Open Access

Strong differential subordinations and superordinations obtained with some new integral operators

Advances in Difference Equations20132013:317

https://doi.org/10.1186/1687-1847-2013-317

Received: 11 June 2013

Accepted: 20 September 2013

Published: 8 November 2013

Abstract

In this paper we study certain strong differential subordinations and superordinations obtained by using some new integral operators introduced in (Oros and Oros in Differential subordinations obtained with some new integral operator (to appear)).

MSC:30C80, 30C45, 30C20, 34A40.

Keywords

analytic function univalent function convex function strong differential subordination and superordination best dominant best subordinant

1 Introduction and preliminaries

The concept of differential subordination was introduced in [1, 2] and developed in [3] by Miller and Mocanu. The concept of differential superordination was introduced in [4] like a dual problem of the differential subordination by Miller and Mocanu and developed in [5]. The concept of strong differential subordination was introduced in [6] by Antonino and Romaguera and developed in [717]. The concept of strong differential superordination was introduced in [18] like a dual concept of the strong differential subordination and developed in [1921].

In [8] the author defines the following classes:

Denote by H ( U × U ¯ ) the class of analytic functions in U × U ¯ , where
U = { z C : | z | < 1 } , U ¯ = { z C : | z | 1 } , U = { z C : | z | = 1 } .
For a C and n N , we denote by
H ξ [ a , n ] = { f ( z , ξ ) H ( U × U ¯ ) : f ( z , ξ ) = a + a n ( ξ ) z n + a n + 1 ( ξ ) z n + 1 + } ,
with z U , ξ U ¯ , a k ( ξ ) holomorphic functions in U ¯ , k n . Let
A ξ n = { f ( z , ξ ) H ( U × U ¯ ) : f ( z , ξ ) = z + a n + 1 ( ξ ) z n + 1 + } ,
with z U , ξ U ¯ , a k ( ξ ) holomorphic functions in U ¯ , k n + 1 , and A ξ 1 = A ξ ,
H ξ u ( U ) = { f ( z , ξ ) H ξ [ a , n ] : f ( z , ξ )  is univalent in  U  for all  ξ U ¯ } , S ξ = { f ( z , ξ ) A ξ n : f ( z , ξ )  univalent in  U  for all  ξ U ¯ }
denote the class of univalent functions in H ( U × U ¯ ) ,
S ξ = { f ( z , ξ ) A ξ : Re z f z ( z , ξ ) f ( z , ξ ) > 0 , z U ,  for all  ξ U ¯ }
denote the class of normalized starlike functions in U × U ¯ ,
K ξ = { f ( z , ξ ) A ξ : Re ( z f z ′′ ( z , ξ ) f z ( z , ξ ) + 1 ) 0 , z U ,  for all  ξ U ¯ }

denote the class of normalized convex functions in U × U ¯ .

Let A ( p ) ξ denote the subclass of the functions f ( z , ξ ) H ( U × U ¯ ) of the form
f ( z , ξ ) = z p + k = p + 1 a k ( ξ ) z k , p N , z U ,  for all  ξ U ¯ ,  and set  A ( 1 ) ξ = A ξ .

To prove our main results, we need the following definitions and lemmas.

Definition 1.1 [7, 18]

Let F ( z , ξ ) and f ( z , ξ ) be members of H ( U × U ¯ ) . The function f ( z , ξ ) is said to be strongly subordinate to F ( z , ξ ) , or F ( z , ξ ) is said to be strongly superordinate to f ( z , ξ ) if there exists a function w analytic in U, with w ( 0 ) = 0 and | w ( z ) | < 1 such that f ( z , ξ ) = F ( w ( z ) , ξ ) for all ξ U ¯ . In such a case, we write f ( z , ξ ) F ( z , ξ ) , z U , ξ U ¯ . If F ( z , ξ ) is univalent, then f ( z , ξ ) F ( z , ξ ) if and only if F ( 0 , ξ ) = f ( 0 , ξ ) and f ( U × U ¯ ) F ( U × U ¯ ) .

Remark 1.1 If F ( z , ξ ) F ( z ) and f ( z , ξ ) f ( z ) , then the strong differential subordination or superordination becomes the usual notions of differential subordination and superordination, respectively.

Definition 1.2 [7]

We denote by Q ξ the set of functions q ( , ξ ) that are analytic and injective, as functions of z on U ¯ E ( q ( z , ξ ) ) , where E ( q ( z , ξ ) ) = { ζ U : lim z ζ q ( z , ξ ) = } , and are such that q ( ζ , ξ ) 0 for ζ U E ( q ( z , ξ ) ) , ξ U ¯ . The subclass of Q ξ for which q ( 0 , ξ ) = a is denoted by Q ξ ( a ) .

Let Ψ : C 3 × U × U ¯ C , and let h ( z , ξ ) be univalent in U for all ξ U ¯ . If p ( z , ξ ) is analytic in U × U ¯ and satisfies the (second-order) strong differential subordination
Ψ ( p ( z , ξ ) , z p z ( z , ξ ) , z 2 p z 2 ′′ ( z , ξ ) ; z , ξ ) h ( z , ξ ) , z U , ξ U ¯ ,
(1.1)

then p ( z , ξ ) is called a solution of the strong differential subordination.

The univalent function q ( z , ξ ) is called a dominant of the solutions of the strong differential subordination, or simply a dominant, if p ( z , ξ ) q ( z , ξ ) for all p ( z , ξ ) satisfying (1.1). A dominant q ˜ ( z , ξ ) that satisfies q ˜ ( z , ξ ) q ( z , ξ ) for all dominants q ( z , ξ ) of (1.1) is said to be the best dominant of (1.1). Note that the best dominant is unique up to a rotation of U × U ¯ .

Let φ : C 3 × U × U ¯ C , and let h ( z , ξ ) be analytic in U × U ¯ . If p ( z , ξ ) and φ ( p ( z , ξ ) , z p z ( z , ξ ) , z 2 p z 2 ′′ ( z , ξ ) ; z , ξ ) are univalent in U for all ξ U ¯ and satisfy the (second-order) strong differential superordination,

then p ( z , ξ ) is called a solution of the strong differential superordination. An analytic function q ( z , ξ ) is called a subordinant of the solutions of the strong differential superordination, or more simple a subordinant if q ( z , ξ ) p ( z , ξ ) for all p ( z , ξ ) satisfying (1.1′). A univalent subordinant q ˜ ( z , ξ ) that satisfies q ( z , ξ ) q ˜ ( z , ξ ) for all subordinants q ( z , ξ ) of (1.1′) is said to be the best subordinant. Note that the best subordinant is unique up to a rotation of U × U ¯ .

We rewrite the operators defined in [22] for the classes presented earlier as follows.

Definition 1.3 [22]

For f ( z , ξ ) A ξ n , n N , m N , γ C , let L γ be the integral operator given by L γ : A ξ n A ξ n ,
L γ 0 f ( z , ξ ) = f ( z , ξ ) , L γ 1 f ( z , ξ ) = γ + 1 z γ 0 z L γ 0 f ( t , ξ ) t γ 1 d t , L γ 2 f ( z , ξ ) = γ + 1 z γ 0 z L γ 1 f ( t , ξ ) t γ 1 d t , , L γ m f ( z , ξ ) = γ + 1 z γ 0 z L γ m 1 f ( t , ξ ) t γ 1 d t .

By using Definition 1.3, we can prove the following properties for this integral operator:

For f ( z , ξ ) A ξ n , n N , m N , γ C , we have
L γ m f ( z , ξ ) = z + k = n + 1 ( γ + 1 ) m ( γ + k ) m a k ( ξ ) z k , z U , ξ U ¯ ,
(1.2)
and
z [ L γ m f ( z , ξ ) ] z = ( γ + 1 ) L γ m 1 f ( z , ξ ) γ L γ m f ( z , ξ ) , z U , ξ U ¯ .
(1.3)

Definition 1.4 [22]

For p N , m N , f ( z , ξ ) A ( p ) ξ , let H be the integral operator given by H : A ( p ) ξ A ( p ) ξ ,
H 0 f ( z , ξ ) = f ( z , ξ ) , H 1 f ( z , ξ ) = p + 1 z 0 z H 0 f ( t , ξ ) d t , H 2 f ( z , ξ ) = p + 1 z 0 z H 1 f ( t , ξ ) d t , , H m f ( z , ξ ) = p + 1 z 0 z H m 1 f ( t , ξ ) d t .

By using Definition 1.4, we can prove the following properties for this integral operator:

For f ( z , ξ ) A ( p ) ξ , m N , p N , we have
H m f ( z , ξ ) = z p + k = p + 1 ( p + 1 ) m ( p + k ) m a k ( ξ ) z k , z U , ξ U ¯ ,
(1.4)
and
z [ H m f ( z , ξ ) ] = ( p + 1 ) H m 1 f ( z , ξ ) H m f ( z , ξ ) , z U , ξ U ¯ .
(1.5)

We rewrite the following lemmas for the classes presented earlier (the proofs are similar to those found in [6]).

Lemma 1.1 [[3], Th. 3.4, p.132]

Let the function q ( z , ξ ) be univalent in U for all ζ U ¯ , and let θ and φ be analytic in a domain D containing q ( U × U ¯ ) with q ( ω , ξ ) 0 when ω q ( U × U ¯ ) .

Set Q ( z , ξ ) = z q z ( z , ξ ) φ ( q ( z , ξ ) ) and h ( z , ξ ) = θ ( q ( z , ξ ) ) + Q ( z , ξ ) . Suppose that
  1. (i)

    Q ( z , ξ ) is starlike univalent in U for all ξ U ¯ ,

     
  2. (ii)

    Re z h z ( z , ξ ) Q ( z , ξ ) > 0 , z U for all ξ U ¯ .

     
If p ( z , ξ ) is analytic in U × U ¯ with p ( 0 , ξ ) = q ( 0 , ξ ) , p ( U × U ¯ ) D and
θ ( p ( z , ξ ) ) + z p ( z , ξ ) φ ( p ( z , ξ ) ) θ ( q ( z , ξ ) ) + z q ( z , ξ ) φ ( q ( z , ξ ) ) ,

then p ( z , ξ ) q ( z , ξ ) , z U , ξ U ¯ and q ( z , ξ ) is the best strong dominant.

Lemma 1.2 [[5], Corollary 1.1]

Let α , β , γ C , and let h ( z , ξ ) be convex in U for all ζ U ¯ , with h ( 0 , ξ ) = a and q ( z , ξ ) h ( z , ξ ) , z U , ξ U ¯ . Suppose that the differential equation q ( z , ξ ) + z q z ( z , ξ ) q ( z , ξ ) = h ( z , ξ ) has a univalent solution q ( z , ξ ) that satisfies q ( 0 , ξ ) = a .

If p ( z , ξ ) [ a , 1 ] Q ξ and p ( z , ξ ) + z p z ( z , ξ ) β p ( z , ξ ) + γ is univalent in U for all ξ U ¯ , then h ( z , ξ ) p ( z , ξ ) + z p z ( z , ξ ) β p ( z , ξ ) + γ implies q ( z , ξ ) p ( z , ξ ) , z U , ξ U ¯ . The function q ( z , ξ ) is the best subordinant.

2 Main results

We first give results related to strong differential subordinations.

Theorem 2.1 Let q ( z , ξ ) be univalent in U for all ξ U ¯ , with q ( 0 , ξ ) = 1 and q ( z , ξ ) 0 , and suppose that
  1. (j)

    Re q ( z , ξ ) > 0 ,

     

(jj) Re ( 1 + z q z 2 ′′ ( z , ξ ) q z ( z , ξ ) z q z ( z , ξ ) q ( z , ξ ) ) > 0 .

Let n N , γ C , f ( z , ξ ) A ξ n and
L γ m f ( z , ξ ) [ L γ m f ( z , ξ ) ] z z + z [ L γ m f ( z , ξ ) ] z 2 ′′ [ L γ m f ( z , ξ ) ] z + [ L γ m f ( z , ξ ) ] z L γ m f ( z , ξ ) 1 q ( z , ξ ) + z q z ( z , ξ ) q ( z , ξ ) , z U , ξ U ¯ ,
(2.1)
then
[ L γ m f ( z , ξ ) ] z L γ m f ( z , ξ ) z q ( z , ξ ) , z U , ξ U ¯ ,

and q ( z , ξ ) is the best dominant.

Proof We let
p ( z , ξ ) = [ L γ m f ( z , ξ ) ] z L γ m f ( z , ξ ) z , z U , ξ U ¯ .
(2.2)
Using (1.2) in (2.2), we have
p ( z , ξ ) = [ z + k = n + 1 ( γ + 1 ) m ( γ + k ) m a k ( ξ ) z k ] [ z + k = n + 1 ( γ + 1 ) m ( γ + k ) m a k ( ξ ) z k ] z = 1 + A n ( ξ ) z n + ,

and since p ( 0 , ξ ) = 1 , we obtain that p ( z , ξ ) ξ [ 1 , n ] .

Differentiating (2.2), and after a short calculus, we obtain
p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) = [ L γ m f ( z , ξ ) ] z L γ m f ( z , ξ ) z + z [ L γ m f ( z , ξ ) ] z 2 ′′ [ L γ m f ( z , ξ ) ] z + z [ L γ m f ( z , ξ ) ] z L γ m f ( z , ξ ) 1 .
(2.3)
Using (2.3) in (2.1), the strong differential subordination (2.1) becomes
p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) q ( z , ξ ) + z q z ( z , ξ ) q ( z , ξ ) , z U , ξ U ¯ .
(2.4)
In order to prove the theorem, we shall use Lemma 1.1. For that, we show that the necessary conditions are satisfied. Let the functions Θ : C C and φ : C C , with
Θ ( ω ) = ω
(2.5)
and
φ ( ω ) = 1 ω , φ ( w ) 0 .
(2.6)
We check the conditions from the hypothesis of Lemma 1.1. Using (2.6), we have
Q ( z , ξ ) = z q z ( z , ξ ) q ( z , ξ ) .
(2.7)
Differentiating (2.7), and after a short calculus, we obtain
z Q z ( z , ξ ) Q ( z , ξ ) = 1 + z q z 2 ′′ ( z , ξ ) q z ( z , ξ ) z q z ( z , ξ ) q z ( z , ξ ) .
(2.8)
Using (jj) in (2.8), we have
Re z Q z ( z , ξ ) Q ( z , ξ ) > 0 , z U , ξ U ¯ ,
(2.9)
hence the function Q ( z , ξ ) is starlike in U for all ξ U ¯ . Using (2.5) we have
h ( z , ξ ) = θ ( q ( z , ξ ) ) + Q ( z , ξ ) = q ( z , ξ ) + Q ( z , ξ ) .
(2.10)
Differentiating (2.10) and using (2.7), after a short calculus, we obtain
Re z h z ( z , ξ ) Q ( z , ξ ) = Re [ q ( z , ξ ) + z Q z ( z , ξ ) Q ( z , ξ ) ] .
(2.11)
Using (j) and (2.9) in (2.11), we have Re z h z ( z , ξ ) Q ( z , ξ ) > 0 , z U , ξ U ¯ . Using (2.5) and (2.6), we get
θ ( p ( z , ξ ) ) = p ( z , ξ ) , φ ( p ( z , ξ ) ) = 1 p ( z , ξ ) , Q ( q ( z , ξ ) ) = q ( z , ξ ) , φ ( q ( z , ξ ) ) = 1 q ( z , ξ ) ,
and the strong differential subordination (2.1) becomes
Q ( p ( z , ξ ) ) + z p ( z , ξ ) φ ( p ( z , ξ ) ) θ ( q ( z , ξ ) ) + z q ( z , ξ ) φ ( q ( z , ξ ) ) .
Using Lemma 1.1, we obtain
p ( z , ξ ) q ( z , ξ ) , i.e. [ L γ m f ( z , ξ ) ] z L γ m f ( z , ξ ) z q ( z , ξ ) , z U , ξ U ¯ ,

and q ( z , ξ ) is the best dominant. □

Theorem 2.2 Let q ( z , ξ ) be univalent in U for all ξ U ¯ , with q ( 0 , ξ ) = p 1 and q ( z , ξ ) 1 , z U , for all ξ U ¯ , and suppose that
  1. (l)

    Re q ( z , ξ ) > 1 ,

     

(ll) Re [ 1 + z q z 2 ′′ ( z , ξ ) q z ( z , ξ ) z q z ( z , ξ ) 1 + q ( z , ξ ) ] > 0 , z U , ξ U ¯ .

Let p N , f ( z , ξ ) A ( p ) ξ and
z ( H m f ( z , ξ ) ) z 2 ′′ ( H m f ( z , ξ ) ) z + ( H m f ( z , ξ ) ] z z p 1 p + 1 q ( z , ξ ) + 1 + z q z ( z , ξ ) q ( z , ξ ) + 1 , z U , ξ U ¯ ,
(2.12)

then z ( H m f ( z , ξ ) ) z z p 1 1 q ( z , ξ ) , and q ( z , ξ ) is the best dominant.

Proof We let
1 + p ( z , ξ ) = ( H m f ( z , ξ ) ) z z p 1 , z U , ξ U ¯ .
(2.13)
From (1.4), we have
p ( z , ξ ) + 1 = ( z p + k = p + 1 ( p + 1 ) m ( p + k ) m a k ( ξ ) z k ) z p 1 = p + k = p + 1 ( p + 1 ) m ( p + k ) m a k ( ξ ) k z .
Since p ( 0 , ξ ) = p 1 , we obtain that p ( z , ξ ) H ξ [ p 1 , 1 ] . Differentiating (2.13), and after a short calculus, we obtain
z ( H m f ( z , ξ ) ) z 2 ′′ ( H m f ( z , ξ ) ) z + ( H m f ( z , ξ ) ] z z p 1 p + 1 = p ( z , ξ ) + 1 + z p z ( z , ξ ) p ( z , ξ ) + 1 .
(2.14)
Using (2.14) in (2.12), the strong differential subordination becomes
p ( z , ξ ) + 1 + z p z ( z , ξ ) p ( z , ξ ) + 1 q ( z , ξ ) + 1 + z q z ( z , ξ ) q ( z , ξ ) + 1 , z U , ξ U ¯ .
(2.15)
In order to prove the theorem, we shall use Lemma 1.1. For that, we show that the necessary conditions are satisfied. Let the functions Θ : C C and φ : C C , with
Θ ( ω ) = ω + 1
(2.16)
and
φ ( ω ) = 1 ω + 1 , φ ( w ) 0 .
(2.17)
We check the conditions from the hypothesis of Lemma 1.1. Using (2.17), we have
Q ( z , ξ ) = z q z ( z , ξ ) φ ( q ( z , ξ ) ) = z q z ( z , ξ ) 1 q ( z , ξ ) + 1 .
(2.18)
Differentiating (2.18), and after a short calculus, we obtain
z Q z ( z , ξ ) Q ( z , ξ ) = 1 + z q z 2 ′′ ( z , ξ ) q z ( z , ξ ) z q z ( z , ξ ) q z ( z , ξ ) + 1 .
(2.19)
Using (ll) in (2.19), we have
Re z Q z ( z , ξ ) Q ( z , ξ ) = Re ( 1 + z q z 2 ′′ ( z , ξ ) q z ( z , ξ ) z q z ( z , ξ ) q z ( z , ξ ) + 1 ) > 0 , z U , ξ U ¯ ,
(2.20)
hence the function Q ( z , ξ ) is starlike in U for all ξ U ¯ . Using (2.16) we have
h ( z , ξ ) = θ ( q ( z , ξ ) ) + Q ( z , ξ ) = q ( z , ξ ) + 1 + Q ( z , ξ ) .
(2.21)
Differentiating (2.21) and using (2.18), (2.20) and (l), after a short calculus, we obtain
Re z h z ( z , ξ ) Q ( z , ξ ) = Re [ q ( z , ξ ) + 1 + z Q z ( z , ξ ) Q ( z , ξ ) ] > 0 .
(2.22)
Using (2.16) and (2.17), we get
θ ( p ( z , ξ ) ) = p ( z , ξ ) + 1 , φ ( p ( z , ξ ) ) = 1 p ( z , ξ ) + 1 , θ ( q ( z , ξ ) ) = q ( z , ξ ) + 1 , φ ( q ( z , ξ ) ) = 1 q ( z , ξ ) + 1 ,
and the strong differential subordination (2.12) becomes
θ ( p ( z , ξ ) ) + z p z ( z , ξ ) φ ( p ( z , ξ ) ) θ ( q ( z , ξ ) ) + z q z ( z , ξ ) φ ( q ( z , ξ ) ) .

Using Lemma 1.1, we have p ( z , ξ ) q ( z , ξ ) , i.e., [ H m f ( z , ξ ) ] z z p 1 1 q ( z , ξ ) and q ( z , ξ ) is the best dominant. □

Next we give results related to strong differential superordinations.

Theorem 2.3 Let h ( z , ξ ) be convex in U for all ξ U ¯ , with h ( 0 , ξ ) = a . Suppose that the differential equation
q ( z , ξ ) + z q z ( z , ξ ) q ( z , ξ ) = h ( z , ξ ) , z U , ξ U ¯ ,
(2.23)

has a univalent solution q ( z , ξ ) that satisfies q ( 0 , ξ ) = a and q ( z , ξ ) h ( z , ξ ) .

If p ( z , ξ ) H [ a , 1 ] Q ξ and p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) is univalent in U for all ξ U ¯ , f ( z , ξ ) A ξ , then
h ( z , ξ ) L γ m f ( z , ξ ) z + z ( L γ m f ( z , ξ ) ) z L γ m f ( z , ξ ) 1
(2.24)

implies q ( z , ξ ) L γ m f ( z , ξ ) z , z U , ξ U ¯ . The function q ( z , ξ ) is the best subordinant.

Proof We let
p ( z , ξ ) = L γ m f ( z , ξ ) z , z U , ξ U ¯ .
(2.25)
From (1.2), we have
p ( z , ξ ) = z + k = 2 ( γ + 1 ) m ( γ + k ) m a k ( ξ ) z k z = 1 + k = 2 ( γ + 1 ) m ( γ + k ) m a k ( ξ ) z k 1
(2.26)

and since p ( 0 , ξ ) = 1 , we obtain that p ( z , ξ ) H [ 1 , 1 ] Q ξ .

Differentiating (2.26), and after a short calculus, we obtain
p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) = z ( L γ m f ( z , ξ ) ) z L γ m f ( z , ξ ) + L γ m f ( z , ξ ) z 1 .
(2.27)
Using (2.27) in (2.24), the strong differential superordination becomes
q ( z , ξ ) + z q z ( z , ξ ) q ( z , ξ ) p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) , z U , ξ U ¯ .
(2.28)

Using Lemma 1.2, we obtain q ( z , ξ ) p ( z , ξ ) , i.e., q ( z , ξ ) L γ m f ( z , ξ ) z , z U , ξ U ¯ . □

Example 2.1 Let h ( z , ξ ) = 1 z ξ 1 + z ξ , z U , ξ U ¯ , with Re ( 1 + z h z 2 ′′ ( z , ξ ) h z ( z , ξ ) ) = Re 1 z ξ 1 + z ξ > 0 , z U , ξ U ¯ . From Theorem 2.3 we have that if m = 1 , n = 1 , γ = 1 + i , f ( z , ξ ) = z + ξ 2 z 2 , and 1 + i 2 z + 1 + ξ 1 + i 2 z 1 + 1 + i 2 ξ 2 z is univalent in U for ξ U ¯ , then
1 z ξ 1 + z ξ 1 + i 2 z + 1 + ξ 1 + i 2 z 1 + 1 + i 2 ξ 2 z
implies
1 1 + z ξ z + ξ 2 1 + i 2 z 2 , z U , ξ U ¯ .
Theorem 2.4 Let h ( z , ξ ) be convex in U for all ξ U ¯ , with h ( 0 , ξ ) = p . Suppose that the differential equation
q ( z , ξ ) + z q z ( z , ξ ) q ( z , ξ ) = h ( z , ξ ) , z U , ξ U ¯ ,

has a univalent solution q ( z , ξ ) that satisfies q ( 0 , ξ ) = p and q ( z , ξ ) h ( z , ξ ) .

If p ( z , ξ ) H [ p , 1 ] Q ξ and p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) is univalent in U for all ξ U ¯ , f ( z , ξ ) A ( p ) ξ , then
h ( z , ξ ) 1 + z 2 ( H m f ( z , ξ ) ) z 2 ′′ ( H m f ( z , ξ ) ) z , z U , ξ U ¯ ,
(2.29)

implies q ( z , ξ ) z ( H m f ( z , ξ ) ) z H m f ( z , ξ ) . The function q ( z , ξ ) is the best subordinant.

Proof Using (1.5) in (2.29), the strong differential superordination becomes
h ( z , ξ ) 1 + z ( H m f ( z , ξ ) ) z 2 ′′ ( H m f ( z , ξ ) ) z .
(2.30)
We let
p ( z , ξ ) = z ( H m f ( z , ξ ) ) z H m f ( z , ξ ) .
(2.31)
From (1.4), we have
p ( z , ξ ) = z ( p z p 1 + k = p + 1 ( p + 1 ) m ( p + k ) m a k ( ξ ) k z k 1 ) z p + k = p + 1 ( p + 1 ) m ( p + k ) m a k ( ξ ) z k = p + k = p + 1 ( p + 1 ) m ( p + k ) m a k ( ξ ) z k 1 + k = p + 1 ( p + 1 ) m ( p + k ) m a k ( ξ ) z k p .

Since p ( 0 , ξ ) = p , we obtain that p ( z , ξ ) H [ p , 1 ] Q ξ .

Differentiating (2.31), and after a short calculus, we obtain
p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) = 1 + z ( H m f ( z , ξ ) ) z 2 ′′ ( H m f ( z , ξ ) ) z .
(2.32)
Using (2.32) in (2.30), the strong differential superordination becomes
h ( z , ξ ) p ( z , ξ ) + z p z ( z , ξ ) p ( z , ξ ) , z U , ξ U ¯ .
(2.33)

Using Lemma 1.2, we obtain q ( z , ξ ) p ( z , ξ ) , i.e., q ( z , ξ ) z ( H m f ( z , ξ ) ) z H m f ( z , ξ ) . □

Remark 2.1 Using another integral operator, the author finds interesting results in strong differential subordinations and superordinations in [14].

Declarations

Acknowledgements

The author thanks the referee for his/her valuable suggestions to improve the present article.

Authors’ Affiliations

(1)
Department of Mathematics, University of Oradea

References

  1. Miller SS, Mocanu PT: Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65: 298-305.MathSciNetView ArticleGoogle Scholar
  2. Miller SS, Mocanu PT: Differential subordinations and univalent functions. Mich. Math. J. 1981, 28: 157-171.MathSciNetView ArticleMATHGoogle Scholar
  3. Miller SS, Mocanu PT Pure and Applied Mathematics. In Differential Subordinations. Theory and Applications. Dekker, New York; 2000.Google Scholar
  4. Miller SS, Mocanu PT: Subordinants of differential superordinations. Complex Var. Theory Appl. 2003, 48(10):815-826. 10.1080/02781070310001599322MathSciNetView ArticleMATHGoogle Scholar
  5. Miller SS, Mocanu PT: Briot-Bouquet differential superordinations and sandwich theorems. J. Math. Anal. Appl. 2007, 329(1):327-335. 10.1016/j.jmaa.2006.05.080MathSciNetView ArticleMATHGoogle Scholar
  6. Antonino JA, Romaguera S: Strong differential subordination to Briot-Bouquet differential equations. J. Differ. Equ. 1994, 114: 101-105. 10.1006/jdeq.1994.1142MathSciNetView ArticleMATHGoogle Scholar
  7. Oros GI, Oros G: Strong differential subordination. Turk. J. Math. 2009, 33: 249-257.MathSciNetMATHGoogle Scholar
  8. Oros GI: On a new strong differential subordination. Acta Univ. Apulensis 2012, 32: 6-15.MathSciNetMATHGoogle Scholar
  9. Oros GI: Briot-Bouquet strong differential subordination. J. Comput. Anal. Appl. 2012, 14(4):733-737.MathSciNetMATHGoogle Scholar
  10. Alb Lupas A, Oros GI, Oros G: On special strong differential subordinations using Salagean and Ruscheweyh operators. J. Comput. Anal. Appl. 2012, 14(2):266-270.MathSciNetMATHGoogle Scholar
  11. Alb Lupas A: On special strong differential subordinations using multiplier transformation. Appl. Math. Lett. 2012, 25: 624-630. 10.1016/j.aml.2011.09.074MathSciNetView ArticleMATHGoogle Scholar
  12. Alb Lupas A, Oros GI, Oros G: A note on special differential subordinations using multiplier transformation. J. Comput. Anal. Appl. 2012, 14(2):261-265.MathSciNetMATHGoogle Scholar
  13. Oros GI, Oros G: Second order non-linear strong differential subordinations. Bull. Belg. Math. Soc. Simon Stevin 2009, 16(1):171-178.MathSciNetMATHGoogle Scholar
  14. Cho NE: Strong differential subordination properties for analytic functions involving the Komatu integral operator. Bound. Value Probl. 2013., 2013: Article ID 44 10.1186/1687-2770-2013-44Google Scholar
  15. Oros GI: Briot-Bouquet strong differential subordination. J. Comput. Anal. Appl. 2012, 14(4):733-737.MathSciNetMATHGoogle Scholar
  16. Oros GI: Sufficient conditions for univalence obtained by using second order linear strong differential subordinations. Turk. J. Math. 2010, 34(1):13-20.MathSciNetMATHGoogle Scholar
  17. Şendruţiu R: Strong differential subordinations obtained by Ruscheweyh operator. J. Comput. Anal. Appl. 2012, 14(2):328-340.MathSciNetMATHGoogle Scholar
  18. Oros GI: Strong differential superordination. Acta Univ. Apulensis 2009, 19: 110-116.MATHGoogle Scholar
  19. Oros GI: An application of the subordination chains. Fract. Calc. Appl. Anal. 2010, 13(5):521-530.MathSciNetMATHGoogle Scholar
  20. Oros G: Briot-Bouquet strong differential superordinations and sandwich theorems. Math. Rep. 2010, 12(62)(3):277-283.MathSciNetMATHGoogle Scholar
  21. Oros GI: Briot-Bouquet differential subordinations and superordinations using the Dziok-Srivastava linear operator. Math. Rep. 2009, 11(2):155-163.MathSciNetMATHGoogle Scholar
  22. Oros, GI, Oros, G: Differential subordinations obtained with some new integral operator (to appear)Google Scholar

Copyright

© Oros; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.