Figure 2From: The roles of conic sections and elliptic curves in the global dynamics of a class of planar systems of rational difference equationsThe figures represent attractivity of the equilibria of system ( 1 ) when (clockwise): (a) ${\mathit{\beta}}_{\mathbf{1}}\mathbf{-}{\mathit{A}}_{\mathbf{1}}\mathbf{\le}\mathbf{0}$ and ${\mathit{\gamma}}_{\mathbf{2}}\mathbf{-}{\mathit{A}}_{\mathbf{2}}\mathbf{\le}\mathbf{0}$, (b) ${\mathit{\beta}}_{\mathbf{1}}\mathbf{-}{\mathit{A}}_{\mathbf{1}}\mathbf{\le}\mathbf{0}$ and ${\mathit{\gamma}}_{\mathbf{2}}\mathbf{-}{\mathit{A}}_{\mathbf{2}}\mathbf{>}\mathbf{0}$, (c) ${\mathit{\beta}}_{\mathbf{1}}\mathbf{-}{\mathit{A}}_{\mathbf{1}}\mathbf{>}\mathbf{0}$ and ${\mathit{\gamma}}_{\mathbf{2}}\mathbf{-}{\mathit{A}}_{\mathbf{2}}\mathbf{\le}\mathbf{0}$, and (d) ${\mathit{\beta}}_{\mathbf{1}}\mathbf{-}{\mathit{A}}_{\mathbf{1}}\mathbf{>}\mathbf{0}$ and ${\mathit{\gamma}}_{\mathbf{2}}\mathbf{-}{\mathit{A}}_{\mathbf{2}}\mathbf{>}\mathbf{0}$. The dark and light lines respectively represent equilibrium curves ${E}_{1}$ and ${E}_{2}$.Back to article page