This work is supported by the National Science Foundation of China (11171088) and the Natural Science Foundation of Hebei Province (A2013208108). The author is grateful to anonymous referees for their constructive comments and suggestions which led to improvement of the original manuscript.

Authors’ Affiliations

(1)
College of Sciences, Hebei University of Science and Technology

References

  1. Podlubny I: Fractional Differential Equations. Academic Press, New York; 1999.MATHGoogle Scholar
  2. Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.MATHGoogle Scholar
  3. Lakshmikantham V, Vatsala AS: Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69: 2677-2682. 10.1016/j.na.2007.08.042MATHMathSciNetView ArticleGoogle Scholar
  4. Agarwal RP, Andrade Bd, Siracusa G: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 2011, 62: 1143-1149. 10.1016/j.camwa.2011.02.033MATHMathSciNetView ArticleGoogle Scholar
  5. Lakshmikantham V, Vatsala AS: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 2008, 21: 828-834. 10.1016/j.aml.2007.09.006MATHMathSciNetView ArticleGoogle Scholar
  6. Kou C, Zhou H, Yan Y: Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. 2011, 74: 5975-5986. 10.1016/j.na.2011.05.074MATHMathSciNetView ArticleGoogle Scholar
  7. Agarwal RP, Zhou Y, He Y: Existence of fractional neutral functional differential equations. Nonlinear Anal. 2010, 59: 1095-1100.MATHMathSciNetGoogle Scholar
  8. Zhou Y, Jiao F, Li J: Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal. 2009, 71: 3249-3256. 10.1016/j.na.2009.01.202MATHMathSciNetView ArticleGoogle Scholar
  9. Agarwal RP, Lakshmikantham V, Nieto JJ: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 2010, 72: 2859-2862. 10.1016/j.na.2009.11.029MATHMathSciNetView ArticleGoogle Scholar
  10. Lakshmikantham V, Leela S: Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal. 2009, 71: 2886-2889. 10.1016/j.na.2009.01.169MATHMathSciNetView ArticleGoogle Scholar
  11. Wang Y, Liu L, Wu Y: Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity. Nonlinear Anal. 2011, 74: 6434-6441. 10.1016/j.na.2011.06.026MATHMathSciNetView ArticleGoogle Scholar
  12. Staněk S: The existence of positive solutions of singular fractional boundary value problems. Comput. Math. Appl. 2011, 62: 1379-1388. 10.1016/j.camwa.2011.04.048MATHMathSciNetView ArticleGoogle Scholar
  13. Zhang S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006., 2006: Article ID 36Google Scholar
  14. Jafari H, Daftardar-Gejji V: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 2006, 180: 700-706. 10.1016/j.amc.2006.01.007MATHMathSciNetView ArticleGoogle Scholar
  15. Jiang D, Yuan C: The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 2010, 72: 710-719. 10.1016/j.na.2009.07.012MATHMathSciNetView ArticleGoogle Scholar
  16. Su X: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 2011, 74: 2844-2852. 10.1016/j.na.2011.01.006MATHMathSciNetView ArticleGoogle Scholar
  17. Rehman M, Khan RA, Asif NA: Three point boundary value problems for nonlinear fractional differential equations. Acta Math. Sci. B 2011, 31: 1337-1346. 10.1016/S0252-9602(11)60320-2MATHMathSciNetView ArticleGoogle Scholar
  18. Liang S, Zhang J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 2009, 71: 5545-5550. 10.1016/j.na.2009.04.045MATHMathSciNetView ArticleGoogle Scholar
  19. Wang G, Liu W, Zhu S, Zheng T: Existence results for a coupled system of nonlinear fractional 2 m -point boundary value problems at resonance. Adv. Differ. Equ. 2011, 44: 1-17.MathSciNetView ArticleGoogle Scholar
  20. Jiang W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. TMA 2011, 74: 1987-1994. 10.1016/j.na.2010.11.005MATHView ArticleGoogle Scholar
  21. Jiang W: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal., Real World Appl. 2012, 13: 2285-2292. 10.1016/j.nonrwa.2012.01.023MATHMathSciNetView ArticleGoogle Scholar
  22. Bai Z: Solvability for a class of fractional m -point boundary value problem at resonance. Comput. Math. Appl. 2011, 62: 1292-1302. 10.1016/j.camwa.2011.03.003MATHMathSciNetView ArticleGoogle Scholar
  23. Hu Z, Liu W, Chen T: Existence of solutions for a coupled system of fractional differential equations at resonance. Bound. Value Probl. 2012, 98: 1-13.Google Scholar
  24. Ahmad B, Ntouyas SK: Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2013, 20: 1-19.MathSciNetView ArticleGoogle Scholar
  25. Kosmatov N: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 2008, 68: 2158-2171. 10.1016/j.na.2007.01.038MATHMathSciNetView ArticleGoogle Scholar
  26. Zhang X, Feng M, Ge W: Existence results of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl. 2009, 353: 311-319. 10.1016/j.jmaa.2008.11.082MATHMathSciNetView ArticleGoogle Scholar
  27. Feng W, Webb JRL: Solvability of m -point boundary value problems with nonlinear growth. J. Math. Anal. Appl. 1997, 212: 467-480. 10.1006/jmaa.1997.5520MATHMathSciNetView ArticleGoogle Scholar
  28. Ma R: Existence results of an m -point boundary value problem at resonance. J. Math. Anal. Appl. 2004, 294: 147-157. 10.1016/j.jmaa.2004.02.005MATHMathSciNetView ArticleGoogle Scholar
  29. Du Z, Lin X, Ge W: Some higher-order multi-point boundary value problem at resonance. J. Comput. Appl. Math. 2005, 177: 55-65. 10.1016/j.cam.2004.08.003MATHMathSciNetView ArticleGoogle Scholar
  30. Mawhin J NSFCBMS Regional Conference Series in Mathematics. In Topological Degree Methods in Nonlinear Boundary Value Problems. Am. Math. Soc., Providence; 1979.Google Scholar

Copyright

© Jiang; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.