Skip to main content

Theory and Modern Applications

Some symmetry identities for the Apostol-type polynomials related to multiple alternating sums

Abstract

In recent years, symmetry properties of the Bernoulli polynomials and the Euler polynomials have been studied by a large group of mathematicians (He and Wang in Discrete Dyn. Nat. Soc. 2012:927953, 2012, Kim et al. in J. Differ. Equ. Appl. 14:1267-1277, 2008; Abstr. Appl. Anal. 2008, doi:11.1155/2008/914347, Yang et al. in Discrete Math. 308:550-554, 2008; J. Math. Res. Expo. 30:457-464, 2010). Luo (Integral Transforms Spec. Funct. 20:377-391, 2009), introduced the lambda-multiple power sum and proved the multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Ozarslan (Comput. Math. Appl. 2011:2452-2462, 2011), Lu and Srivastava (Comput. Math. Appl. 2011, doi:10.1016/j.2011.09.010.2011) gave some symmetry identities relations for the Apostol-Bernoulli and Apostol-Euler polynomials.

In this work, we prove some symmetry identities for the Apostol-Bernoulli and Apostol-Euler polynomials related to multiple alternating sums.

AMS Subject Classification: 11F20, 11B68, 11M35, 11M41.

1 Introduction, definitions and notations

The generalized Bernoulli polynomials B n ( α ) (x) of order α N 0 and the generalized Euler polynomials E n ( α ) (x) of order α N 0 , each of degree n as well as in α, are defined respectively by the following generating functions [13]:

(1)
(2)

The generalized Apostol-Bernoulli polynomials B n ( α ) (x;λ) of order α N 0 and the generalized Apostol-Euler polynomials E n ( α ) (x;λ) of order α N 0 are defined respectively by the following generating functions [3]:

(3)
(4)

Recently, Garg et al. in [4] introduced the following generalization of the Hurwitz-Lerch zeta function Φ(z,s,a):

Φ μ , ν ( ρ , σ ) (z,s,a):= n = 0 ( μ ) ρ n ( ν ) σ n z n ( n + a ) s

(μC, a, υC Z 0 , ρ,σ R + , ρ<σ when s,zC(|z|<1); ρ=σ and (sμ+ν)>0 when |z|=1). It is obvious that

Φ μ , 1 ( 1 , 1 ) (z,s,a)= Φ μ (z,s,a)= n = 0 ( μ ) n n ! z n ( n + a ) s
(5)

(for details on this subject, see [35]).

The multiple power sums and the λ-multiple alternating sums are defined by Luo [6] as follows:

(6)
(7)

From (6) and (7), we have

( 1 λ m e m t 1 λ e t ) l = λ ( l ) n = 0 { p = 0 n ( n p ) ( l ) n p S ( l ) ( m ; λ ) } t n n !
(8)

and

( 1 + ( 1 ) m + 1 ( λ e t ) m 1 + λ e t ) l = λ ( l ) n = 0 { p = 0 n ( n p ) ( l ) n p T ( l ) ( m ; λ ) } t n n !
(9)

(see [6]).

From (8) and (9), for l=1, we have respectively

(10)
(11)

Symmetry property and some recurrence relations of the Bernoulli polynomials, Euler polynomials, Apostol-Bernoulli polynomials and Apostol-Euler polynomials have been investigated by a lot of mathematicians [124]. Firstly, Yang [22] proved symmetry relation for Bernoulli polynomials. Wang et al. in [1, 20, 21] gave some symmetry relations for the Apostol-Bernoulli polynomials. Kim in [8, 10, 11, 14, 15] proved symmetric identities for the Bernoulli polynomials and Euler polynomials. Luo in [6, 17] gave multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials. Also, he defined λ-power sums. Srivastava et al. [2, 3, 5] proved some theorems and relations for these polynomials. They proved some symmetry identities for these polynomials.

In this work, we give some symmetry identities for the Apostol-type polynomials related to multiple alternating sums.

2 Symmetry identities for the Apostol-Bernoulli polynomials

We will prove the following theorem for the Apostol-Euler polynomials, which are symmetric in a and b.

Theorem 2.1 There is the following relation between Apostol-Bernoulli polynomials and the Hurwitz-Lerch zeta function Φ (z,s,a):

(12)

Proof Let f(t)= t α 1 e a b x t ( 1 λ a b e a b t ) e a b y t ( 1 λ a e a t ) α ( 1 λ b e b t ) α . Then

f(t)= 1 b α 1 e a b x t ( 1 λ a e a t ) α ( 1 λ a b e a b t 1 λ b e b t ) ( b t 1 λ b e b t ) α 1 e a b y t .

From (3) and (10), we write

f ( t ) = ( 1 ) α 1 b α 1 β = 0 ( β + α 1 β ) λ α β e a t ( β + b x ) 1 λ b r = 0 p = 0 r ( r p ) ( 1 ) r p S p ( a ; λ b ) b r t r r ! × k = 0 B k ( α 1 ) ( a y ; λ b ) b k t k k ! ,

where |logλ+t|<min( 2 π a , 2 π b ). After the Cauchy product, we have

= n = 0 { s = 0 n ( n s ) b s + 1 α a n s ( 1 ) α 1 k = 0 s ( s k ) p = 0 r ( r p ) ( 1 ) r p λ b × S p ( a ; λ b ) B k ( α 1 ) ( a y ; λ b ) β = 0 ( β + α 1 β ) λ α β ( β + b x ) s n } t n n ! .

In a similar manner,

f ( t ) = t α 1 e a b y t ( 1 λ a b e a b t ) e a b x t ( 1 λ b e b t ) α ( 1 λ a e a t ) α = 1 a α 1 e a b x t ( 1 λ b e b t ) α ( 1 λ a b e a b t 1 λ a e a t ) ( a t 1 λ a e a t ) α 1 e a b y t .

From (3) and (10), we write

f ( t ) = ( 1 ) α 1 a α 1 β = 0 ( β + α 1 β ) λ α β e b t ( β + a x ) 1 λ a r = 0 p = 0 r ( r p ) ( 1 ) r p S p ( b ; λ a ) a r t r r ! × k = 0 B k ( α 1 ) ( b y ; λ a ) a k t k k ! .

Since |logλ+t|<min( 2 π a , 2 π b ), after the Cauchy product, we have

= n = 0 { s = 0 n ( n s ) a s + 1 α b n s ( 1 ) α 1 k = 0 s ( s k ) p = 0 r ( r p ) ( 1 ) r p λ a × S p ( b ; λ a ) B k ( α 1 ) ( b y ; λ a ) β = 0 ( β + α 1 β ) λ b β ( β + a y ) s n } t n n ! .

Compressing to coefficients t n n ! and by using (5), we prove the theorem. □

Theorem 2.2 For all a,b,mN, n N 0 , we have the following symmetry identity:

(13)

Proof Let h(t)= t 2 m + 1 e a b x t ( 1 λ a b e a b t ) m e a b y t ( 1 λ a e a t ) m + 1 ( 1 λ b e b t ) m + 1 . Then

h(t)= 1 a m + 1 b ( a t 1 λ a e a t ) m + 1 e a b x t ( 1 λ a b e a b t 1 λ b e b t ) m ( b t 1 λ b e b t ) e a b y t .

From (3) and (8), we have

h ( t ) = ( 1 ) m a m + 1 b n = 0 { r = 0 n ( n r ) B n r ( m + 1 ) ( b x ; λ a ) a n r λ m b k = 0 r ( r k ) × p = 0 k ( k p ) ( l ) k p S p ( m ) ( a ; λ b ) B r k ( a y ; λ b ) b r } t n n ! .

In a similar manner,

h ( t ) = ( 1 ) m b m + 1 a n = 0 { r = 0 n ( n r ) B n r ( m + 1 ) ( a y ; λ b ) b n r λ m a k = 0 r ( r k ) × p = 0 k ( k p ) ( l ) k p S p ( m ) ( b ; λ a ) B r k ( a x ; λ a ) a r } t n n ! .

Comparing the coefficients of t n n ! , we proved the theorem. □

Corollary 2.3 We put a=b=λ=1 in (13). We have

k = 0 n ( n k ) B k ( m + 1 ) (y) B n k (x)= k = 0 n ( n k ) B k ( m + 1 ) (x) B n k (y).

3 Some symmetry identities for the Apostol-Euler polynomials

Theorem 3.1 Let a and b be positive integers with the same parity. Then

(14)

Proof Let h(t)= 2 e a b x t λ a e a t + 1 1 + ( 1 ) a + 1 ( λ b e b t ) a λ b e b t + 1 . From (4) and (9) for l=1, we have

h ( t ) = k = 0 E k ( b x ; λ a ) a k t k k ! 1 λ a l = 0 p = 0 l ( l p ) ( 1 ) l p T p ( a ; λ b ) b l t l l ! = n = 0 ( k = 0 n ( n k ) E k ( b x ; λ a ) λ b a k b n k p = 0 n k ( n k p ) ( 1 ) n k p T n k ( a ; λ b ) ) t n n ! .

Since ( 1 ) a + 1 = ( 1 ) b + 1 , the expression for h(t)= 2 e a b x t λ b e b t + 1 1 + ( 1 ) b + 1 ( λ a e a t ) b λ a e a t + 1 is symmetric in a and b. Therefore, we obtain the following power series for h(t) by symmetry:

h(t)= n = 0 ( k = 0 n ( n k ) E k ( a x ; λ b ) λ a b k a n k p = 0 n k ( n k p ) ( 1 ) n k p T n k ( b ; λ a ) ) t n n ! .

Equating the coefficient of t n n ! in the two expressions for h(t) gives us the desired result. □

Theorem 3.2 Let a and b be positive integers with the same parity. Then

(15)

Proof Let k(t)= 2 α + 2 e a b x t ( 1 + ( 1 ) a + 1 ( λ a b e a b t ) ) α ( λ a e a t + 1 ) α + 1 ( λ b e b t + 1 ) α + 1 e a b y t . From (4) and (9), we write

k ( t ) = ( 2 λ a e a t + 1 ) ( α + 1 ) e a b x t ( 1 + ( 1 ) a + 1 ( λ a b e a b t ) λ b e b t + 1 ) α ( 2 λ b e b t + 1 ) e a b y t = n = 0 E n ( α + 1 ) ( b x ; λ a ) a n t n n ! 1 λ b α n = 0 n = 0 p ( p n ) ( α ) n p T p ( α ) ( a ; λ b ) b n t n n ! × n = 0 E n ( a y ; λ b ) b n t n n ! = n = 0 { s = 0 n ( n s ) E n s ( α + 1 ) ( b x ; λ a ) λ ( b α ) a n s × k = 0 s ( s k ) p = 0 k ( k p ) ( α ) k p T k ( α ) ( a ; λ b ) E s k ( a y ; λ b ) b s } t n n ! .

Since ( 1 ) a + 1 = ( 1 ) b + 1 , the expression for h(t) is symmetric in a and b.

In a similar manner, we have

k ( t ) = n = 0 { s = 0 n ( n s ) E n s ( α + 1 ) ( a y ; λ b ) λ ( a α ) b n s × k = 0 s ( s k ) p = 0 k ( k p ) ( α ) k p T k ( α ) ( b ; λ a ) E s k ( b x ; λ b ) a s } t n n ! .

Equating the coefficient of t n n ! in the two expressions for k(t) gives us the desired result. □

Theorem 3.3 Let p, l, a, b and n be positive integers and a, b be of the same parity. Then

(16)

Proof Let k(t)= a t e a n t λ a e a t 1 1 + ( 1 ) b ( λ b e b t ) a λ a e a t + 1 . From (3) and (10), we have

k ( t ) = a t e a n t λ a e a t 1 1 + ( 1 ) b + 1 ( λ b e b t ) a λ a e a t + 1 = n = 0 B n ( n ; λ a ) a n t n n ! λ α n = 0 n = 0 p ( p n ) ( 1 ) n p T p ( b ; λ a ) a n t n n ! = n = 0 ( l = 0 n ( n l ) B n l ( n ; λ a ) a n l λ a p = 0 l ( l p ) ( 1 ) l p T p ( b ; λ a ) a l ) t n n ! .

On the other hand, we write the function k(t) as

k ( t ) = 1 2 2 a e n 2 ( 2 a t ) λ 2 a e 2 a t 1 + ( 1 ) b + 1 λ a b 2 a t e 2 a t ( n + b 2 ) 2 ( λ 2 a e 2 a t 1 ) = 1 2 n = 0 B n ( n 2 ; λ 2 a ) 2 n a n t n n ! + ( 1 ) b + 1 λ a b 2 n = 0 B n ( b + n 2 ; λ 2 a ) 2 n a n t n n ! = n = 0 ( 2 n l a n ( B n ( n 2 ; λ 2 a ) + ( 1 ) b + 1 λ a b 2 B n ( b + n 2 ; λ n ) ) ) t n n ! .

Equating the coefficient of t n n ! , we obtain (16). □

References

  1. Liu H, Wang W: Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 2009, 309: 3346-3363. 10.1016/j.disc.2008.09.048

    Article  MathSciNet  Google Scholar 

  2. Lu D-Q, Srivastava HM: Some series identities involving the generalized Apostol type and related polynomials. Comput. Math. Appl. 2011, 62: 3591-3602. 10.1016/j.camwa.2011.09.010

    Article  MathSciNet  Google Scholar 

  3. Srivastava HM, Garg M, Choudhary S: A new generalization of the Bernoulli and related polynomials. Russ. J. Math. Phys. 2010, 20: 251-261.

    Article  MathSciNet  Google Scholar 

  4. Garg M, Jain K, Srivastava HM: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta function. Integral Transforms Spec. Funct. 2006, 17: 803-825. 10.1080/10652460600926907

    Article  MathSciNet  Google Scholar 

  5. Choi J, Jang SD, Srivastava HM: A generalization of the Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 2008, 19: 65-79.

    Article  MathSciNet  Google Scholar 

  6. Luo Q-M: The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transforms Spec. Funct. 2009, 20: 377-391. 10.1080/10652460802564324

    Article  MathSciNet  Google Scholar 

  7. He Y, Wang C: Some formulae of products of the Apostol-Bernoulli and Apostol-Euler polynomials. Discrete Dyn. Nat. Soc. 2012., 2012: Article ID 927953, 11 pp.

    Google Scholar 

  8. Jang L-C, Yi H, Shivashankara K, Kim T, Kim YH, Lee B: A note on symmetric properties of the twisted q -Bernoulli polynomials and the twisted generalized q -Bernoulli polynomials. Adv. Differ. Equ. 2010., 2010: Article ID 801580, 13 pp.

    Google Scholar 

  9. Jolany, H, Sharifi, H, Alikelaye, RE: Some results for the Apostol-Genocchi polynomials of higher order. Bull. Malays. Math. Sci. Soc. 36 (2012)

  10. Kim T: Symmetry p -adic invariant integral on Z p for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 2008, 14: 1267-1277. 10.1080/10236190801943220

    Article  Google Scholar 

  11. Kim T: On the symmetries of the q -Bernoulli polynomials. Abstr. Appl. Anal. 2008. doi:10.1155/2008/914347

    Google Scholar 

  12. Kim T: On the analogs of the Euler numbers and polynomials associated with p -adic q -integral on Z p at q=1 . J. Math. Anal. Appl. 2007, 331: 779-792. 10.1016/j.jmaa.2006.09.027

    Article  MathSciNet  Google Scholar 

  13. Kim Y-H, Hwang K-W: Symmetry of power sum and twisted Bernoulli polynomials. Adv. Stud. Contemp. Math - Jang’jun Math. Soc. 2009, 18: 127-133.

    MathSciNet  Google Scholar 

  14. Kim DS, Kim T, Choi J, Kim Y-H: Some identities on Bernoulli and Euler numbers. Discrete Dyn. Nat. Soc. 2012. doi:10.1155/2012/486158

    Google Scholar 

  15. Kim DS, Kim T, Dolgy D-V, Lee S-H: Some identities on Bernoulli and Euler polynomials associated with p -adic integral on Z p . Abstr. Appl. Anal. 2012. doi:10.1155/2012/847901

    Google Scholar 

  16. Kurt V: A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Appl. Math. Sci. (Ruse) 2009, 3: 2757-2764.

    MathSciNet  Google Scholar 

  17. Luo Q-M: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51: 631-642. 10.1016/j.camwa.2005.04.018

    Article  MathSciNet  Google Scholar 

  18. Ozarslan MA: Unified Apostol-Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 2011, 62: 2452-2462. 10.1016/j.camwa.2011.07.031

    Article  MathSciNet  Google Scholar 

  19. Simsek Y:Complete sum of products oh (h,q)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 2010, 11: 1331-1348.

    Article  MathSciNet  Google Scholar 

  20. Wang W, Wang W: Some results on power sums and Apostol type polynomials. Integral Transforms Spec. Funct. 2010, 21: 307-318. 10.1080/10652460903169288

    Article  MathSciNet  Google Scholar 

  21. Wang W, Jia C, Wang T: Some results on the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2008, 55: 1322-1332. 10.1016/j.camwa.2007.06.021

    Article  MathSciNet  Google Scholar 

  22. Yang SL: An identity of symmetry for the Bernoulli polynomials. Discrete Math. 2008, 308: 550-554. 10.1016/j.disc.2007.03.030

    Article  MathSciNet  Google Scholar 

  23. Yang SL, Qıao ZK: Some symmetry identities for the Euler polynomials. J. Math. Res. Expo. 2010, 30: 457-464.

    Google Scholar 

  24. Zhang Z, Yang H: Some identities for the generalized Apostol-Bernoulli polynomials. Comput. Math. Appl. 2008, 56: 2993-2999. 10.1016/j.camwa.2008.07.038

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dedicated to Professor Hari M Srivastava.

This paper was supported by the Scientific Research Project Administration of Akdeniz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli Kurt.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kurt, V. Some symmetry identities for the Apostol-type polynomials related to multiple alternating sums. Adv Differ Equ 2013, 32 (2013). https://doi.org/10.1186/1687-1847-2013-32

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-32

Keywords