Skip to main content

Theory and Modern Applications

q-Fractional calculus for Rubin’s q-difference operator

Abstract

In this paper we introduce a fractional q-integral operator and derivative as a generalization of Rubin’s q-difference operator. We also reformulate the definition of the q 2 -Fourier transform and the q-analogue of the Fourier multiplier introduced by Rubin in (J. Math. Anal. Appl. 212(2):571-582, 1997; Proc. Am. Math. Soc. 135(3):777-785, 2007). As applications, we give summation formulas for ϕ 1 2 finite series, we also use the q 2 -Fourier transform and Hahn q-Laplace transform to solve a fractional q-diffusion equation.

MSC:39A12, 33D15, 42A38, 35R11.

1 Introduction and preliminaries

Let q be a positive number, 0<q<1. In the following, we follow the notations and notions of q-hypergeometric functions, the q-gamma function Γ q (x), Jackson q-exponential functions E q (x), and the q-shifted factorial as in [1, 2]. The q-difference operator is defined by

D q f(z):= f ( z ) f ( q z ) z q z (z0).
(1.1)

Jackson [3] introduced an integral denoted by

a b f(x) d q x

as a right inverse of the q-derivative. It is defined by

a b f(t) d q t:= 0 b f(t) d q t 0 a f(t) d q t(a,bC),
(1.2)

where

0 x f(t) d q t:=(1q) n = 0 x q n f ( x q n ) (xC),
(1.3)

provided that the series on the right-hand side of (1.3) converges at x=a and b.

There is no unique canonical choice for the q-integration over [0,). In [4], Hahn defined the q-integration for a function f over [0,) by

0 f(t) d q t=(1q) n = q n f ( q n ) ,

while in [5] Matsuo defined q-integrations on the interval [0,) and (,) by

0 / b f(t) d q t:= 1 q b n = q n f ( q n / b ) (b>0),
(1.4)
/ b / b f(t) d q t= 1 q b q n ( f ( q n / b ) + f ( q n / b ) ) ,
(1.5)

respectively, provided that the series converges absolutely. For any q(0,1) and 0<b<, we define the spaces

L p ( R b , q ) : = { f : / b / b | f ( x ) | p d q x < , p 1 } , R b , q : = { ± q n / b : n Z } , L ( R b , q ) : = { f : f : = sup { f ( ± q n / b ) n Z } < } .

We shall use the particular notation R q , R ˜ q and R ˜ q , + to denote R 1 , q , R 1 q , q and { q k 1 q ,kZ}, respectively. One can verify that L 2 ( R b , q ) associated with the inner product

f,g:= / b / b f(t) g ( t ) ¯ d q t,f,g L 2 ( R b , q ),

is a Hilbert space. The Riemann-Liouville fractional q-integral operator is introduced by Al-Salam in [6] and later by Agarwal in [7] and defined by

I q α f(x):= x α 1 Γ q ( α ) 0 x ( q t / x ; q ) α 1 f(t) d q t,α{1,2,}.
(1.6)

Using (1.3), (1.6) reduces to

I q α f(x)= x α ( 1 q ) α n = 0 q n ( q α ; q ) n ( q ; q ) n f ( x q n ) ,
(1.7)

which is valid for all α. The Riemann-Liouville fractional q-derivative of order α, α>0, is defined by

D q α = D q k I q k α ( k = α ) .

Rubin in [8, 9] introduced the q-difference operator

q f(z)= f ( q 1 z ) + f ( q 1 z ) f ( q z ) + f ( q z ) 2 f ( z ) 2 ( 1 q ) z (z0).
(1.8)

It is straightforward to prove that if a function f is differentiable at a point z, then

lim q 1 q f(z)= f (z).

Also,

δ q f(z)={ D q f ( z ) if  f  is odd , 1 q D q 1 f ( z ) if  f  is even .

Let f and g be functions defined on a set A, where A satisfies

zA± q ± 1 zA,

and let f e and f o be the even and odd parts of f, respectively. The following properties of the q operator are from [9, 10] and hold for all zA{0}.

  1. (i)

    q f(z)= 1 q D q 1 f e (z)+ D q f o (z).

  2. (ii)

    For two functions f and g,

  • if f is even and g is odd, then

    q (fg)(z)=qg(z)( q f)(qz)+f(qz) q g(z);
  • if f and g are even, then

    q (fg)(z)= q f(z)g(z)+f(z/q) q g(z);
  • if f and g are odd, then

    q (fg)(z)= 1 q ( f ( z ) ( q g ) ( z / q ) + ( q f ) ( z / q ) g ( z / q ) ) .

The q-translation ε y is introduced by Ismail in [2] and is defined on monomials by

ε y x n := x n ( y / x ; q ) n ,
(1.9)

and it is extended to polynomials as a linear operator. Thus

ε y ( n = 0 m f n x n ) := n = 0 m f n x n ( y / x ; q ) n .
(1.10)

The q-translation operator is defined for x a , a>0, to be

ε y x a := x a ( y / x ; q ) a .
(1.11)

In [4], Hahn defined the following q-analogue of the Laplace transform:

L s q f(x)=ϕ(s)= 1 1 q 0 s 1 E q (qsx)f(x) d q x ( Re ( s ) > 0 ) .
(1.12)

Abdi [11] studied certain properties of these q-transforms. In [12], he used these analogues to solve linear q-difference equations with constant coefficients and certain allied equations. In [[4], equation (9.5)], Hahn defined the convolution of two functions F, G to be

(FG)(x)= x 1 q 0 1 F(tx)G[xtqx] d q t,
(1.13)

where G[xy], for

G(x):= n = 0 a n x n ,

is defined to be

G[xy]:= n = 0 a n [ x y ] n ,with  [ x y ] n := x n ( y / x ; q ) n .

Using the definition of q-integration, (FG) is nothing but

(FG)(x)= 1 1 q 0 x F(t) ε q t G(x) d q t,
(1.14)

where ε is the translation operator (1.10). It is remarked by Hahn [[4], p.373] that the convolution theorem

L s q (FG) = q L s F q L s G
(1.15)

holds. One can verify that if Φ(s): = q L s F(x) and 0<α<1, then

L s q D q α F(x)= s α ( 1 q ) α Φ(s) I q 1 α F ( 0 + ) 1 ( 1 q ) ;
(1.16)

see [13].

2 Orthogonality relations and completeness criteria

Koornwinder and Swarttouw introduced a q-analogue of the cosine and sine Fourier transform in [14] with the functions Cos(z; q 2 ) and Sin(z; q 2 ) defined by

Cos ( z ; q 2 ) = k = 0 ( 1 ) k q k ( k + 1 ) ( z ( 1 q ) ) 2 k ( q ; q ) 2 k Cos ( z ; q 2 ) = 1 ϕ 1 ( 0 ; q ; q 2 , q 2 z 2 ( 1 q ) 2 ) , Sin ( z ; q 2 ) = k = 0 ( 1 ) k q k ( k + 1 ) ( z ( 1 q ) ) 2 k + 1 ( q ; q ) 2 k + 1 Sin ( z ; q 2 ) = z 1 ϕ 1 ( 0 ; q 3 ; q 2 , q 2 z 2 ( 1 q ) 2 ) .
(2.1)

A q-analogue of the exponential function is introduced in [8, 9] and defined by

e ( z ; q 2 ) :=Cos ( i z ; q 2 ) iSin ( i z ; q 2 ) .

Straightforward calculations give

δ q Cos ( λ x ; q 2 ) =λSin ( λ x ; q 2 ) , δ q Sin ( λ x ; q 2 ) =λCos ( λ x ; q 2 )

and

δ q e ( λ x ; q 2 ) =λe ( λ x ; q 2 ) ,

where xC and λ is a fixed complex number. Fitouhi et al. in [15] proved that

| ( z ; q ) ( q ; q ) 1 ϕ 1 ( 0 ; z , q , q 1 + n ) | ( | z | , q ; q ) ( q ; q ) { 1 if  n 0 , | z | n q n ( n + 1 ) 2 if  n < 0 .

Hence,

| Sin ( q n 1 q ; q 2 ) | ( q 2 ; q 2 ) ( q ; q 2 ) { 1 if  n 0 , q n 2 if  n < 0
(2.2)

and

| Cos ( q n 1 q ; q 2 ) | ( q 2 ; q 2 ) ( q ; q 2 ) { 1 if  n 0 , q n 2 2 n if  n < 0 .
(2.3)

Consequently,

| e ( q n 1 q ; q 2 ) | 2 ( q 2 ; q 2 ) ( q ; q 2 ) { 1 , n 0 , q n 2 , n < 0 .
(2.4)

The following orthogonality relation is proved in [14].

Theorem 2.1 Let |z|<1 and n, m be integers. Then

δ m n = k = z k + n ( z 2 ; q ) ( q ; q ) 1 ϕ 1 ( 0 ; z 2 ; q , q n + k + 1 ) z k + m ( z 2 ; q ) ( q ; q ) 1 ϕ 1 ( 0 ; z 2 ; q , q m + k + 1 ) ,
(2.5)

where the sum converges absolutely and uniformly on compact subsets of the open unit disc.

The following identity, which follows from (2.5) when we replace q by q 2 and z by q α , α>0, is essential in our investigations.

q α ( n + m ) ( q 2 ; q 2 ) 2 ( q 2 α ; q 2 ) 2 δ m n = k = q 2 k α 1 ϕ 1 ( 0 ; q 2 α ; q 2 , q 2 n + 2 k + 2 ) 1 ϕ 1 ( 0 ; q 2 α ; q 2 , q 2 m + 2 k + 2 ) .
(2.6)

Theorem 2.2 For 0<q<1,

0 / 1 q Sin ( q n z 1 q ; q 2 ) Sin ( q m z 1 q ; q 2 ) d q z= 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 q n δ n , m ,
(2.7)
0 / 1 q Cos ( q n z 1 q ; q 2 ) Cos ( q m z 1 q ; q 2 ) d q z= 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 q n δ n , m
(2.8)

and

/ 1 q / 1 q e ( i q n z 1 q ; q 2 ) e ( i q m z 1 q ; q 2 ) d q z=4 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 q n δ n , m .
(2.9)

Proof We start with proving (2.7). Since

0 / 1 q Sin ( q n 1 q z ; q 2 ) Sin ( q m 1 q z ; q 2 ) d q z = k = q k 1 q Sin ( q n + k 1 q ; q 2 ) Sin ( q m + k 1 q ; q 2 ) = q n + m ( 1 q ) 3 / 2 q 3 k 1 ϕ 1 ( 0 ; q 3 , q 2 ; q 2 + 2 n + 2 k ) 1 ϕ 1 ( 0 ; q 3 , q 2 ; q 2 + 2 m + 2 k ) .
(2.10)

In (2.6), set α=3/2 to obtain

q 3 k 1 ϕ 1 ( 0 ; q 3 ; q 2 , q 2 + 2 n + 2 k ) 1 ϕ 1 ( 0 ; q 3 , q 2 ; q 2 + 2 m + 2 k ) = q 3 ( n + m ) / 2 ( q 2 ; q 2 ) 2 ( q 3 ; q 2 ) 2 δ n , m .
(2.11)

Combining (2.10) and (2.11) yields (2.7). The proof of (2.8) follows similarly and the proof of (2.9) follows by combining (2.7) and (2.8). □

Theorem 2.3 For any q(0,1),

  1. (a)

    the set {e(± q n 1 q x; q 2 ),nZ} is a complete orthogonal set in L q 2 ( R ˜ q ),

  2. (b)

    both of the sets {Cos( x q n 1 q ; q 2 ),nZ} and {Sin( x q n 1 q ; q 2 ),nZ} are complete orthogonal sets in L q 2 ( R ˜ q , + ).

Proof We only proove (a). The proof of (b) is similar and is omitted. From Theorem 2.2, it remains only to prove that the set {e(± q n 1 q x; q 2 ),nZ} is complete in L q 2 ( R ˜ q ). This is equivalent to proving that if there exists a function f L 2 ( R ˜ q ) such that

f , e ( ± q n 1 q x ; q 2 ) =0(nZ),
(2.12)

then

f ( ± q n 1 q ) =0(nZ).

From (2.12) we deduce

0 / 1 q f e ( t ) Cos ( q n 1 q t ; q 2 ) d q t = 0 ( n Z ) , 0 / 1 q f o ( t ) Sin ( q n 1 q t ; q 2 ) d q t = 0 ( n Z ) ,

where f e and f o are the even and odd parts of the function f. Then from (3.8)-(3.9) we obtain f e (t)= f o (t)=f(t)=0 for all t R ˜ q . Hence {e(± q n 1 q x; q 2 ),nZ} is a complete orthogonal set in L 2 ( R ˜ q ). □

Theorem 2.4

  1. (1)

    If f L 2 ( R ˜ q ), then

    f(x)= c n e ( i x q n 1 q ; q 2 ) + d n e ( i x q n 1 q ; q 2 ) (x R ˜ q ),
    (2.13)

where

c n = q n C / 1 q / 1 q f ( t ) e ( i t q n 1 q ; q 2 ) d q t ( n Z ) , d n = q n C / 1 q / 1 q f ( t ) e ( i t q n 1 q ; q 2 ) d q t ( n Z ) ,

and C:= 4 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 .

  1. (2)

    If f L 2 ( R ˜ q ), then

    f(x)= n = a n Cos ( x q n 1 q ; q 2 ) + n = b n Sin ( x q n 1 q ; q 2 ) (x R ˜ q ),
    (2.14)

where

a n = 4 C 0 / 1 q f e (t)Cos ( t q n 1 q ; q 2 ) d q t(nZ)

and

b n = 4 C 0 / 1 q f o (t)Sin ( t q n 1 q ; q 2 ) d q t(nZ).

Proof The proof of (1) follows directly from Theorem 2.3 and the orthogonality relations (2.9). In the following we give in detail the proof of (2). Let f= f e + f o be any function in L 2 ( R ˜ q ). Clearly both f e and f o belong to L 2 ( R ˜ q ). The restriction of f e to R ˜ q , + can be represented in the complete orthogonal set {Cos( x q n 1 q ),nZ} as

f e (x)= n = a n Cos ( x q n 1 q ; q 2 ) (x R ˜ q , + ),
(2.15)

where

a n = 4 C 0 / 1 q f e (t)Cos ( t q n 1 q ; q 2 ) d q t(nZ).

The orthogonal set {Sin( x q n 1 q ),nZ} also spans L 2 ( R ˜ q , + ), hence

f o (x)= n = b n Sin ( x q n 1 q ; q 2 ) (x R ˜ q , + ),
(2.16)

where

b n = 4 C 0 / 1 q f o (t)Sin ( t q n 1 q ; q 2 ) d q t(nZ).

Because both sides of (2.15) are even functions on R ˜ q , the equality extends on R ˜ q ; and similarly the two sides of (2.16). Hence we have the representation (2.14) of any f L 2 ( R ˜ q ). □

3 Rubin’s q 2 -Fourier transform

Koornwinder and Swarttouw [14] introduced the pair of q-transforms

g ( q n ) = ( q ; q 2 ) ( q 2 ; q 2 ) k = q k { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) f ( q k ) , f ( q k ) = ( q ; q 2 ) ( q 2 ; q 2 ) n = q n { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) g ( q n ) ,
(3.1)

where 0<q<1 and f, g are in the space L 2 ( R q ). Now assume that log ( 1 q ) log q 2Z or, equivalently,

q { q ( 0 , 1 ) : 1 q = q 2 m  for some integer  m } .
(3.2)

Then, by replacing q k and q n in (3.1) by q k 1 q and q n 1 q , and then f( q k 1 q ) and g( q n 1 q ) by f( q k ) and g( q k ), Koornwinder and Swarttouw obtained the following q-analogue of the cosine and sine Fourier transforms:

g ( λ ) = 1 + q Γ q 2 ( 1 / 2 ) 0 f ( t ) { Cos ( t λ ; q 2 ) or Sin ( t λ ; q 2 ) d q t , f ( x ) = 1 + q Γ q 2 ( 1 / 2 ) 0 f ( t ) { Cos ( x λ ; q 2 ) or Sin ( x λ ; q 2 ) d q λ .
(3.3)

Therefore, if we let q 1 for such q’s that satisfy (3.2), we obtain the cosine and sine Fourier transforms

g(λ)= 2 π 0 f(t)cos(λt)dt,f(t)= 2 π 0 g(λ)cos(tλ)dλ,
(3.4)
g(λ)= 2 π 0 f(t)sin(λt)dt,f(t)= 2 π 0 g(λ)sin(tλ)dλ.
(3.5)

The pair of functions Cos(λx; q 2 ) and Sin(λx; q 2 ) satisfy

1 q D q 1 D q y(x)={ λ 2 y ( x ) if  y ( x ) = Sin ( λ x ; q 2 ) , q λ 2 y ( x ) if  y ( x ) = Cos ( λ x ; q 2 ) .

Therefore, the eigenfunctions {Cos(λx; q 2 ),Sin(λx; q 2 )} have two different eigenvalues. Consequently, as remarked by Koornwinder and Swarttouw in [14], no q-exponential functions built from {Cos(x; q 2 ),Sin(x; q 2 )} will satisfy an eigenfunction problem. This motivated Rubin [8] to define the q-difference operator (1.8) since for this operator, the functions {Cos(λx; q 2 ),Sin(λx; q 2 )} are solutions of the eigenvalue problem

δ q 2 y(x)= λ 2 y(x).

Rubin [8] introduced a q 2 -analogue of the Fourier transform in the form

f ˆ ( x ; q 2 ) := F q (f)(x)= 1 + q 2 Γ q 2 ( 1 / 2 ) f(t)e ( i t x ; q 2 ) d q t,
(3.6)

where f L 1 ( R q ) and q satisfies condition (3.2).

Remark 3.1 Rubin [9] proved that

  1. (1)

    the q 2 -Fourier transform defines a bounded linear operator from L 1 ( R q ) to L ( R q ),

  2. (2)

    the q 2 -Fourier transform is defined and bounded on L 1 ( R q ) L 2 ( R q ),

  3. (3)

    L 1 ( R q ) L 2 ( R q ) is dense in L 2 ( R q ) (consider the functions with finite support).

Consequently, the q 2 -Fourier transform defines a bounded extension to L 2 ( R q ).

Koornwinder and Swarttouw introduced the q-Hankel transforms (3.1) which can be written in the form (3.3) only if q satisfies condition (3.2). In fact, we can write the q-transforms in (3.1) as q-integral on (,) by using Matsuo definition (1.4) as in the following. Rewrite the transform pair in (3.1) as

g ( q n 1 q ) = ( q ; q 2 ) ( q 2 ; q 2 ) k = q k { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) f ( q k 1 q ) , f ( q k 1 q ) = ( q ; q 2 ) ( q 2 ; q 2 ) n = q n { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) g ( q n 1 q ) ,
(3.7)

where we assume that the functions f and g are in the space L 1 ( R ˜ q ) L 2 ( R ˜ q ). Using Matsuo definition of the q-integration on (0,), (1.4) with b= 1 q , the transformations in (3.7) can be written as

g ( x ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q f ( t ) Cos ( x t ; q 2 ) d q t , f ( t ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q g ( x ) Cos ( x t ; q 2 ) d q x
(3.8)

and

g ( x ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q f ( t ) Sin ( x t ; q 2 ) d q t , f ( t ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q g ( x ) Sin ( x t ; q 2 ) d q x ,
(3.9)

where x,t R ˜ q and f, g are in L 1 ( R ˜ q ) L 2 ( R ˜ q ). This is similar to Rubin’s work in [9]. Consequently, we set the following reformulation of Rubin’s definition of the q 2 -Fourier transform (3.6).

Definition 3.2 Let 0<q<1. We define the q 2 -Fourier transform for any function f L 1 ( R ˜ q ) to be

f ˆ ( x ; q 2 ) := F q (f)(x)= 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q f(t)e ( i t x ; q 2 ) d q t.
(3.10)

It is clear that Rubin’s definition of the q 2 -Fourier transform is a special case of (3.2) because if 1q= q 2 m for some mZ, then

0 / 1 q f(t) d q t= 0 / q m f(t) d q t= 0 f(t) d q t.

However, we get the classical Fourier transform only when q 1 and q satisfies (3.2). Similar to Rubin’s results mentioned in Remark 3.1, we can prove that the q 2 -Fourier transform defines a bounded linear operator from L 1 ( R ˜ q ) to L ( R ˜ q ), and L 1 ( R ˜ q ) L 2 ( R ˜ q ) is dense in L 2 ( R ˜ q ). Therefore, the q 2 -Fourier transform in (3.2) defines a bounded extension to L 2 ( R ˜ q ).

The proofs of the following results, which are valid for any q(0,1), are similar to the proofs in [8]. Therefore, we state them without proofs.

  1. (1)

    If f L 2 ( R ˜ q ), then

    f(t)= 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q F(f)(x)e ( i t x ( 1 q ) ; q 2 ) d q x,t R ˜ q .
    (3.11)
  2. (2)

    If f(u) and uf(u) L q 1 ( R ˜ q ), then

    q ( F q f)(x)= F q ( i u f ( u ) ) (x).
  3. (3)

    If f and q f L q 1 ( R ˜ q ), then

    F q ( q f)(x)=ix F q (f)(x).
    (3.12)

We reformulate the definitions of q 2 -Fourier multiplier and the q 2 -Fourier convolution formula introduced by Rubin in [9] with the restriction (3.2) to any q(0,1).

Definition 3.3 Let q(0,1). We define the q 2 -Fourier multiplier operator corresponding to translation by y to be

( T y f)(x)= 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q e ( i t y ; q 2 ) ( F q f)(t)e ( i t x ; q 2 ) d q t,
(3.13)

whenever the q-integral makes sense. If f L 2 ( R ˜ q ) and g L 1 ( R ˜ q ), we define the multiplier corresponding to Fourier convolution of f with g to be

(fg)(z)= / 1 q / 1 q [ T λ f](z)g(λ) d q λ.
(3.14)

Theorem 3.4 Let f and g be two functions in ( L 1 L 2 )( R ˜ q ). Then

F q (fg)(x)= F q (f)(x) F q (g)(x)(x R ˜ q ).
(3.15)

Proof The proof of (3.15) is completely similar to the proof of [[9], Theorem 8] and is omitted. □

4 Fractional q-operator as a generalization of a q-difference operator

Let f be an integrable function of period 2π. Weyl, see Zygmund’s book [16], introduced a fractional operator which is more convenient for trigonometric series than the Riemann-Liouville fractional operator. This operator is defined by

( I α f)(x) n = c n e i n x ( i n ) α if f(x) c n e i n x , c 0 =0,
(4.1)

where i α = e i α π / 2 . Zygmund [[16], p.133] pointed out that

I α f(x)= 1 2 π 0 2 π f(t) Ψ α (xt)dt, Ψ α (x)= n 0 e i n x ( i n ) α .

He also proved the semigroup identity

I α I β = I α + β ,α,β>0.

In [17], Ismail and Rahman defined a q-analogue of the fractional operator I α , so that α=1 represents a right inverse of the Askey-Wilson operator D q which is defined by

( D q f)(x):= f ˘ ( q 1 / 2 e i θ ) f ˘ ( q 1 / 2 e i θ ) ( q 1 / 2 q 1 / 2 ) sin θ ,x=cosθ,

where f(x)= f ˘ (z) with x=(z+1/z)/2.

In this section, we introduce a q-analogue of the fractional operator (4.1) as a generalization of the q-difference operator defined by Rubin in [8]. From Theorem 2.3, consequently,

f(x)= / 1 q / 1 q f(t) Ψ 0 (x,t) d q t,

where

Ψ 0 ( x , t ) = q n e ( i x q n 1 q ) e ( i t q n 1 q ) + q n e ( i x q n 1 q ) e ( i t q n 1 q ) = q n Cos ( x q n 1 q ; q 2 ) Cos ( t q n 1 q ) + q n Sin ( x q n 1 q ; q 2 ) Sin ( t q n 1 q ; q 2 ) .

Lemma 4.1 The series

n = q n ( 1 α ) e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) (x,t R ˜ q )
(4.2)

is absolutely convergent only when Reα<1.

Proof The series in (4.2) can be written as

( n = 1 + n = 0 ) q n ( 1 α ) e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) .

From (2.4), the series n = 0 q n ( 1 α ) e(ix q n 1 q ; q 2 )e(it q n 1 q ; q 2 ) is absolutely convergent for Reα<1 and diverges for Reα1, while the series n = 1 q n ( 1 α ) e(ix q n 1 q ; q 2 )e(it q n 1 q ; q 2 ) is absolutely convergent for all αC. □

Set

Ψ α ( x , t ) : = ( 1 q ) α / 2 n = q n e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) ( i q n ) α + ( 1 q ) α / 2 n = q n e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) ( i q n ) α ,

where x,t R ˜ q and i α is defined with respect to the principal branch, i.e., i α = e i π 2 α .

Lemma 4.2 For kN and Reα<1,

δ q , x k Ψ α (x,t)= Ψ α k (x,t).

Proof The proof follows directly by using that

δ q , x k e ( i x q n 1 q ; q 2 ) = ( i q n 1 q ) k e ( i x q n 1 q ; q 2 ) .

 □

A direct calculation yields the following identity, which holds for Reα<1,

( 1 q ) α / 2 Ψ α (x,t)=2cos ( π 2 α ) A α (x,t)+2sin ( π 2 α ) B α (x,t),
(4.3)

where

A α ( x , t ) : = k = q k ( 1 α ) Cos ( q n + k 1 q ; q 2 ) Cos ( q m + k 1 q ; q 2 ) + q k ( 1 α ) Sin ( q n + k 1 q ; q 2 ) Sin ( q m + k 1 q ; q 2 )
(4.4)

and

B α ( x , t ) : = k = q k ( 1 α ) Cos ( q m + k 1 q ; q 2 ) Sin ( q n + k 1 q ; q 2 ) q k ( 1 α ) Cos ( q n + k 1 q ; q 2 ) Sin ( q m + k 1 q ; q 2 ) .
(4.5)

Theorem 4.3 For Re(α)<1,

( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r if n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r if m > n + [ 1 Re α 2 ] ,
(4.6)

where τ r ={ q r 2 q 1 α 2 , r is odd , q r 2 , r is even .

Moreover,

( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r + 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r , n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r + 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r , m > n + [ 1 Re α 2 ] ,
(4.7)
( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r if n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r if m > n + [ 1 Re α 2 ] ,
(4.8)
( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r + 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r if n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r + 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r if m > n + [ 1 Re α 2 ] .
(4.9)

Proof Using the following formula from [[14], p.455]

k = s k y n + k ( y 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; y 2 ; q 2 , q 2 n + 2 k + 2 ) x m + k ( x 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; x 2 ; q 2 , q 2 m + 2 k + 2 ) = s m y n m ( s 1 x y 1 , y 2 ; q 2 ) ( s x y , q 2 ; q 2 ) 2 ϕ 1 ( q 2 s x 1 y , s x y ; y 2 ; q 2 , q 2 n 2 m s 1 x y 1 ) = s n x m n ( s 1 y x 1 , x 2 ; q 2 ) ( s x y , q 2 ; q 2 ) 2 ϕ 1 ( q 2 s x y 1 , s x y ; x 2 ; q 2 , q 2 m 2 n s 1 y x 1 ) ,

where |sxy|<1, we can prove that

k = q k ( 1 α ) Cos ( q m + k 1 q ; q 2 ) Cos ( q n + k 1 q ; q 2 ) = { q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 1 α ; q ; q 2 , q 2 n 2 m + α ) , n m + [ Re α / 2 ] , q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 1 α ; q ; q 2 , q 2 m 2 n + α ) , m n + [ Re α / 2 ] ,

where Re(1α)>0 and

k = q k ( 1 α ) Sin ( q m + k 1 q ; q 2 ) Sin ( q n + k 1 q ; q 2 ) = { q n m q m ( 1 α ) 1 q ( q α , q 2 ; q 2 ) ( q 3 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 3 α ; q 3 ; q 2 , q 2 n 2 m + α ) , n > m + [ Re α / 2 ] , q m n q n ( 1 α ) 1 q ( q α , q 2 ; q 2 ) ( q 3 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 3 α ; q 3 ; q 2 , q 2 m 2 n + α ) , m > n + [ Re α / 2 ] .

Also,

k = q k ( 1 α ) Sin ( q m + k 1 q ; q 2 ) Cos ( q n + k 1 q ; q 2 ) = { q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) 2 ϕ 1 ( q 1 α , q 2 α ; q ; q 2 , q 2 n 2 m + α + 1 ) , q m n q n ( 1 α ) 1 q ( q α 1 , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 3 α ; q 3 ; q 2 , q 2 m 2 n + α 1 ) .

Hence, if x:= q n 1 q and t:= q m 1 q , then

A α ( x , t ) = { t ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( x t ) r , n > m + [ Re α / 2 ] , x ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( t x ) r , m > n + [ Re α / 2 ] .
(4.10)

Also,

A α ( x , t ) = { t ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( x t ) r , n > m + [ Re α / 2 ] , x ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( t x ) r , m > n + [ Re α / 2 ] ,
(4.11)
B α ( x , t ) = { q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r , n m + [ 1 Re α 2 ] , q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r , m > n + [ 1 Re α 2 ] ,
(4.12)
B α ( x , t ) = { q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r , n m + [ 1 Re α 2 ] , q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r , m > n + [ 1 Re α 2 ] .
(4.13)

Substituting from (4.10)-(4.13) into (4.3) yields the values Ψ α (±x,±t) and the theorem follows. □

Remark 4.4 In the previous theorem, we calculated the value of Ψ α (x,t), x,t R ˜ q and for specific values of x, t. We can calculate the values of Ψ α (x,t) for all x, t by using the identity

s k + m y k + n ( y 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; y 2 ; q 2 , q 2 k + 2 n + 2 ) x k + m ( x 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; x 2 ; q 2 , q 2 k + 2 m + 2 ) = y n m ( s 1 x y 1 , q 2 n 2 m + 2 ; q 2 ) ( q 2 n 2 m s 1 x y 1 , q 2 ; q 2 ) 2 ϕ 1 ( q 2 n 2 m s 1 x y 1 , s 1 y x 1 ; q 2 n 2 m + 2 ; q 2 , s x y )

for |sxy|<1. See Proposition 4.1 of [14].

In this case we have

CC α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Cos ( q n + r 1 q ; q 2 ) Cos ( q m + r 1 q ; q 2 ) = q m ( 1 α ) ( q α , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α , q α ; q 2 n 2 m + 2 ; q 2 , q 1 α ) ,
(4.14)
SS α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Sin ( q n + r 1 q ; q 2 ) Sin ( q m + r 1 q ; q 2 ) = q n m q m ( 1 α ) ( q α , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α , q α ; q 2 n 2 m + 2 ; q 2 , q 3 α ) , SC α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Sin ( q n + r 1 q ; q 2 ) Cos ( q m + r 1 q ; q 2 ) = q n m q m ( 1 α ) ( q α 1 , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α 1 , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α 1 , q α + 1 ; q 2 n 2 m + 2 ; q 2 , q 2 α ) , CS α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Sin ( q m + r 1 q ; q 2 ) Cos ( q n + r 1 q ; q 2 ) = q m ( 1 α ) ( q α + 1 , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α + 1 , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α + 1 , q α 1 ; q 2 n 2 m + 2 ; q 2 , q 2 α ) .
(4.15)

Corollary 4.5 For each fixed x,t R ˜ q , the function Ψ α (x,t) as a function of α can be extended to an entire function on .

Proof If α is a positive integer, then the series on the right-hand sides of (4.6)-(4.9) are finite sums and hence are convergent. Since the zeros of the function cos( π 2 α) are the poles of the function ( q 1 α ; q 2 ) with the same orders. In fact

lim α ( 2 j + 1 ) cos π 2 α ( q 1 α ; q 2 ) = π 2 ln q q j 2 + j ( q 2 ; q 2 ) j ( q 2 ; q 2 ) (j N 0 ).

Similarly, the zeros of the function sin( π 2 α) are the poles of the function ( q 2 α ; q 2 ) with the same orders and

lim α ( 2 j ) sin π 2 α ( q 2 α ; q 2 ) = π 2 ln q q j 2 j ( q 2 ; q 2 ) j 1 ( q 2 ; q 2 ) (jN).

Then the left-hand sides of equations (4.6)-(4.9) are entire functions. Hence, as a function of α, the functions Ψ α (x,t) (x,t R ˜ q ) can be analytically extended by defining its values when α1 by the left-hand sides of (4.6)-(4.9). □

It also should be noted that for Re(α)1, the left-hand sides of (4.6) and (4.7) determine Ψ α (x,t) for all x,t R ˜ q , which is different from the case of Re(α)<1; see Remark 4.4.

Definition 4.6 For Reα>0, we define a fractional q-integral operator J q α on L 2 ( R ˜ q ) L 1 ( R ˜ q ) by

J q α f(x):= 1 C / 1 q / 1 q f(t) Ψ α (x,t) d q t.

The following properties follow at once from (4.3) and their analytic continuation on .

  • If f L 2 ( R ˜ q )L( R ˜ q ) and f is even, then

    J q α f(x)=2 0 / 1 q f(t) φ α (x,t) d q t,

where

( 1 q ) α / 2 φ α ( q n 1 q , q m 1 q ) = { 2 q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 n 2 m + α ) 2 q n m ( m + 1 ) ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 n 2 m + α 1 ) , 2 q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 m 2 n + α ) + 2 q n ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 m 2 n + α + 1 )

and

( 1 q ) α / 2 φ α ( q n 1 q , q m 1 q ) = { 2 q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q α + 1 ; q ) 2 j ( q ; q ) 2 j q i ( 2 n 2 m + α ) + 2 q n m m ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 n 2 m + α 1 ) , 2 q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 m 2 n + α ) 2 q n ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 m 2 n + α + 1 ) .

Hence, if f is an even function, then δ q 2 k f(x) is an even function and δ q 2 k + 1 f(x) is an odd function for all k N 0 .

  • If f L 2 ( R ˜ q )L( R ˜ q ) and f is odd, then

    J q α f(x)=2 0 / 1 q f(t) ψ α (x,t) d q t,

where

( 1 q ) α / 2 ψ α ( q n 1 q , q m 1 q ) = { 2 q m ( 1 α ) q n m ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 n 2 m + α ) 2 q m ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 n 2 m + α + 1 ) , 2 q n ( 1 α ) q m n ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 m 2 n + α ) + 2 q ( n + 1 ) ( 1 α ) q m n sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 m 2 n + α 1 )

and

( 1 q ) α / 2 ψ α ( q n 1 q , q m 1 q ) = { 2 q m ( 1 α ) q n m ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 n 2 m + α ) 2 q m ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 n 2 m + α + 1 ) , 2 q n ( 1 α ) q m n ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 m 2 n + α ) 2 q ( n + 1 ) ( 1 + α ) q m n sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 m 2 n + α 1 ) .

Hence, if f is an odd function, then δ q 2 k f(x) is an odd function and δ q 2 k + 1 f(x) is an even function for all k N 0 .

Theorem 4.7 Let f L 2 ( R ˜ q ). Then

δ q ( J q f)(x)=f(x)for allx R ˜ q .
(4.16)

Moreover, if f is q-regular at zero, then

J q ( δ q f)(x)=f(x)for allx R ˜ q .
(4.17)

Proof If f L 2 ( R ˜ q ), then

J q f(x)= 2 C 0 / 1 q f e (t) φ 1 (x,t) d q t+ 2 C 0 / 1 q f e (t) ψ 1 (x,t) d q t,

where

φ 1 ( q n 1 q , q m 1 q ) ={ π 1 q ln q , n > m , π 1 q ln q + C 2 , m n

and

ψ 1 ( q n 1 q , q m 1 q ) ={ C 2 , n > m 1 , 0 , m > n .

Hence,

J q f ( x ) = ( 1 + 2 π 1 q C ln q ) 0 x f e ( t ) d q t + 2 π 1 q C ln q x f e ( t ) d q t q x f 0 ( t ) d q t .
(4.18)

One can verify that the first and second q-integrals of (4.18) are odd functions, while the last q-integral is an even function. Consequently,

δ q J q f ( x ) = ( 1 + 2 π 1 q C ln q ) D q , x 0 x f e ( t ) d q t + 2 π 1 q C ln q D q , x x f e ( t ) d q t D q , x x f 0 ( t ) d q t .
(4.19)

Using the fundamental theorem of q-calculus, see [13], we obtain (4.16). To prove (4.17), we assume that f is q-regular at zero,

J q δ q f ( x ) = J q ( δ q f e ) ( x ) + J q ( δ q f 0 ) ( x ) = 2 C 0 / 1 q δ q f e ( t ) ψ 1 ( x , t ) d q t + 2 C 0 / 1 q δ q f 0 ( t ) φ 1 ( x , t ) d q t .

But

0 / 1 q δ q f e ( t ) ψ 1 ( x , t ) d q t = 0 / 1 q D q , t f e ( t / q ) ψ 1 ( x , t ) d q t = C 2 q x / 1 q D q , t f e ( t / q ) d q t = C 2 f e ( x )

and

0 / 1 q δ q f 0 ( t ) φ 1 ( x , t ) d q t = 0 / 1 q D q , t f 0 ( t ) φ 1 ( x , t ) d q t = ( π 1 q ln q + C 2 ) 0 x D q , t f 0 ( t ) d q t + π 1 q ln q x D q , t f 0 ( t ) d q t = C 2 f o ( x ) ( π 1 q ln q + C 2 ) f 0 ( 0 ) = C 2 f o ( x )

since f 0 (0)=0. This proves (4.17) and completes the proof of the theorem. □

We can also prove that

ψ 2 ( x , t ) : = { c 2 ( x q t ) + ( x t ) π 1 q ln q , x q 1 t , c 2 ( t q x ) + ( x t ) π 1 q ln q , x q t , ψ 2 ( x , t ) : = { c 2 ( x + q t ) + ( x + t ) π 1 q ln q , x q 1 t , c 2 ( t + q x ) + ( x + t ) π 1 q ln q , x q t

and

ψ 2 (x,t):={ c 2 ( x + q t ) ( x + t ) π 1 q ln q , x q 1 t , c 2 ( t + q x ) ( x + t ) π 1 q ln q , x q t .

Hence,

J q 2 f ( x ) = π 1 q c ln q / 1 q / 1 q ( x t ) f ( t ) d q t + 0 q 1 x ( q x f e ( t ) t f 0 ( t ) ) d q t + q 1 x / 1 q ( x f e ( t ) q t f 0 ( t ) ) d q t .

Definition 4.8 For α>0, we define a fractional q-difference operator δ q α on L 2 ( R ˜ q ) L 1 ( R ˜ q ) by

δ q α f(x):= J q α f(x)= 1 C / 1 q / 1 q f(t) Ψ α (x,t) d q t.
(4.20)

Lemma 4.9 The operator δ q α coincides with Rubin’s q-difference operator when α is a positive integer.

Proof Let α=k for some kN, and let f L 2 ( R ˜ q ) L 1 ( R ˜ q ). Using (2.7), we conclude

f(x)= 1 C / 1 q / 1 q f(t) Ψ 0 (x,t) d q t.

Then from Lemma 4.2 we obtain

δ q k f(x)= 1 C / 1 q / 1 q f(t) Ψ k (x,t) d q t,

and the lemma follows. □

Lemma 4.10 If α>0 and f L 2 ( R ˜ q ), then

δ q α f(x)= δ q k J q k α f(x) ( α > 0 ; k = α ; x R q ) .
(4.21)

Now, if α is a positive integer, then α=α and from (4.21)

q α = q k .

Proof Since

δ q k J q k α f(x)= 1 C δ q k / 1 q / 1 q f(t) Ψ k α (x,t) d q t

and δ q , x k Ψ k α (x,t)= Ψ α (x,t), the proof follows. □

Theorem 4.11 If f L 1 ( R ˜ q ) L 2 ( R ˜ q ) and α, β are complex numbers such that Re(α)<1 and Re(β)<1 such that Re(α+β)<1, then

J q α J q β f= J q β J q α f= J q α + β f.

Proof Let x R ˜ q . Since

J q α ( J q β f ) ( x ) = 1 C 2 / 1 q / 1 q / 1 q / 1 q f ( u ) Ψ α ( x , t ) Ψ β ( t , u ) d q u d q t = 1 C 2 / 1 q / 1 q f ( u ) / 1 q / 1 q Ψ α ( x , t ) Ψ β ( t , u ) d q t d q u ,

using the orthogonality relation (2.9), we obtain

/ 1 q / 1 q Ψ α (x,t) Ψ β (t,u) d q t=C Ψ α + β (x;u).

Consequently,

J q α ( J q β f ) (x)= 1 C / 1 q / 1 q f(u) Ψ α + β (x;u) d q u= J q α + β f(x).

 □

Example 4.12 Let nZ and let f n (x) be the even function defined on R ˜ q by

f n (x):={ 1 , x = ± x n , x n : = q n 1 q , 0 , otherwise .

Hence,

f n (x)= k = a k Cos ( x q k 1 q ; q 2 ) + k = b k Sin ( x q k 1 q ; q 2 ) .

Since f n is an even function, then b k =0 for all kZ and

a k = q k C / 1 q / 1 q f n (t)Cos ( t q k 1 q ; q 2 ) d q t= 2 q n + k 1 q C Cos ( q n + k 1 q ; q 2 ) .

Consequently,

f n (x)= 2 q n 1 q C k = q k Cos ( q n + k 1 q ; q 2 ) Cos ( q k x 1 q ; q 2 ) .

Hence,

k = q k Cos ( q n + k 1 q ; q 2 ) Cos ( q k x 1 q ; q 2 ) ={ C q n 2 1 q , x = x n , zero , otherwise .

Since

δ q f n (x)= 1 q D q 1 f n (x):={ ± 1 x n ( 1 q ) , x = ± x n , 1 q x n ( 1 q ) , x = ± q x n , zero , otherwise

and

δ q f n (x)= 2 q n C k = q 2 k Cos ( q n + k 1 q ; q 2 ) Sin ( q k x 1 q ; q 2 ) (x R ˜ q ).

We obtain

k = q 2 k Sin ( x q k 1 q ; q 2 ) Cos ( q n + k 1 q ; q 2 ) ={ zero , x { ± x n , ± q x n } , ± C q n 2 x n ( 1 q ) , x = ± x n , ± C q n 2 q x n ( 1 q ) , x = ± q x n .
(4.22)

Similarly,

δ q 2 f n (x)={ 1 q x n 2 ( 1 q ) , x = ± x n , 1 q 2 x n 2 ( 1 q ) 2 , x = ± q x n , q x n 2 ( 1 q ) 2 , x = ± q 1 x n , zero , otherwise .

But

δ q 2 f n (x)=2 q n C 1 q k = q 3 k Cos ( q n + k 1 q ; q 2 ) Cos ( q k x 1 q ) (x R ˜ q ).

Hence,

k = q 3 k Cos ( q n + k 1 q ; q 2 ) Cos ( q k x 1 q ; q 2 ) ={ C q n 1 2 x n 2 1 q , x = ± x n , C q n 2 2 x n 2 ( 1 q ) 3 , x = ± q x n , C q n + 1 2 x n 2 ( 1 q ) 3 , x = ± q 1 x n , 0 , otherwise .
(4.23)

In the following two examples, we show how we can use (4.20) when α is a positive integer to obtain new summation formulae.

Example 4.13 Let f be an even function. Then, for each k N 0 , we have

δ q 2 k f(x)= q k ( k 1 ) D q , x 2 k f ( x / q k ) , δ q 2 k + 1 f(x)= q k ( k + 1 ) D q , x 2 k + 1 f ( x / q k + 1 ) .

Hence,

δ q 2 k f(x)= q k ( k 1 ) ( 1 q ) 2 k x 2 k r = 0 2 k q r ( q 2 k ; q ) r ( q ; q ) r f ( x q r k ) .

On the other hand,

δ q 2 k f(x)=4 ( 1 ) k C 0 / 1 q f(t) CC 2 k (x,t) d q t.

Let mZ and let f m (x) be the even function defined on R ˜ q by

f m (x):={ 1 , x = ± x m , x m : = q n 1 q , 0 , otherwise .

Set x= q n 1 q . Hence,

δ q 2 k f ( x ) = 4 ( 1 ) k 1 q C q 2 m k ( 1 q ) k ( q 2 k , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m 2 k , q , q ; q 2 ) × 2 ϕ 1 ( q 2 n 2 m 2 k , q 2 k ; q 2 n 2 m + 2 ; q 2 , q 2 k + 1 ) = q k 2 + m n 2 n k ( 1 q ) k ( q 2 k ; q ) m n + k ( q ; q ) m n + k .

Since

( q 2 k , q 2 n 2 m + 2 ; q 2 ) ( q 2 n 2 m 2 k ; q 2 ) =0if nm+k or n<m.

Hence, if mnm+k1, we obtain

ϕ 1 2 ( q 2 n 2 m 2 k , q 2 k ; q 2 n 2 m + 2 ; q 2 , q 2 k + 1 ) = ( 1 ) k q k 2 + ( m n ) ( 2 k + 1 ) ( q 2 k ; q ) m n + k ( q ; q ) m n + k ( q 2 , q 2 n 2 m 2 k ; q 2 ) ( q 2 k , q 2 n 2 m + 2 ; q 2 ) .

Example 4.14 Let f be an odd function. Then, for each k N 0 , we have

δ q 2 k f(x)= q k 2 D q , x 2 k f ( x / q k ) , δ q 2 k + 1 f(x)= q k 2 D q , x 2 k + 1 f ( x / q k ) .

Hence,

δ q 2 k f(x)= q k 2 ( 1 q ) 2 k x 2 k r = 0 2 k q r ( q 2 k ; q ) r ( q ; q ) r f ( x q r k ) .

On the other hand,

δ q 2 k f(x)=4 ( 1 ) k C 0 / 1 q f(t) CS 2 k (x,t) d q t.

Let mZ and let f m (x) be the odd function defined on R ˜ q by

f m (x):={ ± 1 , x = ± x m , x m : = q m 1 q , 0 , otherwise .

Set x= q n 1 q . Hence,

δ q 2 k f ( x ) = 4 ( 1 ) k 1 q C q 2 m k ( 1 q ) k 1 2 ( q 2 k , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m 2 k , q , q ; q 2 ) × 2 ϕ 1 ( q 2 n 2 m 2 k , q 2 k 2 ; q 2 n 2 m + 2 ; q 2 , q 2 k + 3 ) = q k 2 + k + m n ( 1 q ) k 1 2 ( q 2 k 1 ; q ) m n + k ( q ; q ) m n + k .

Since

( q 2 k , q 2 n 2 m + 2 ; q 2 ) ( q 2 n 2 m 2 k ; q 2 ) =0if nm+k or n<m.

Hence, if mnm+k1, we obtain

ϕ 1 2 ( q 2 n 2 m 2 k , q 2 k 2 ; q 2 n 2 m + 2 ; q 2 , q 2 k + 3 ) = ( 1 ) k q k 2 + k + ( m n ) ( 2 k + 1 ) ( q 2 k 1 ; q ) m n + k ( q ; q ) m n + k ( q 2 , q 2 n 2 m 2 k ; q 2 ) ( q 2 k , q 2 n 2 m + 2 ; q 2 ) .

5 Application of the q 2 -analogue of the Fourier transform to solve q-fractional difference equations

In [18], Ho explored the possibility of using the classical Fourier and Mellin integral transforms to solve the class of q-difference differential equations

D q , t n u(x,t)= 2 x 2 u(x,t),xR,t>0,n1,
(5.1)

with the initial conditions

y(x,0)=f(x), D q , t k y(x,t) | t = 0 + = g k (x)(k=1,,n1),

where the functions f(x) and g k (x) are assumed to vanish as x±. In [19] Brahim and Quanes used the q 2 -Fourier transform and the q-Mellin transform to solve equation (5.1) in case of n=1,2, and only for q satisfying condition (3.2). In this section, we use the q 2 -Fourier transform with the L s q transform to solve the q-fractional diffusion equation

D q , t α u ( x , t ) = λ q , x 2 u ( x , t ) , x R ˜ q , t R , 0 α < 1 , 0 < q < 1 ,
(5.2)

with the initial conditions

I q , t 1 α u(x,t) | t = 0 + =ϕ(x), q , x k u(x,t) L q 1 ( R ˜ q )(k=0,1),
(5.3)
ϕ ( L q 1 L q 2 ) ( R ˜ q ).
(5.4)

Theorem 5.1 The solution of q-fractional diffusion equation (5.2) subject to the initial conditions (5.3)-(5.4) is given by

u(x,t)= / 1 q / 1 q [ T y G ( x , t ) ] (x)ϕ(y) d q y,

where

[ T y G ( x , t ) ] (x)= ( 1 + q ) 1 / 2 2 Γ q 2 ( 1 2 ) / 1 q / 1 q e ( i y ξ ; q 2 ) g(ξ,t)e ( i x ξ ; q 2 ) d q ξ

and

g(ξ,t):={ t α 1 e α , α ( λ ξ 2 t α ; q ) , | λ ξ 2 t α | < 1 ( 1 q ) α , 0 , otherwise ,

where, in general, e α , β (x;q) is the q-analogue of the q-Mittag-Leffler function defined for Re(α>0) and βC by

e α , β (x;q)= k = 0 x k Γ q ( α k + β ) , | x ( 1 q ) α | <1.

Proof First we calculate the q 2 -Fourier transform of (5.2) with respect to the variable x. Hence, applying (3.12) yields

D q , t α U(ξ,t)=λ ξ 2 U(ξ,t),
(5.5)

where

U(ξ,t):= F q , x ( u ( x , t ) ) (ξ).

Now we calculate the L s q transform of (5.5) with respect to the variable t. Using (1.16) we obtain

( P α + λ ξ 2 ) V(ξ,s)= F q ( ϕ ) ( ξ ) 1 q ,
(5.6)

where

V(ξ,s) = q , t L s ( U ( ξ , t ) ) (s),p= s 1 q .

One can verify that

L s q , t ( t α 1 e α , α ( λ ξ 2 t α ; q ) ) = 1 1 q 1 p α + λ ξ 2 .

Consequently,

U(ξ,t)= F q (ϕ)(ξ) t α 1 e α , α ( λ ξ 2 t α ) ,|λ ξ 2 t α |< 1 ( 1 q ) α .

It follows from the inversion formula of the q 2 -Fourier transform that

t α 1 e α , α ( λ ξ 2 t α ; q ) = F q , x ( G ( x , t ) ) ( ξ ) , G ( x , t ) = 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q t α 1 e α , α ( λ ξ 2 t α ; q ) e ( i ξ x ; q 2 ) d q ξ ,

where the variable of the q-integration ξ runs only over all ξ R ˜ q such that

|λ ξ 2 t α |< 1 ( 1 q ) α .

Consequently,

u(x,t)=ϕ(x)G(x,t).

Applying the q 2 -Fourier convolution formula gives

u(x,t)= / 1 q / 1 q [ T y G ( x , t ) ] (x)ϕ(y) d q y,

where

[ T y G ( x , t ) ] (x)= 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q e ( i y ξ ; q 2 ) t α 1 e α , α ( λ ξ 2 t α ; q ) e ( i x ξ ; q 2 ) d q ξ.

 □

References

  1. Gasper G, Rahman M: Basic Hypergeometric Series. 2nd edition. Cambridge University Press, Cambridge; 2004.

    Book  Google Scholar 

  2. Ismail MEH: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge; 2005.

    Book  Google Scholar 

  3. Jackson FH: On q -definite integrals. Q. J. Pure Appl. Math. 1910, 41: 193–203.

    Google Scholar 

  4. Hahn W: Beiträge zur Theorie der Heineschen Reihen. Math. Nachr. 1949, 2: 340–379. (in German) 10.1002/mana.19490020604

    Article  MathSciNet  Google Scholar 

  5. Matsuo A: Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations. Commun. Math. Phys. 1993, 151(2):263–273. 10.1007/BF02096769

    Article  MathSciNet  Google Scholar 

  6. Al-Salam WA: Some fractional q -integrals and q -derivatives. Proc. Edinb. Math. Soc. 1966/1967, 2(15):135–140.

    Article  MathSciNet  Google Scholar 

  7. Agarwal RP: Certain fractional q -integrals and q -derivatives. Proc. Camb. Philos. Soc. 1969, 66: 365–370. 10.1017/S0305004100045060

    Article  Google Scholar 

  8. Rubin RL:A q 2 -analogue operator for q 2 -analogue Fourier analysis. J. Math. Anal. Appl. 1997, 212(2):571–582. 10.1006/jmaa.1997.5547

    Article  MathSciNet  Google Scholar 

  9. Rubin RL:Duhamel solutions of non-homogeneous q 2 -analogue wave equations. Proc. Am. Math. Soc. 2007, 135(3):777–785. 10.1090/S0002-9939-06-08525-X

    Article  Google Scholar 

  10. Fitouhi A, Safraoui A:Paley-Wiener theorem for the q 2 -Fourier-Rubin transform. Tamsui Oxford Univ. J. Math. Sci. 2010, 26(3):287–304.

    MathSciNet  Google Scholar 

  11. Abdi WH: On q -Laplace transforms. Proc. Natl. Acad. Sci. India, Sect. A 1960, 29: 389–408.

    MathSciNet  Google Scholar 

  12. Abdi WH: On certain q -difference equations and q -Laplace transforms. Proc. Natl. Acad. Sci. India, Part A 1962, 28: 1–15.

    MathSciNet  Google Scholar 

  13. Annaby MH, Mansour ZS: q-Fractional Calculus and Equations. Springer, Heidelberg; 2012.

    Book  Google Scholar 

  14. Koornwinder TH, Swarttouw RF: On q -analogues of Fourier and Hankel transforms. Trans. Am. Math. Soc. 1992, 333(1):445–461.

    MathSciNet  Google Scholar 

  15. Fitouhi A, Moncef HM, Bouzeffour F: The q - j α Bessel function. J. Approx. Theory 2002, 115(1):144–166. 10.1006/jath.2001.3645

    Article  MathSciNet  Google Scholar 

  16. Zygmund A II. In Trigonometric Series. Cambridge University Press, Cambridge; 1959.

    Google Scholar 

  17. Ismail MEH, Rahman M: Inverse operators, q -fractional integrals and q -Bernoulli polynomials. J. Approx. Theory 2002, 114(2):269–307. 10.1006/jath.2001.3644

    Article  MathSciNet  Google Scholar 

  18. Ho CL: On the use of Mellin transform to a class of q -difference-differential equations. Phys. Lett. A 2000, 268(4–6):217–223. 10.1016/S0375-9601(00)00191-2

    Article  MathSciNet  Google Scholar 

  19. Brahim K, Quanes R: Some applications of the q -Mellin transform. Tamsui Oxford Univ. J. Math. Sci. 2010, 26(3):335–343.

    Google Scholar 

Download references

Acknowledgements

This research is supported by NPST Program of King Saud University; project number 10-MAT1293-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab SI Mansour.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Mansour, Z.S. q-Fractional calculus for Rubin’s q-difference operator. Adv Differ Equ 2013, 276 (2013). https://doi.org/10.1186/1687-1847-2013-276

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2013-276

Keywords