Skip to main content

Theory and Modern Applications

Existence and global attractivity of positive periodic solutions for a Holling II two-prey one-predator system

Abstract

In this paper, a Holling II two-pery one-predator system is investigated. Based on the continuation theorem of coincidence degree theory and by constructing a suitable Lyapunov function, we derive a set of sufficient conditions that guarantee the existence of at least a positive periodic solution and global attractivity of periodic solutions.

Mathematics Subject Classification 2000: 34K20; 34C25

Introduction

In population dynamics, the functional response, which is a key element in all predator-prey interaction, is referred to the number of prey eaten per predator per unit time as a function of prey density. Based on a lot of experiments, Holling [1] suggested the following three different kinds of functional response for different species to model the phenomenon of predation:

( 1 ) p 1 ( x ) = a x , ( 2 ) p 2 ( x ) = a x m + x , ( 3 ) p 3 ( x ) = a x 2 m + x 2 ,

where x(t) represents the prey density at time t. Functions p1(x)(i = 1, 2, 3) are referred to the Holling type I, II, and III functional response, respectively. a > 0 denotes the search rate of the predator, m > 0 is the half-saturation constant. Predator-prey systems with Holling type functional response have been investigated extensively, for example, Liu and Chen [2] made a discussion on complex dynamics of Holling type II Lotka-Volterra predator-prey model with impulsive perturbations on the predator. Song and Li [3] studied the linear stability of trivial periodic solution and semi-trivial periodic solutions and the permanence of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. Liu and Xu [4] investigated the existence of periodic solution for a delay one-predator and two-prey system with Holling type-II functional response. Agiza et al. [5] considered the chaotic phenomena of a discrete prey-predator model with Holling type II. Pei et al. [6] analyzed the extinction and permanence for one-prey multi-predators of Holling type II function response system with impulsive biological control. For more knowledge about this theme, one can see [718].

In 2007, Song and Li [19] had considered the dynamical behaviors of the following Holling II two-prey one predator system with impulsive effect

1 ( t ) = x 1 ( t ) b 1 - x 1 ( t ) - α x 2 ( t ) - η z ( t ) 1 + ω 1 x 1 ( t ) , , 2 ( t ) = x 2 ( t ) b 2 - β x 1 ( t ) - x 2 ( t ) - η z ( t ) 1 + ω 2 x 2 ( t ) , ż ( t ) = z ( t ) - b 3 + d η x 1 ( t ) 1 + ω 1 x 1 ( t ) + d η x 2 ( t ) 1 + ω 2 x 2 ( t ) , t n T , Δ x 1 ( t ) = - p 1 x 1 ( t ) , Δ x 1 ( t ) = - p 2 x 2 ( t ) , Δ z ( t ) = 0 , t = n T ,
(1)

where x i (t)(i = 1, 2) is the population size of prey (pest) species and z(t) is the population size of predator (natural enemies) species, b i > 0(i = 1, 2, 3) are intrinsic rates of increase or decrease, α > 0 and β > 0 are parameters representing competitive effects between two prey, η > 0 and μ > 0 , η x 1 ( t ) 1 + ω 1 x 1 ( t ) and μ x 2 ( t ) 1 + ω 2 x 2 ( t ) are the Holling type II functional responses, d > 0 is the rate of conversing prey into predator. Δx i (t) = x i (t+)-x i (t), i = 1, 2, Δz(t) = z(t+)-z(t), T is the period of the impulse for predator in order to eradicate both target pests, protect non-target pest (or harmless insect) from extinction and drive target pest to extinction, or control target pests at acceptably low level to prevent an increasing pest populations from causing an economic loss. n z+, z+ = {1, 2, ... g, pi > 0(i = 1, 2) is the proportionality constant which represents the rate of mortality due to the applied pesticide. q > 0 is the number of predators released each time. We note that any biological or environmental parameters are naturally subject to fluctuation in time. It is necessary and important to consider models with periodic ecological parameters Thus, the assumption of periodicity of the parameters is a way of incorporating the periodicity of the environment. Furthermore, for simplification, we assume that there is no pulse in system. Based on the point of view, system (1) can be modified as the form:

1 ( t ) = x 1 ( t ) b 1 ( t ) - x 1 ( t ) - α ( t ) x 2 ( t ) - η ( t ) z ( t ) 1 + ω 1 ( t ) x 1 ( t ) , 2 ( t ) = x 2 ( t ) b 2 ( t ) - β ( t ) x 1 ( t ) - x 2 ( t ) - η ( t ) z ( t ) 1 + ω 2 ( t ) x 2 ( t ) , ż ( t ) = z ( t ) - b 3 ( t ) + d ( t ) η ( t ) x 1 ( t ) 1 + ω 1 ( t ) x 1 ( t ) + d ( t ) μ ( t ) x 2 ( t ) 1 + ω 2 ( t ) x 2 ( t ) .
(2)

Here we give the initial conditions as follows

x i ( 0 ) = φ i ( 0 ) >0 ( i = 1 , 2 ) ,z ( 0 ) = φ 3 ( 0 ) >0.
(3)

Throughout the paper, we always assume that

(H1) For any t R, b i (t)(i = 1, 2, 3), ω j (t)(j = 1, 2), α(t), β(t), η(t), μ(t), d(t) are all non-negative continuous ω periodic functions, i.e., b i (t + ω) = b i (t)(i = 1, 2, 3), ω j (t + ω) = ω j (t)(j = 1, 2), α(t + ω) = α(t), β(t + ω) = β(t), η(t + ω) = η (t), μ(t + ω) = μ(t), d(t + ω) = d(t).

The principle object of this article is to find a set of sufficient conditions that guarantee the existence of at least a positive periodic solution and global attractivity of periodic solutions for system (2)-(3). There are some papers which deal with this topic [13, 2025].

The paper is organized as follows: In Section "Basic lemma", we introduce some basic Lemmas. In Section "Existence of positive periodic solutions", sufficient conditions are established for the existence of positive periodic solutions of system (2)-(3). In Section "Uniqueness and global attractivity", by means of suitable Lyapunov functionals, a set of sufficient conditions are derived for the uniqueness and global attractivity of positive periodic solutions of system (2)-(3).

Basic lemma

In order to explore the existence of positive periodic solutions of (2)-(3) and for the reader's convenience, we shall first summarize below a few concepts and results without proof, borrowing from [11].

Let X, Y be normed vector spaces, L : DomL XY is a linear mapping, N : XY is a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if dimKerL = codimImL < +∞ and ImL is closed in Y . If L is a Fredholm mapping of index zero and there exist continuous projectors P : XX and Q : YY such that ImP = KerL, ImL = KerQ = Im(I - Q), it follows that L| DomL ∩ KerP : (I - P)X → ImL is invertible. We denote the inverse of that map by K P . If Ω is an open bounded subset of X, the mapping N will be called L-compact on Ω ̄ if QN ( Ω ̄ ) is bounded and K P ( I - Q ) N: Ω ̄ X is compact. Since ImQ is isomorphic to KerL, there exist isomorphisms J : ImQ → KerL.

Lemma 1. ([11] Continuation Theorem) Let L be a Fredholm mapping of index zero and let N be L-compact on Ω ̄ . Suppose

  1. (a)

    for each λ (0, 1), every solution x of Lx = λNx is such that x ∂Ω;

  2. (b)

    QNx ≠ 0 for each x KerL∩∂Ω, and deg{JQN, Ω∩KerL, 0} ≠ 0, then the equation Lx = Nx has at least one solution lying in D o m L Ω ̄ .

Lemma 2. R + 3 ={ ( ( x 1 ( t ) , x 2 ( t ) , z ( t ) ) T R 3 | x 1 ( t ) > 0 , x 2 ( t ) > 0 , z ( t ) > 0 } is positive invariant with respect to system (2)-(3).

Proof. In fact,

1 ( t ) = φ 1 ( 0 ) exp 0 t b 1 ( s ) - x 1 ( s ) - α ( s ) x 2 ( s ) - η ( s ) z ( s ) 1 + ω 1 ( s ) x 1 ( s ) d s , 2 ( t ) = φ 2 ( 0 ) exp 0 t b 2 ( s ) - α ( s ) x 1 ( s ) - x 2 ( s ) - η ( s ) z ( s ) 1 + ω 2 ( s ) x 2 ( s ) d s , ż ( t ) = φ 2 ( 0 ) exp 0 t - b 3 ( s ) + d ( s ) η ( s ) x 1 ( s ) 1 + ω 1 ( s ) x 1 ( s ) + d ( s ) μ ( s ) x 2 ( s ) 1 + ω 2 ( s ) x 2 ( s ) d s .

Obviously, the conclusion follows.

Existence of positive periodic solutions

For convenience and simplicity in the following discussion, we always use the notations below throughout the paper:

= 1 ω 0 ω g ( t ) d t, g L = min t [ 0 , ω ] g ( t ) , g M = max t [ 0 , ω ] g ( t ) ,

where g(t) is an ω continuous periodic function. In the following, we will ready to state and prove our result.

Theorem 1. Let K1, K2, K4 and K5 are defined by (19), (23), (32) and (36), respectively. In addition to (H1), if the following conditions (H2) and (H3)

( H 2 ) b ̄ 1 > max exp { - K 1 } + α ̄ exp { - K 2 } , exp { K 1 } + α ̄ exp { K 2 } , exp { - K 5 } + α ̄ exp { - K 4 } , exp { K 5 } + α ̄ exp { K 4 } ,
( H 3 ) b 3 M > max d M η M exp { K 1 } , d M μ M exp { K 4 }

hold, then system (2)-(1.3) has at least one ω periodic solution.

Proof. Since solutions of (2)-(3) remain positive for all t ≥ 0, we let

u 1 ( t ) = ln [ x 1 ( t ) ] , u 2 ( t ) = ln [ x 2 ( t ) ] , u 3 ( t ) = ln [ z ( t ) ] .
(4)

Substituting (4) into (2), we obtain

u ˙ 1 ( t ) = b 1 ( t ) - exp { u 1 ( t ) } - α ( t ) exp { u 2 ( t ) } - η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } , u ˙ 2 ( t ) = b 2 ( t ) - β ( t ) exp { u 1 ( t ) } - exp { u 2 ( t ) } - μ 1 ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } , u ˙ 3 ( t ) = - b 3 ( t ) + d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } + d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } .
(5)

It is easy to see that if system (5) has one ω periodic solution ( u 1 * ( t ) , u 2 * ( t ) , u 3 * ( t ) ) T , then ( x 1 ( t ) , x 2 ( t ) , y ( t ) ) T = ( exp { u 1 ( t ) } , exp { u 2 ( t ) } , exp { u 3 ( t ) } ) T is a positive solution of system (2). Therefore, to complete the proof, it suffices to show that system (5) has at least one ω periodic solution.

Let X = Z = u(t) = {(u1(t), u2(t), u3(t))T| u(t) C(R, R3), u(t + ω) = u(t)}, and define ||u|| = ||(u1(t); u2(t), u3(t))T || = maxt[0,ω]|u1(t)| + maxt[0,ω]|u2(t)| + maxt[0,ω]|u3(t)|. Then X and Z are Banach spaces when they are endowed with the norm || · ||. Let L : DomL XZ and N : XZ be the following:

Nu= L u = u ˙ ( t ) , b 1 ( t ) - exp { u 1 ( t ) } - α ( t ) exp { u 2 ( t ) } - η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } b 2 ( t ) - β ( t ) exp { u 1 ( t ) } - exp { u 2 ( t ) } - μ 1 ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } - b 3 ( t ) + d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } + d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) }
(6)

Define continuous projective operators P and Q:

Pu= 1 ω 0 ω u ( t ) d t,Qu= 1 ω 0 ω u ( t ) d t,uX,uZ.

We can see that Ker L = { u X | u = h R 3 } , Im L = { u Z | 0 ω u ( t ) d t = 0 } is closed in X and dim(KerL) = 3 = codim(ImL), then it follows that L is a Fredholm mapping of index zero. Moreover, it is easy to check that

QNu= 1 ω 0 ω b 1 ( t ) - exp { u 1 ( t ) } - α ( t ) exp { u 2 ( t ) } - η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t 1 ω 0 ω b 2 ( t ) - β ( t ) exp { u 1 ( t ) } - exp { u 2 ( t ) } - μ 1 ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t 1 ω 0 ω - b 3 ( t ) + d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } + d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t
K P ( I - Q ) N u = 0 t b 1 ( s ) - exp { u 1 ( s ) } - α ( s ) exp { u 2 ( s ) } - η ( s ) exp { u 3 ( s ) } 1 + ω 1 ( s ) exp { u 1 ( s ) } d s 0 t b 2 ( s ) - β ( s ) exp { u 1 ( s ) } - exp { u 2 ( s ) } - μ 1 ( s ) exp { u 3 ( s ) } 1 + ω 2 ( s ) exp { u 2 ( s ) } d s 0 t - b 3 ( s ) + d ( s ) η ( s ) exp { u 1 ( s ) } 1 + ω 1 ( s ) exp { u 1 ( s ) } + d ( s ) μ ( s ) exp { u 2 ( s ) } 1 + ω 2 ( s ) exp { u 2 ( s ) } d s - 1 ω 0 ω 0 t b 1 ( s ) - exp { u 1 ( s ) } - α ( s ) exp { u 2 ( s ) } - η ( s ) exp { u 3 ( s ) } 1 + ω 1 ( s ) exp { u 1 ( s ) } d s d t 1 ω 0 ω 0 t b 2 ( s ) - β ( s ) exp { u 1 ( s ) } - exp { u 2 ( s ) } - μ 1 ( s ) exp { u 3 ( s ) } 1 + ω 2 ( s ) exp { u 2 ( s ) } d s d t 1 ω 0 ω 0 t - b 3 ( s ) + d ( s ) η ( s ) exp { u 1 ( s ) } 1 + ω 1 ( s ) exp { u 1 ( s ) } + d ( s ) μ ( s ) exp { u 2 ( s ) } 1 + ω 2 ( s ) exp { u 2 ( s ) } d s d t - t ω - 1 2 0 ω b 1 ( s ) - exp { u 1 ( s ) } - α ( s ) exp { u 2 ( s ) } - η ( s ) exp { u 3 ( s ) } 1 + ω 1 ( s ) exp { u 1 ( s ) } d s t ω - 1 2 0 ω b 2 ( s ) - β ( s ) exp { u 1 ( s ) } - exp { u 2 ( s ) } - μ 1 ( s ) exp { u 3 ( s ) } 1 + ω 2 ( s ) exp { u 2 ( s ) } d s t ω - 1 2 0 ω - b 3 ( s ) + d ( s ) η ( s ) exp { u 1 ( s ) } 1 + ω 1 ( s ) exp { u 1 ( s ) } + d ( s ) μ ( s ) exp { u 2 ( s ) } 1 + ω 2 ( s ) exp { u 2 ( s ) } d s .
(7)

Obviously, QN and K P (I - Q)N are continuous. Since X is a finite-dimensional Banach space, using the Ascoli-Arzela theorem, it is not difficult to show that K P ( I - Q ) N ( Ω ̄ ) ¯ is compact for any open bounded set Ω X. Moreover, QN ( Ω ̄ ) is bounded. Thus, N is L-compact on Ω ̄ with any open bounded set Ω X.

Now we are at the point to search for an appropriate open, bounded subset Ω for the application of the continuation theorem. Corresponding to the operator equation Lu = λNu, λ (0, 1), we have

u ˙ 1 ( t ) = λ b 1 ( t ) - exp { u 1 ( t ) } - α ( t ) exp { u 2 ( t ) } - η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } , u ˙ 2 ( t ) = λ b 2 ( t ) - β ( t ) exp { u 1 ( t ) } - exp { u 2 ( t ) } - μ 1 ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } , u ˙ 3 ( t ) = λ - b 3 ( t ) + d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } + d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } .
(8)

Suppose that u(t) = (u1(t), u2(t), u3(t))T X is an arbitrary solution of system (8) for a certain λ (0, 1), integrating both sides of (8) over the interval [0, ω] with respect to t, we obtain

0 ω exp { u 1 ( t ) } + α ( t ) exp { u 2 ( t ) } + η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t = b ̄ 1 ω , 0 ω β ( t ) exp { u 1 ( t ) } + exp { u 2 ( t ) } + μ ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t = b ̄ 2 ω , 0 ω d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } + d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t = b ̄ 3 ω .
(9)

In view of (8) and (9), we have

0 ω | u ˙ 1 ( t ) | d t = λ 0 ω b 1 ( t ) - exp { u 1 ( t ) } - α ( t ) exp { u 2 ( t ) } - η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t 0 ω b 1 ( t ) d t + 0 ω exp { u 1 ( t ) } + α ( t ) exp { u 2 ( t ) } + η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t = 2 0 ω b 1 ( t ) d t = 2 b ̄ 1 ω ,
(10)
0 ω | u ˙ 2 ( t ) | d t = λ 0 ω b 2 ( t ) - β ( t ) exp { u 1 ( t ) } - exp { u 2 ( t ) } - μ 1 ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t 0 ω b 1 ( t ) d t + 0 ω β ( t ) exp { u 1 ( t ) } + exp { u 2 ( t ) } + μ 1 ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t = 2 0 ω b 2 ( t ) d t = 2 b ̄ 2 ω ,
(11)
0 ω | u ˙ 3 ( t ) | d t = λ 0 ω - b 3 ( t ) + d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } + d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t 0 ω b 3 ( t ) d t + 0 ω d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } + d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t = 2 0 ω b 3 ( t ) d t = 2 b ̄ 3 ω .
(12)

Since u = (u1, u2, u3)T X, then there exist ξ i , η i [0, ω] such that

u i ( ξ i ) = min t [ 0 , ω ] u i ( t ) , u i ( η i ) = min t [ 0 , ω ] u i ( t ) ,i=1,2.3.

It is easy to see that u i i ) = 0, u i (η i ) = 0(i = 1, 2, 3). From this and (8), we have

b 1 ( ξ 1 ) - exp { u 1 ( ξ 1 ) } - α ( ξ 1 ) exp { u 2 ( ξ 1 ) } - η ( ξ 1 ) exp { u 3 ( ξ 1 ) } 1 + ω 1 ( ξ 1 ) exp { u 1 ( ξ 1 ) } = 0 , b 2 ( ξ 2 ) - β ( ξ 2 ) exp { u 1 ( ξ 2 ) } - exp { u 2 ( ξ 2 ) } - μ 1 ( ξ 2 ) exp { u 3 ( ξ 2 ) } 1 + ω 2 ( ξ 2 ) exp { u 2 ( ξ 2 ) } = 0 , - b 3 ( ξ 3 ) + d ( ξ 3 ) η ( ξ 3 ) exp { u 1 ( ξ 3 ) } 1 + ω 1 ( ξ 3 ) exp { u 1 ( ξ 3 ) } + d ( ξ 3 ) μ ( ξ 3 ) exp { u 2 ( ξ 3 ) } 1 + ω 2 ( ξ 3 ) exp { u 2 ( ξ 3 ) } = 0
(13)

and

b 1 ( η 1 ) - exp { u 1 ( η 1 ) } - α ( η 1 ) exp { u 2 ( η 1 ) } - η ( η 1 ) exp { u 3 ( η 1 ) } 1 + ω 1 ( η 1 ) exp { u 1 ( η 1 ) } = 0 , b 2 ( η 2 ) - β ( η 2 ) exp { u 1 ( η 2 ) } - exp { u 2 ( η 2 ) } - μ 1 ( η 2 ) exp { u 3 ( η 2 ) } 1 + ω 2 ( η 2 ) exp { u 2 ( η 2 ) } = 0 , - b 3 ( η 3 ) + d ( η 3 ) η ( η 3 ) exp { u 1 ( η 3 ) } 1 + ω 1 ( η 3 ) exp { u 1 ( η 3 ) } + d ( η 3 ) μ ( η 3 ) exp { u 2 ( η 3 ) } 1 + ω 2 ( η 3 ) exp { u 2 ( η 3 ) } = 0 .
(14)

It follows from the first and the second equation of (13) that

exp { u 1 ( ξ 1 ) } < b 1 ( ξ 1 ) = b 1 L , exp { ( u 2 ( ξ 2 ) } < b 2 ( ξ 2 ) = b 2 L

which leads to

u 1 ( ξ 1 ) < ln [ b 1 L ] , u 2 ( ξ 2 ) < ln [ b 2 L ] .
(15)

In the sequel, we consider two cases.

Case 1. If u11) ≥ u22), then from the third equation of (14), we get

b 3 M = b 3 ( η 3 ) < d ( η 3 ) η ( η 3 ) exp { u 1 ( η 3 ) } + d ( η 3 ) η ( η 3 ) exp { u 2 ( η 3 ) } d M η M exp { u 1 ( η 1 ) } + d M η M exp { u 1 ( η 1 ) } = ( d M η M + d M μ M ) exp { u 1 ( η 1 ) } .

Then we have

u 1 ( η 1 ) > ln b 3 M d M η M + d M μ M .
(16)

By (10), (15) and (16), we can obtain

u 1 ( t ) u 1 ( ξ 1 ) + 0 ω | u ˙ 1 ( t ) | d t ln [ b 1 L ] + 2 b ̄ 1 ω : = B 1 ,
(17)
u 1 ( t ) u 1 ( η 1 ) - 0 ω | u ˙ 1 ( t ) | d t ln b 3 M d M η M + d M μ M - 2 b ̄ 1 ω : = B 2 .
(18)

It follows from (17) and (18) that

max t [ 0 , ω ] | u 1 ( t ) | max { | B 1 | , | B 2 | } : = K 1 .
(19)

From the third equation of (14), we derive

b 3 M = b 3 ( η 3 ) < d ( η 3 ) η ( η 3 ) exp { u 1 ( η 3 ) } + d ( η 3 ) η ( η 3 ) exp { u 2 ( η 3 ) } d M η M exp { K 1 } + d M η M exp { u 2 ( η 2 ) }

which leads to

u 2 ( η 2 ) > ln b 3 M - d M η M exp { K 1 } d M μ M .
(20)

In view of (11), (15) and (20), we can obtain

u 2 ( t ) u 2 ( ξ 2 ) + 0 ω | u ˙ 2 ( t ) | d t ln [ b 2 L ] + 2 b ̄ 2 ω : = B 3 ,
(21)
u 2 ( t ) u 2 ( η 2 ) - 0 ω | u ˙ 2 ( t ) | d t ln [ b 3 M - d M η M exp { K 1 } d M μ M ] - 2 b ̄ 2 ω : = B 4 .
(22)

It follows from (21) and (22) that

max t [ 0 , ω ] | u 2 ( t ) | max { | B 3 | , | B 4 | } : = K 2 .
(23)

From the first equation of (9), we get

0 ω exp { - K 1 } + α ( t ) exp { - K 2 } + η ( t ) exp { u 3 ( ξ 3 ) } 1 + ω 1 M exp { - K 1 } d t < b ̄ 1 ω , 0 ω exp { K 1 } + α ( t ) exp { K 2 } + η ( t ) exp { u 3 ( η 3 ) } d t > b ̄ 1 ω ,

which reduces to

exp { - K 1 } + α ̄ exp { - K 2 } + η ̄ exp { u 3 ( ξ 3 ) } 1 + ω 1 M exp { - K 1 } < b ̄ 1 , exp { K 1 } + α ̄ exp { K 2 } + η ̄ exp { u 3 ( η 3 ) } > b ̄ 1 .

Therefore, we have

u 3 ( ξ 3 ) < ln ( b ̄ 1 - exp { - K 1 } - α ̄ exp { - K 2 } ) ( 1 + ω 1 M exp { - K 1 } ) η ̄ ,
(24)
u 3 ( η 3 ) > ln b ̄ 1 - exp { K 1 } - α ̄ exp { K 2 } η ̄ .
(25)

By (3.9), (24) and (25), we can obtain

u 3 ( t ) u 3 ( ξ 3 ) + 0 ω | u ˙ 3 ( t ) | d t ln ( b ̄ 1 - exp { - K 1 } - α ̄ exp { - K 2 } ) ( 1 + ω 1 M exp { - K 1 } ) η ̄ + 2 b ̄ 3 ω : = B 5 ,
(26)
u 3 ( t ) u 3 ( η 3 ) + 0 ω | u ˙ 3 ( t ) | d t ln ( b ̄ 1 - exp { K 1 } - α ̄ exp { - K 2 } ) η ̄ - 2 b ̄ 3 ω : = B 6 .
(27)

It follows from (26) and (27) that

max t [ 0 , ω ] | u 3 ( t ) | max { | B 5 | , | B 6 | } : = K 3 .
(28)

Case 2. If u1(η1) < u2(η2), then from the third equation of (14), we get

b 3 M = b 3 ( η 3 ) < d ( η 3 ) η ( η 3 ) exp { u 1 ( η 3 ) } + d ( η 3 ) η ( η 3 ) exp { u 2 ( η 3 ) } < d M η M exp { u 1 ( η 1 ) } + d M η M exp { u 2 ( η 2 ) } = ( d M η M + d M μ M ) exp { u 2 ( η 2 ) } .

Then we have

u 2 ( η 2 ) > ln b 3 M d M η M + d M μ M .
(29)

By (11), (15) and (29), we can obtain

u 2 ( t ) u 2 ( ξ 2 ) + 0 ω | u ˙ 2 ( t ) | d t ln [ b 2 L ] + 2 b ̄ 2 ω : = B 7 ,
(30)
u 2 ( t ) u 2 ( η 2 ) - 0 ω | u ˙ 2 ( t ) | d t ln b 3 M d M η M + d M μ M - 2 b ̄ 2 ω : = B 8 .
(31)

It follows from (30) and (31) that

max t [ 0 , ω ] | u 2 ( t ) | max { | B 7 | , | B 8 | } : = K 4 .
(32)

From the third equation of (14), we derive

b 3 M = b 3 ( η 3 ) < d ( η 3 ) η ( η 3 ) exp { u 1 ( η 3 ) } + d ( η 3 ) η ( η 3 ) exp { u 2 ( η 3 ) } d M η M exp { u 1 ( η 1 ) } + d M η M exp { K 4 }

which leads to

u 1 ( η 1 ) > ln b 3 M - d M η M exp { K 4 } d M μ M .
(33)

In view of (10), (15) and (33), we can obtain

u 1 ( t ) u 1 ( ξ 1 ) + 0 ω | u ˙ 1 ( t ) | d t ln [ b 1 L ] + 2 b ̄ 1 ω : = B 9 ,
(34)
u 1 ( t ) u 1 ( η 1 ) - 0 ω | u ˙ 1 ( t ) | d t ln b 3 M - d M η M exp { K 4 } d M μ M - 2 b ̄ 1 ω : = B 10 .
(35)

It follows from (34) and (35) that

max t [ 0 , ω ] | u 1 ( t ) | max { | B 9 | , | B 10 | } : = K 5 .
(36)

From the first equation of (9), we get

0 ω exp { - K 5 } + α ( t ) exp { - K 4 } + η ( t ) exp { u 3 ( ξ 3 ) } 1 + ω 1 M exp { K 5 } d t < b ̄ 1 ω , 0 ω [ exp { K 5 } + α ( t ) exp { K 4 } + η ( t ) exp { u 3 ( η 3 )} ]d t > b ̄ 1 ω .

Then

exp { - K 5 } + α ̄ exp { - K 4 } + α ̄ exp { u 3 ( ξ 3 ) } 1 + ω 1 M exp { K 5 } < b ̄ 1 , exp { K 5 } + α ̄ exp { K 4 } + η ̄ exp { u 3 ( η 3 ) } > b ̄ 1 .

Therefore we have

u 3 ( ξ 3 ) < ln ( b ̄ 1 - exp { - K 5 } - α ̄ exp { - K 4 } ) ( 1 + ω 1 M exp { K 5 } ) η ̄ ,
(37)
u 3 ( η 3 ) > ln b ̄ 1 - exp { - K 5 } - α ̄ exp { - K 4 } η ̄ .
(38)

By (3.9), (37) and (38), we can obtain

u 3 ( t ) u 3 ( ξ 3 ) + 0 ω | u ˙ 3 ( t ) | d t ln ( b ̄ 1 - exp { - K 5 } - α ̄ exp { - K 4 } ) ( 1 + ω 1 M exp { K 5 } ) η ̄ + 2 b ̄ 3 ω : = B 11 ,
(39)
u 3 ( t ) u 3 ( η 3 ) - 0 ω | u ˙ 3 ( t ) | d t ln b ̄ 1 - exp { - K 5 } - α ̄ exp { - K 4 } η ̄ - 2 b ̄ 3 ω : = B 12 .
(40)

It follows from (39) and (40) that

max t [ 0 , ω ] | u 3 ( t ) | max { | B 11 | , | B 12 | } : = K 6 .
(41)

Obviously, B i (i = 1, 2, 3, ..., 12) are independent of λ (0, 1). Take M = max{K1, K5}+max{K2, K 4}+ max{K3, K6} + K0, where K0 is taken sufficiently large such that every solution ( ũ 1 , ũ 2 , ũ 3 ) T R 3 of the following algebraic equations

b ̄ 1 - exp { u 1 } - α ̄ exp { u 2 } - 1 ω 0 ω η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t = 0 , b ̄ 2 - β ̄ exp { u 1 } - exp { u 2 } - 1 ω 0 ω μ ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t = 0 , - b ̄ 3 + 1 ω 0 ω d ( t ) η ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t + 1 ω 0 ω d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t = 0 .
(42)

satisfies max t [ 0 , ω ] | ũ 1 | + max t [ 0 , ω ] | ũ 2 | + max t [ 0 , ω ] | ũ 2 | < K 0 (if it exists).

Let Ω := {u = {u(t)} X : ||u|| < M}, then it is easy to see that is an open, bounded set in X and verifies requirement (a) of Lemma 1. When (u1(t), u2(t), u3(t))T ∂Ω ∩ KerL = ∂Ω ∩ R3, u ={(u1, u2, u3)T} is a constant vector in R3 with ||u|| = ||(u1(t), u2(t), u3(t))T || = maxt[0,ω]|u1(t)| + maxt[0,ω]|u2(t)| + maxt[0,ω]|u3(t)| = M. Then we have

Q N u = b ̄ 1 - exp { u 1 } - α ̄ exp { u 2 } - 1 ω 0 ω η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t b ̄ 2 - β ̄ exp { u 1 } - exp { u 2 } - 1 ω 0 ω η ( t ) exp { u 3 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t - b ̄ 3 + 1 ω 0 ω d ( t ) μ ( t ) exp { u 1 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t + 1 ω 0 ω d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + ω 2 ( t ) exp { u 2 ( t ) } d t 0 0 0 .
(43)

Now, the only thing left is to verify that condition (b) in Theorem 2.1 is satisfied. To do this, we define

ϕ : DomX × [0, 1] → X by

ϕ ( u 1 , u 2 , u 3 , v ) = b ̄ 1 - 1 ω 0 ω η ( t ) exp { u 3 ( t ) } 1 + w 1 ( t ) exp { u 1 ( t ) } d t b ̄ 2 - β ̄ exp { u 1 } - exp { u 2 } - b ̄ 3 + 1 ω 0 ω d ( t ) η ( t ) exp { u 1 ( t ) } 1 + w 1 ( t ) exp { u 1 ( t ) } d t + v - exp { u 1 } - α ¯ exp { u 2 } - 1 ω 0 ω η ( t ) exp { u 3 ( t ) } 1 + w 2 ( t ) exp { u 2 ( t ) } d t 1 ω 0 ω d ( t ) μ ( t ) exp { u 2 ( t ) } 1 + w 2 ( t ) exp { u 2 ( t ) } d t ,

where v [0, 1] is a parameter. Due to the homotopy invariance theorem of topology degree and taking J = I : ImQ → KerL, (u1, u2, u3)T → (u1, u2, u3)T, we have

deg J Q N ( u 1 , u 2 , u 3 ) T ; Ω Ker L ; 0 = deg Q N ( u 1 , u 2 , u 3 ) T ; Ω Ker L ; 0 = sign { det 1 ω 0 ω η ( t ) exp { u 1 + u 3 } [ 1 + ω 1 ( t ) exp { u 1 ( t ) } ] 2 d t 0 - 1 ω 0 ω η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t - β ̄ exp { u 1 } - exp { u 2 } 0 1 ω 0 ω η ( t ) exp { u 1 } [ 1 + ω 1 ( t ) exp { u 1 ( t ) } ] 2 d t 0 0 = - sign 1 ω 0 ω η ( t ) exp { u 3 ( t ) } 1 + ω 1 ( t ) exp { u 1 ( t ) } d t 1 ω 0 ω η ( t ) exp { u 1 } [ 1 + ω 1 ( t ) exp { u 1 ( t ) } ] 2 d t exp { u 2 } = - 1 0 .

This proves that condition (b) in Lemma 1 is satisfied. By now, we have proved that verifies all requirements of Lemma 1, then it follows that Lu = Nu has at least one solution (u1(t), u2(t), u3(t))T in Dom L Ω ̄ , that is to say, (5) has at least one ω periodic solution in Dom L Ω ̄ . Then we know that (x1(t), x2(t), y(t))T = (exp{u1(t)}, exp{u2(t)}, exp{u3(t)})T is an ω periodic solution of system (2)-(3) with strictly positive components. Hence the proof.

Uniqueness and global attractivity

We now process to the discussion on the global attractivity of the positive ω-periodic solution (x1, x2, x3)T in Theorem 1. It is immediate that if (x1, x2, x3)T is globally attractive, then it is in fact unique.

Lemma 3. Let ε be an arbitrary small positive constant and (x1(t), x2(t), x3(t))T be any positive solution of system (2)-(3). If the following condition

( H 4 ) b 3 > d M η M M 1 1 + ω 1 L + d M μ M M 2 1 + ω 2 L M 2

holds, then exists a positive constant t 0 such that

0 < x 1 < M 1 , 0 < x 2 < M 2 , 0 < z < M 3 f o r t > t 0 ,

where

M 1 > M 1 * = b 1 M + ε , M 2 > b 2 M + ε , M 3 > φ 3 ( 0 ) + ε .

Proof. From the first equation of (2), we obtain

1 ( t ) = x 1 ( t ) b 1 ( t ) - x 1 ( t ) - α ( t ) x 2 ( t ) - η ( t ) z ( t ) 1 + ω 1 ( t ) x 1 ( t ) x 1 ( t ) ( b 1 ( t ) - x 1 ( t ) ) .

Then for arbitrary small positive constant ε, there exists a T1 > 0 such that for tT1, there has

x 1 ( t ) b 1 M + ε .
(44)

From the second equation of (2), we obtain

2 ( t ) = x 2 ( t ) b 2 ( t ) - β ( t ) x 1 ( t ) - x 2 ( t ) - μ ( t ) z ( t ) 1 + ω 2 ( t ) x 2 ( t ) x 2 ( t ) ( b 2 ( t ) - x 2 ( t ) ) .

Then for arbitrary small positive constant ε, there exists a T2 > 0 such that for tT2, there has

x 2 ( t ) b 2 M + ε .
(45)

Since both functions d η x 1 1 + ω 1 x 1 and d η x 2 1 + ω 2 x 2 are increasing functions with respect to x1 and x2, respectively, from the third equation of (2), we get

ż ( t ) = z ( t ) - b 3 ( t ) + d ( t ) η ( t ) x 1 ( t ) 1 + ω 1 ( t ) x 1 ( t ) + d ( t ) μ ( t ) x 2 ( t ) 1 + ω 2 ( t ) x 2 ( t ) z ( t ) - b 3 L + d M η M M 1 1 + ω 1 L M 1 + d M μ M M 2 1 + ω 2 M 2 .

Under the assumption (H4), we know that z(t) is a decreasing function with respect to t, Then for arbitrary small positive constant ε, there exists a T3 > 0 such that for tT3, there has

z ( t ) φ 3 ( 0 ) + ε .
(46)

Definition 1. A positive bounded solution (x1(t), x2(t), z(t)) of system (2)-(3) is said to globally attractive, if for any other positive solution ( x 1 * ( t ) , x 2 * ( t ) , z * ( t ) ) of system (2)-(3), we have lim t + | x i ( t ) - x i * ( t ) | = 0 , lim t + | z ( t ) - z * ( t ) | = 0 , i = 1 , 2 .

Definition 2. [26] Let f be a nonnegative function defined on [0, +∞) such that f is integrable on [0, +∞) and is uniformly continuous on [0, +∞), then limt→+∞f(t) = 0.

Theorem 2. Let σ1, σ2 and σ3 are defined by (49), (50) and (51), respectively. In addition to (H1)-(H4), if there exist positive constants θ i (i = 1, 2, 3) and δ such that δ = min{ρ1, ρ2, ρ3} > 0, then system (2)-(1.3) has a unique positive ω-periodic solution which is globally attractive.

Proof. Due to the conclusion in Lemma 3, we need only to show that the attractivity of the positive periodic solution of (2)-(3). Let x * ( t ) = ( x 1 * ( t ) , x 2 * ( t ) , z * ( t ) ) T be a positive ω-periodic solution of (2)-(3), and x(t) = (x1(t), x2(t), z(t))T be any positive solution of system (2)-(3). It follows from Lemma 3 that there exist positive constants T and M i (see Lemma 3) such that for all tT,

0 < x 1 ( t ) < M 1 , 0 < x 2 ( t ) < M 2 , 0 < z ( t ) < M 3 .

We consider the following Lyapunov functional:

V ( t ) = i = 1 2 θ i | ln x i ( t ) - ln x i * ( t ) | + θ 3 | ln z ( t ) - ln z * ( t ) | .
(47)

Calculating the upper right derivative D+V (t) of V (t) along the solution of (2), we have

D + V ( t ) = i = 1 2 θ i i ( t ) x i ( t ) - i * ( t ) x i * ( t ) sgn ( x i ( t ) - x i * ( t ) ) + θ 3 ż ( t ) z ( t ) - ż * ( t ) z * ( t ) sgn ( z ( t ) - z * ( t ) ) = θ 1 sgn ( x 1 ( t ) - x 1 * ( t ) ) - ( x 1 ( t ) - x 1 * ( t ) ) - α ( t ) ( x 2 ( t ) - x 2 * ( t ) ) - η ( t ) z ( t ) 1 + ω 1 ( t ) x 1 ( t ) + η ( t ) z * ( t ) 1 + ω 1 ( t ) x 1 * ( t ) + θ 2 sgn ( x 2 ( t ) - x 2 * ( t ) ) - β ( t ) ( x 1 ( t ) - x 1 * ( t ) ) - μ ( t ) z ( t ) 1 + ω 2 ( t ) x 2 ( t ) + μ ( t ) z * ( t ) 1 + ω 2 ( t ) x 2 * ( t ) - ( x 2 ( t ) - x 2 * ( t ) ) + θ 3 ( z ( t ) - z * ( t ) ) d ( t ) η ( t ) x 1 ( t ) 1 + ω 1 ( t ) x 1 ( t ) - d ( t ) η ( t ) x 1 * ( t ) 1 + ω 1 ( t ) x 1 * ( t ) + d ( t ) μ ( t ) x 2 ( t ) 1 + ω 2 ( t ) x 2 ( t ) - d ( t ) μ ( t ) x 2 * ( t ) 1 + ω 2 ( t ) x 2 * ( t ) - θ 1 | x 1 ( t ) - x 1 * ( t ) | + θ 1 α M | x 2 ( t ) - x 2 * ( t ) | + θ 1 η M ω 1 M M 1 | z ( t ) - z * ( t ) | + θ 1 η M ω 1 M M 3 | x 1 ( t ) - x 1 * ( t ) | - θ 2 | x 2 ( t ) - x 2 * ( t ) | + θ 2 β M | z ( t ) - z * ( t ) | - θ 2 μ M | z ( t ) - z * ( t ) | + θ 2 μ M ω 2 M M 3 | x 2 ( t ) - x 2 * ( t ) | + θ 2 μ M ω 2 M M 2 | z ( t ) - z * ( t ) | + θ 3 [ d M η M | x 1 ( t ) - x 1 * ( t ) | + d M μ M | x 2 ( t ) - x 2 * ( t ) | ] - δ i = 1 2 | x i ( t ) - x i * ( t ) | + | z ( t ) - z * ( t ) | ,
(48)

where

σ 1 = θ 1 η M ω 1 M M 3 + θ 2 β M + θ 2 d M η M - θ 1 ,
(49)
σ 2 = θ 1 α M + θ 2 μ M ω 2 M M 3 + θ 3 d M μ M - θ 2 ,
(50)
σ 3 = θ 1 η M ω 1 M M 1 + θ 2 η M ω 2 M M 2 + θ 2 μ M .
(51)

An integration of (48) over [T, t], we obtain that

δ T t i = 1 2 | x i ( s ) - x i * ( s ) | + | z ( s ) - z * ( s ) | d s V ( T ) - V ( t ) for  t T ,

which implies

T t i = 1 2 | x i ( s ) - x i * ( s ) | + | z ( s ) - z * ( s ) | d s V ( T ) δ < + .

Then it follows from Definition 2 that

lim t + | x i ( t ) - x i * ( t ) | = 0 , lim t + | z ( t ) - z * ( t ) | = 0 , ( i = 1 , 2 ) ,

which implies that the ω-periodic solution of system (2)-(3) is globally attractive. This completes the proof of Theorem 2.

References

  1. Holling CS: The components of predation as revealed by a study of smal manmmal predation of the European pine sawfly. Can Entomol 1959, 91: 293–320. 10.4039/Ent91293-5

    Article  Google Scholar 

  2. Liu XN, Chen LS: Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbation on the predator. Chaos, Solitons Fractals 2004, 16: 311–320.

    Article  Google Scholar 

  3. Song XY, Li YF: Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. Nonlinear Anal Real World Appl 2008, 9: 64–79. 10.1016/j.nonrwa.2006.09.004

    Article  MathSciNet  Google Scholar 

  4. Liu QM, Xu R: Periodic solutions for a delayed one-predator and two-prey system with Holling type-II functional response. Ann Diff Eqs 2005, 21: 14–28.

    Google Scholar 

  5. Agiza HN, ELabbasy EM, EL-Metwally H, Elsadany AA: Chaotic dynamics of a discrete preypredator model with Holling type II. Nonlinear Anal Real World Appl 2009, 10: 116–129. 10.1016/j.nonrwa.2007.08.029

    Article  MathSciNet  Google Scholar 

  6. Pei YZ, Chen LS, Zhang QR, Li CG: Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control. J Theor Biol 2005, 235: 495–503. 10.1016/j.jtbi.2005.02.003

    Article  MathSciNet  Google Scholar 

  7. Apreutesei N, Dimitriu G: On a prey-predator reaction-diffusion system with Holling type III functional response. J Comput Appl Math 2010, 235: 366–379. 10.1016/j.cam.2010.05.040

    Article  MathSciNet  Google Scholar 

  8. Baek H: A food chain system with Holling type IV functional response and impulsive perturbations. Comput Math Appl 2010, 60: 1152–1163. 10.1016/j.camwa.2010.05.039

    Article  MathSciNet  Google Scholar 

  9. Xu R, Chaplain MAJ, Davidson FA: Periodic solutions for a predator-prey model with Hollingtype functional response and time delays. Appl Math Comput 2005, 161: 637–654. 10.1016/j.amc.2003.12.054

    Article  MathSciNet  Google Scholar 

  10. Chen FD, Shi JL: On a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response and diffusion. Appl Math Comput 2007, 192: 358–369. 10.1016/j.amc.2007.03.012

    Article  MathSciNet  Google Scholar 

  11. Gaines RE, Mawhin JL: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin; 1997.

    Google Scholar 

  12. Ko W, Ryu K: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J Diff Equ 2006, 231: 534–550. 10.1016/j.jde.2006.08.001

    Article  MathSciNet  Google Scholar 

  13. Li WT, Fan YH: Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholsons blowflies model. J Comput Appl Math 2007, 201: 55–68. 10.1016/j.cam.2006.02.001

    Article  MathSciNet  Google Scholar 

  14. Liu ZJ, Zhong SM, Liu XY: Permanence and periodic solutions for an impulsive reaction-diffusion food-chain system with holling type III functional response. J Franklin Inst 2011, 348: 277–299. 10.1016/j.jfranklin.2010.11.007

    Article  MathSciNet  Google Scholar 

  15. Nindjin AF, Aziz-Alaoui MA, Cadivel M: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal Real World Appl 2006, 7: 1104–1118. 10.1016/j.nonrwa.2005.10.003

    Article  MathSciNet  Google Scholar 

  16. Su H, Dai BX, Chen YM, Li KW: Dynamic complexities of a predator-prey model with generalized Holling type III functional response and impulsive effects. Comput Math Appl 2008, 56: 1715–1725. 10.1016/j.camwa.2008.04.001

    Article  MathSciNet  Google Scholar 

  17. Zhang ZQ: Existence and global attractivity of positive periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response. Appl Math Comput 2011, 217: 5830–5837. 10.1016/j.amc.2010.12.065

    Article  MathSciNet  Google Scholar 

  18. Zhu YL, Wang K: Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes. J Math Anal Appl doi:10.1016/j.jmaa.2011.05.081

  19. Song XY, Li YF: Dynamical complexities of a Holling II two-prey one predator system with impulsive effect. Chaos Solitons Fractals 2007, 33: 463–478. 10.1016/j.chaos.2006.01.019

    Article  MathSciNet  Google Scholar 

  20. Li WT, Wang LL: Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control. J Comput Appl Math 2005, 180: 293–309. 10.1016/j.cam.2004.11.002

    Article  MathSciNet  Google Scholar 

  21. Shen JH, Li JL: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonlinear Anal Real World Appl 2009, 10: 227–243. 10.1016/j.nonrwa.2007.08.026

    Article  MathSciNet  Google Scholar 

  22. Tang XH, Cao DM, Zou XF: Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay. J Diff Equ 2006, 228: 580–610. 10.1016/j.jde.2006.06.007

    Article  MathSciNet  Google Scholar 

  23. Yan JR, Zhao AM, Nieto JJ: Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems. Math Comput Modell 2004, 40: 509–518. 10.1016/j.mcm.2003.12.011

    Article  MathSciNet  Google Scholar 

  24. Yan JR, Zhao AM, Yan WP: Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect. J Math Anal Appl 2005, 309: 489–504. 10.1016/j.jmaa.2004.09.038

    Article  MathSciNet  Google Scholar 

  25. Zhang ZQ: Existence and global attractivity of a positive periodic solution for a generalized delayed population model with stocking and feedback control. Math Comput Modelling 2008, 48: 749–760. 10.1016/j.mcm.2007.10.015

    Article  MathSciNet  Google Scholar 

  26. Barbalat L: Systems d,equations differentielles d,oscillations nonlineaires. Rev Roumaine Math Pures Appl 1959, 4: 267–270.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No.10961008), Soft Science and Technology Program of Guizhou Province (No.2011LKC2030), Natural Science and Technology Foundation of Guizhou Province (J[2012]2100) and Doctoral Foundation of Guizhou University of Finance and Economics (2010) and Governor Foundation of Guizhou Province (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjin Xu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors indicated in parentheses made substantial contributions to the following tasks of research: Drafting the manuscript(Y.F.S); Participating in design of the manuscript(Y.F.S, P.L.L.); Writing and revision of the paper(C.J.X, P.L.L.).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Xu, C., Li, P. & Shao, Y. Existence and global attractivity of positive periodic solutions for a Holling II two-prey one-predator system. Adv Differ Equ 2012, 84 (2012). https://doi.org/10.1186/1687-1847-2012-84

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2012-84

Keywords