Theory and Modern Applications

Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations

Abstract

In this article, by using the fixed point theorem, existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations

$\left\{\begin{array}{c}\hfill {D}_{0+}^{\alpha }u\left(t\right)+\lambda a\left(t\right)f\left(t,u\left(t\right)\right)=0,\phantom{\rule{2.77695pt}{0ex}}0

is considered, where 1 < α < 2 is a real number, ${D}_{0+}^{\alpha }$ is the standard Riemann-Liouville derivate, λ is a positive parameter and a(t) C([0, 1], [0, ∞)), f(t, u) C([0, 1] × [0, ∞), [0, ∞)).

MSC(2010): 34B18.

1 Introduction

Fractional differential equations have been of great interest recently. It is caused both by the intensive development of the theory of fractional calculus itself and by the applications of such constructions in various sciences such as physics, mechanics, chemistry, engineering, etc. For details, see [16] and references therein.

Recently, many results were obtained dealing with the existence and multiplicity of solutions of nonlinear fractional differential equations by the use of techniques of nonlinear analysis, see [722] and the reference therein. Bai and Lu [7] studied the existence of positive solutions of nonlinear fractional differential equation

$\left\{\begin{array}{c}\hfill {D}_{0+}^{\alpha }u\left(t\right)+f\left(t,u\left(t\right)\right)=0,\phantom{\rule{2.77695pt}{0ex}}0
(1.1)

where 1 < α≤ 2 is a real number, ${D}_{0+}^{\alpha }$ is the standard Riemann-Liouville differentiation, and f : [0, 1] × [0, ∞) → [0, ∞) is continuous. They derived the corresponding Green function and obtained some properties as follows.

Proposition 1 The Green function G(t, s) satisfies the following conditions:

(R1) G(t, s) C([0,1] × [0,1]), and G(t, s) > 0 for t, s (0, 1);

(R2) There exists a positive function γ C(0, 1) such that

$\underset{\frac{1}{4}\le t\le \frac{3}{4}}{\text{min}}G\left(t,s\right)\ge \gamma \left(s\right)\underset{0\le t\le 1}{\text{max}}G\left(t,s\right)\ge \gamma \left(s\right)G\left(s,s\right),s\in \left(0,1\right),$
(1.2)

where

$G\left(t,s\right)=\left\{\begin{array}{c}\hfill \frac{{\left[t\left(1-s\right)\right]}^{\alpha -1}-{\left(t-s\right)}^{\alpha -1}}{\Gamma \left(\alpha \right)},\phantom{\rule{1em}{0ex}}0\le s\le t\le 1,\hfill \\ \hfill \frac{{\left[t\left(1-s\right)\right]}^{\alpha -1}}{\Gamma \left(\alpha \right)},\phantom{\rule{1em}{0ex}}0\le t\le s\le 1.\hfill \end{array}\right\\phantom{\rule{0.1em}{0ex}}$
(1.3)

It is well known that the cone plays a very important ... role in applying the Green function in research area. In [7], the authors cannot acquire a positive constant taken instead of the role of positive function γ(s) with 1 < α < 2 in (1.2). In [9], Jiang and Yuan obtained some new properties of the Green function and established a new cone. The results can be stated as follows.

Proposition 2 The Green function G(t, s) defined by (1.3) has the following properties: G(t, s) = G(1 - s, 1 - t) and

$\frac{\alpha -1}{\Gamma \left(\alpha \right)}{t}^{\alpha -1}\left(1-t\right){\left(1-s\right)}^{\alpha -1}s\le G\left(t,s\right)\le \frac{1}{\Gamma \left(\alpha \right)}{t}^{\alpha -1}\left(1-t\right){\left(1-s\right)}^{\alpha -2}\phantom{\rule{1em}{0ex}}\forall t,s\in \left(0,1\right).$
(1.4)

Proposition 3 The function G*(t, s):= t2-αG(t, s) has the following properties:

$q\left(t\right)\Phi \left(s\right)\le {G}^{*}\left(t,s\right)\le \Phi \left(s\right)\phantom{\rule{1em}{0ex}}\forall t,s\in \left[0,1\right].$
(1.5)

where q(t) = (α - 1)t(1 - t),$\Phi \left(s\right)=\frac{1}{\Gamma \left(\alpha \right)}s{\left(1-s\right)}^{\alpha -1}$.

$\left\{\begin{array}{c}\hfill {D}_{0+}^{\alpha }u\left(t\right)+\lambda a\left(t\right)f\left(t,u\left(t\right)\right)=0,\phantom{\rule{1em}{0ex}}0
(1.6)

where 1 < α < 2 is a real number, ${D}_{0+}^{\alpha }$ is the standard Riemann-Liouville derivate, λ is a positive parameter and a(t) C([0,1], [0, ∞)), f(t, u) C([0,1] × [0, ∞), [0, ∞)).

2 The preliminary lemmas

For the convenience of the reader, we present here the necessary definitions from fractional calculus theory. These definitions can be found in the recent literature.

Definition 2.1 The fractional integral of order α > 0 of a function y : (0, ∞) → R is given by

${I}_{0+}^{\alpha }y\left(t\right)=\frac{1}{\Gamma \left(\alpha \right)}{\int }_{0}^{t}{\left(t-s\right)}^{\alpha -1}y\left(s\right)ds$

provided the right side is pointwise defined on (0, ∞).

Definition 2.2 The fractional derivative of order α > 0 of a function y : (0, ∞) → R is given by

${D}_{0+}^{\alpha }y\left(t\right)=\frac{1}{\Gamma \left(n-\alpha \right)}{\left(\frac{d}{dt}\right)}^{n}{\int }_{0}^{t}\frac{y\left(s\right)}{{\left(t-s\right)}^{\alpha -n+1}}ds$

where n = [α] + 1, provided the right side is pointwise defined on (0, ∞).

Lemma 2.1 Let α > 0. If we assume u C(0, 1) ∩ L(0, 1), then the fractional differential equation

${D}_{0+}^{\alpha }u\left(t\right)=0$

has u(t) = C1tα-1 + C2tα-2 + ... + C N tα-N , C i R, i = 1, 2, ..., N, where N is the smallest integer greater than or equal to α, as unique solutions.

Lemma 2.2[7] Assume that u C(0, 1) L(0, 1) with a fractional derivative of order α > 0 that belongs to u C(0, 1) ∩ L(0, 1). Then

${I}_{0+}^{\alpha }{D}_{0+}^{\alpha }u\left(t\right)=u\left(t\right)+{C}_{1}{t}^{\alpha -1}+{C}_{2}{t}^{\alpha -2}+\cdots +{C}_{N}{t}^{\alpha -N}$

for some C i R, i = 1, 2, . . . , N.

Lemma 2.3[7] Given y C[0,1] and 1 < α ≤ 2, the unique solution of

$\left\{\begin{array}{c}\hfill {D}_{0+}^{\alpha }u\left(t\right)+y\left(t\right)=0,\phantom{\rule{1em}{0ex}}0
(2.1)

is

$u\left(t\right)={\int }_{0}^{1}G\left(t,s\right)y\left(s\right)ds,$

where

$G\left(t,s\right)=\left\{\begin{array}{c}\hfill \frac{{\left[t\left(1-s\right)\right]}^{\alpha -1}-{\left(t-s\right)}^{\alpha -1}}{\Gamma \left(\alpha \right)},\phantom{\rule{1em}{0ex}}0\le s\le t\le 1,\hfill \\ \hfill \frac{{\left[t\left(1-s\right)\right]}^{\alpha -1}}{\Gamma \left(\alpha \right)},\phantom{\rule{1em}{0ex}}0\le t\le s\le 1.\hfill \end{array}\right\\phantom{\rule{0.1em}{0ex}}$
(2.2)

Lemma 2.4[10] Let K be a cone in Banach space E. Suppose that $T:{\overline{K}}_{r}\to K$ is a completely continuous operator.

1. (i)

If there exists u 0 K \ {θ} such that u - Tuμu 0 for any u K r and μ ≥ 0, then i(T, K r, K) = 0.

2. (ii)

If Tuμu for any u K r and μ ≥ 1, then i(T, K r, K) = 1.

Lemma 2.5[8] Let P be a cone in Banach space X. Suppose that T : PP is a completely continuous operator. If there exists a bounded open set Ω(P) such that each solution of

$u=\sigma Tu,\phantom{\rule{1em}{0ex}}u\in P,\sigma \in \left[0,1\right]$

satisfies u Ω(P), then the fixed point index i(T, Ω(P), P) = 1.

3 The main results

Let E = C[0,1] be endowed with the ordering uv if u(t) ≤ v(t) for all t [0,1], and the maximum norm, $∥u∥=\underset{0\le t\le 1}{\text{max}}\left|u\left(t\right)\right|$. Define the cone P E by P = {u E|u(t) ≥ 0}, and

$K=\left\{u\in P|u\left(t\right)\ge q\left(t\right)||u||\right\}.$

where q(t) is defined by (1.5).

It is easy to see that P and K are cones in E. For any 0 < r < R < +∞, let K r = {u K| ||u|| < r}, ∂K r = {u K| ||u|| = r}, ${\overline{K}}_{r}=\left\{u\in K|\phantom{\rule{0.3em}{0ex}}||u||\le r\right\}$and${\overline{K}}_{R}\{K}_{r}=\left\{u\in K\phantom{\rule{0.3em}{0ex}}|\phantom{\rule{0.3em}{0ex}}r\le ||u||\le R\right\}$.

For convenience, we introduce the following notations

$\begin{array}{c}{g}_{0}=\underset{u\to {0}^{+}}{\text{lim}}\frac{g\left(u\right)}{u},\phantom{\rule{1em}{0ex}}{g}_{\infty }=\underset{u\to +\infty }{\text{lim}}\frac{g\left(u\right)}{u},\\ {\int }_{\frac{1}{4}}^{\frac{3}{4}}{G}^{*}\left(\tau ,s\right)a\left(s\right){q}_{1}\left(s\right)ds=\underset{\frac{1}{4}\le t\le \frac{3}{4}}{\text{max}}{\int }_{\frac{1}{4}}^{\frac{3}{4}}{G}^{*}\left(t,s\right)a\left(s\right){q}_{1}\left(s\right)ds.\end{array}$

We assume the following conditions hold throughout the article:

(H1) a(t) C([0, 1], [0, ∞)), a(t) 0;

(H2) f(t, u) C([0, 1] × [0, ∞), [0, ∞)), and there exist g C([0, +∞), [0, +∞)), q1,q2 C((0, 1), (0, +∞)) such that

${q}_{1}\left(t\right)g\left(u\right)\le f\left(t,{t}^{\alpha -2}u\right)\le {q}_{2}\left(t\right)g\left(u\right),\phantom{\rule{1em}{0ex}}t\in \left(0,1\right),\phantom{\rule{2.77695pt}{0ex}}u\in \left[0,+\infty \right),$

where ${\int }_{0}^{1}{q}_{i}\left(s\right)ds<+\infty ,i=1,2$.

By similar arguments to Lemma 4.1 and Theorem 1.3 of [9], we obtain the following result.

Lemma 3.1 Assume that (H1)(H2) hold. Let

$Tu\left(t\right):=\lambda {\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right)f\left(s,{s}^{\alpha -2}u\left(s\right)\right)ds,$
(3.1)

then T : KK is completely continuous. Moreover, if u is a fixed point of T in ${\overline{K}}_{R}\{K}_{r}$, then y = tα-2u is a positive solution of BVP (1.6).

By similar arguments to Theorems 2 and 3 of [18], we obtain the following result.

Theorem 3.1 Assume that (H1)(H2) hold. Then, for each λ satisfying

$\frac{16}{\left[\left(\alpha -1\right){\int }_{\frac{1}{4}}^{\frac{3}{4}}{G}^{*}\left(\tau ,s\right)a\left(s\right){q}_{1}\left(s\right)ds\right]{g}_{\infty }}<\lambda <\frac{1}{\left({\int }_{0}^{1}\Phi \left(s\right)a\left(s\right){q}_{2}\left(s\right)ds\right){g}_{0}},$
(3.2)

there exists at least one positive solution of BVP (1.6) in K.

Theorem 3.2 Assume that (H1)(H2) hold. Then, for each λ satisfying

$\frac{16}{\left[\left(\alpha -1\right){\int }_{\frac{1}{4}}^{\frac{3}{4}}{G}^{*}\left(\tau ,s\right)a\left(s\right){q}_{1}\left(s\right)ds\right]{g}_{0}}<\lambda <\frac{1}{\left({\int }_{0}^{1}\Phi \left(s\right)a\left(s\right){q}_{2}\left(s\right)ds\right){g}_{\infty }},$
(3.3)

there exists at least one positive solution of BVP (1.6) in K.

Set

${L}_{1}u\left(t\right):={\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right){q}_{1}\left(s\right)u\left(s\right)ds,$
(3.4)
${L}_{2}u\left(t\right):={\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right){q}_{2}\left(s\right)u\left(s\right)ds.$
(3.5)

It is clear that L1, L2 is a completely continuous linear operator and L1(P) K, L2(P) K. By virtue of the Krein-Rutman theorem and Proposition 3, we have the following lemma.

Lemma 3.2 Assume that (H1)(H2) hold. Then the spectral radius r(L1) > 0, r(L2) > 0 and L1, L2, respectively, has a positive eigenfunction φ1, φ2 corresponding to its first eigenvalue λ1 = (r(L1))-1, λ2 = (r(L1))-1, that is φ1 = λ1L1φ1, φ2 = λ2L2φ2.

Obviously, L1φ1 K, L2φ2 K, so φ1 K, φ2 K.

In the following, we will obtain some existence results under some conditions concerning the first eigenvalue with respect to linear operator L1, L2.

Assume that

(H3)$\frac{{\lambda }_{1}}{{g}_{0}}<\lambda <\frac{{\lambda }_{2}}{{g}_{\infty }};$

(H3)$\frac{{\lambda }_{1}}{{g}_{\infty }}<\lambda <\frac{{\lambda }_{2}}{{g}_{0}}.$

Theorem 3.3 Assume (H1)(H2)(H3) hold. Then the BVP (1.6) has at least one positive solution.

Proof. First, by Lemma 3.1, we know that T : KK is completely continuous.

By (H3), we have ${g}_{0}>\frac{{\lambda }_{1}}{\lambda }$, there exists r1> 0 such that

$g\left(u\right)\ge \frac{{\lambda }_{1}}{\lambda }u,\phantom{\rule{1em}{0ex}}0

Then for $u\in \partial {K}_{{r}_{1}}$, we have

$\begin{array}{ll}\hfill \left(Tu\right)\left(t\right)& =\lambda {\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right)f\left(s,{s}^{\alpha -2}u\left(s\right)\right)ds\phantom{\rule{2em}{0ex}}\\ \ge \lambda {\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right){q}_{1}\left(s\right)g\left(u\left(s\right)\right)ds\phantom{\rule{2em}{0ex}}\\ \ge {\lambda }_{1}{\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right){q}_{1}\left(s\right)u\left(s\right)ds={\lambda }_{1}\left({L}_{1}u\right)\left(t\right).\phantom{\rule{2em}{0ex}}\end{array}$

By Lemma 3.2, φ1 = λ1L1φ1. We may suppose that T has no fixed points on $\partial {K}_{{r}_{1}}$ (otherwise, the proof is finished). Now we show that

$u-Tu\ne \mu {\phi }_{1},\phantom{\rule{1em}{0ex}}u\in \partial {K}_{r1},\phantom{\rule{1em}{0ex}}\mu \ge 0.$
(3.6)

Assume by contradicts that there exist $u\in \partial {K}_{{r}_{1}}$ and μ1 ≥ 0 such that u1 - Tu1 = μ1φ1, then μ1> 0 and u1 = Tu1 + μ1φ1μ1φ1. Let $\stackrel{̄}{\mu }=\text{sup}\left\{\mu \phantom{\rule{0.3em}{0ex}}|\phantom{\rule{0.3em}{0ex}}{u}_{1}\ge \mu {\phi }_{1}\right\}$, then $\stackrel{̄}{\mu }\ge {\mu }_{1},{u}_{1}\ge \stackrel{̄}{\mu }{\phi }_{1}$ and $T{u}_{1}\ge {\lambda }_{1}\stackrel{̄}{\mu }{L}_{1}{\phi }_{1}=\stackrel{̄}{\mu }{\phi }_{1}$. Thus,

${u}_{1}=T{u}_{1}+{\mu }_{1}{\phi }_{1}\ge \stackrel{̄}{\mu }{\phi }_{1}+{\mu }_{1}{\phi }_{1}=\left(\stackrel{̄}{\mu }+{\mu }_{1}\right){\phi }_{1},$

which contradicts the definition of $\stackrel{̄}{\mu }$ So (3.6) is true and by lemma 2.4 we have

$i\left(T,{K}_{{r}_{1}},K\right)=0.$
(3.7)

On the other hand, by (H3), we have ${g}_{\infty }<\frac{\lambda 2}{\lambda }$, there exists 0 < σ < 1 and r2> r1> 0 such that

$g\left(u\right)\le \sigma \frac{{\lambda }_{2}}{\lambda }u,\phantom{\rule{1em}{0ex}}u\ge {r}_{2}.$

Let = σλ2L2φ, φ C[0,1]. Then L : C[0,1] → C[0,1] is a bounded linear operator and L(K) K. Denote

$M=\left(\underset{0\le t,s\le 1}{\text{max}}{G}^{*}\left(t,s\right)\right)\underset{\phi \in \partial {K}_{{r}_{2}}}{\text{sup}}{\int }_{0}^{1}\lambda a\left(s\right){q}_{2}\left(s\right)g\left(\phi \left(s\right)\right)ds.$

It is clear that M < +∞ Let

$W=\left\{\phi \in K|\phi =\mu T\phi ,\phantom{\rule{2.77695pt}{0ex}}0\le \mu \le 1\right\}.$

In the following, we prove that W is bounded.

For any φ W , set $\stackrel{̄}{\phi }\left(t\right)=\text{min}\left\{\phi \left(t\right),{r}_{2}\right\}$ and denote E(φ) = {t [0,1]|φ(t) > r2}, then

$\begin{array}{ll}\hfill \phi \left(t\right)& =\mu \left(T\phi \right)\left(t\right)\le \left(T\phi \right)\left(t\right)=\lambda {\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right)f\left(s,{s}^{\alpha -2}\phi \left(s\right)\right)ds\phantom{\rule{2em}{0ex}}\\ \le \lambda {\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right){q}_{2}\left(s\right)g\left(\phi \left(s\right)\right)ds\phantom{\rule{2em}{0ex}}\\ =\lambda {\int }_{E\left(\phi \right)}{G}^{*}\left(t,s\right)a\left(s\right){q}_{2}\left(s\right)g\left(\phi \left(s\right)\right)ds+\lambda {\int }_{\left[0,1\right]\E\left(\phi \right)}{G}^{*}\left(t,s\right)a\left(s\right){q}_{2}\left(s\right)g\left(\stackrel{̄}{\phi }\left(s\right)\right)ds\phantom{\rule{2em}{0ex}}\\ \le \sigma {\lambda }_{2}{\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right){q}_{2}\left(s\right)\phi \left(s\right)ds+\lambda {\int }_{0}^{1}{G}^{*}\left(t,s\right)a\left(s\right){q}_{2}\left(s\right)g\left(\stackrel{̄}{\phi }\left(s\right)\right)ds\phantom{\rule{2em}{0ex}}\\ \le \left(L\phi \right)\left(t\right)+M,\phantom{\rule{2.77695pt}{0ex}}t\in \left[0,1\right].\phantom{\rule{2em}{0ex}}\end{array}$

Thus ((I - L)φ)(t) ≤ M, t [0,1]: Since λ2 is the first eigenvalue of L2 and 0 < σ < 1, the first eigenvalue of L, (r(L))-1> 1. Therefore, the inverse operator (I - L)-1 exists and

${\left(I-L\right)}^{-1}=I+L+{L}^{2}+\phantom{\rule{0.3em}{0ex}}\cdot \cdot \cdot \phantom{\rule{0.3em}{0ex}}+\phantom{\rule{2.77695pt}{0ex}}{L}^{n}\cdot \cdot \cdot .$

It follows from L(K) K that (I - L)-1(K) K. So we have φ(t) ≤ (I - L)-1M, t [0,1] and W is bounded.

Choose r3> max{r2, || (I - L)-1M||}. Then by lemma 2.5, we have

$i\left(T,{K}_{{r}_{3}},K\right)=1.$
(3.8)

By (3.7) and (3.8), one has

$i\left(T,{K}_{{r}_{3}}\{\stackrel{̄}{K}}_{{r}_{1}},K\right)=i\left(T,{K}_{{r}_{3}},K\right)-i\left(T,{K}_{{r}_{1}},K\right)=1.$

Then T has at least one fixed point on ${K}_{{r}_{3}}\{\stackrel{̄}{K}}_{{r}_{1}}$ By Lemma 3.1, this means that problem (1.6) has at least one positive solution. The proof is complete.

Theorem 3.4 Assume (H1)(H2)(H4) hold. Then the BVP (1.6) has at least one positive solution.

Theorem 3.5 Assume (H1)(H2) hold and $\frac{{\lambda }_{1}}{\lambda }<{g}_{0}\le \infty ,\frac{{\lambda }_{1}}{\lambda }<{g}_{\infty }\le \infty$. Moreover, the following condition holds:

(H5) there exists a p > 0 such that 0 ≤ up implies g(u) < M1p, where ${M}_{1}={\left[\lambda {\int }_{0}^{1}\Phi \left(s\right)a\left(s\right){q}_{2}\left(s\right)ds\right]}^{-1}$.

Then the BVP (1.6) has at least two positive solution.

Theorem 3.6 Assume (H1)(H2) hold and $0\le {g}_{0}<\frac{{\lambda }_{2}}{\lambda }$, $0\le {g}_{\infty }<\frac{{\lambda }_{2}}{\lambda }$. Moreover, the following condition holds:

(H6) there exists a p > 0 such that $\frac{p\left(\alpha -1\right)}{16}\le u\le p$ implies g(u) > M2p, where ${M}_{2}={\left[\lambda {\int }_{\frac{1}{4}}^{\frac{3}{4}}{G}^{\ast }\left(\frac{1}{2},s\right)a\left(s\right){q}_{1}\left(s\right)ds\right]}^{-1}$. Then the BVP (1.6) has at least two positive solution.

Remark 3.1 Theorems 3.3, 3.4 extend and improve Theorem 1.5 in [9], Theorems 3.5 and 3.6 extend and improve Theorems 1.3 and 1.4 in [9], respectively.

4 Example

Consider the boundary value problem

$\left\{\begin{array}{c}\hfill {D}_{0+}^{\alpha }u\left(t\right)+\lambda \mu \left({u}^{a}\left(t\right)+{u}^{b}\left(t\right)\right)=0,\phantom{\rule{1em}{0ex}}0
(3.9)

Then (3.9) have at least two positive solutions u1 and u2, for each 0 < μ < μ*, where μ* is some positive constant.

Proof. We will apply Theorem 3.5. To this end we take a(t) ≡ 1, f(t, u) = μ(ua (t) + ub (t)), then f(t, tα-2y) = μ(ta(α-2)ya (t) + tb(α-2)yb (t)).

Let q1(t) = ta(α-2), q2(t) = tb(α-2) and g(y) = μ(ya + yb ), then q1(t)g(y) ≤ f(t, tα-2y) ≤ q2(t)g(y) and q1, q2 L1(0, 1), g C([0, +∞), [0, +∞)). Thus (H1)(H2)is satisfied, and it is to see that $\frac{{\lambda }_{1}}{\lambda }<{g}_{0}\le \infty$,$\frac{{\lambda }_{1}}{\lambda }<{g}_{\infty }\le \infty$.

Since

$\begin{array}{ll}\hfill \frac{1}{\Gamma \left(\alpha \right)}{\int }_{0}^{1}s{\left(1-s\right)}^{\alpha -1}{q}_{2}\left(s\right)ds& =\frac{1}{\Gamma \left(\alpha \right)}{\int }_{0}^{1}s{\left(1-s\right)}^{\alpha -1}{s}^{b\left(\alpha -2\right)}ds\phantom{\rule{2em}{0ex}}\\ =\frac{1}{\Gamma \left(\alpha \right)}{\int }_{0}^{1}{s}^{\left(2+b\left(\alpha -2\right)\right)-1}{\left(1-s\right)}^{\alpha -1}ds\phantom{\rule{2em}{0ex}}\\ =\frac{1}{\Gamma \left(\alpha \right)}\frac{\Gamma \left(2+b\left(\alpha -2\right)\right)\Gamma \left(\alpha \right)}{\Gamma \left(2+b\left(\alpha -2\right)+\alpha \right)}\phantom{\rule{2em}{0ex}}\\ =\frac{\Gamma \left(2+b\left(\alpha -2\right)\right)}{\Gamma \left(2+b\left(\alpha -2\right)+\alpha \right)},\phantom{\rule{2em}{0ex}}\end{array}$

then ${M}_{1}={\left(\lambda \frac{\Gamma \left(2+b\left(\alpha -2\right)\right)}{\Gamma \left(2+b\left(\alpha -2\right)+\alpha \right)}\right)}^{-1}$.

Let

${\mu }^{*}=F\left(p\right)=\underset{y>0}{\text{sup}}\left\{F\left(y\right):F\left(y\right)={M}_{1}\frac{y}{{y}^{a}+{y}^{b}}\right\}=F\left({\left(\frac{1-a}{b-1}\right)}^{\frac{1}{b-a}}\right),$

where $p={\left(\frac{1-a}{b-1}\right)}^{\frac{1}{b-a}}$.

Then, for μ < μ*, we have

$g\left(y\right)=\mu \left({y}^{a}+{y}^{b}\right)\le \mu \left({p}^{a}+{p}^{b}\right)<{M}_{1}p,\phantom{\rule{2.77695pt}{0ex}}0\le y\le p,$

thus (H5) holds. Therefore, (3.9) have at least two positive solutions u1 and u2, for each 0 < μ < μ*.

References

1. El-sayed AMA: Nonlinear functional differential equations of arbitrary order. Nonlinear Anal 1998, 33: 181–186. doi:10.1016/S0362–546X(97)00525–7 10.1016/S0362-546X(97)00525-7

2. Kilbas AA, Marichev OI, Samko SG: Fractional Integral and Derivativws (Theory and Applications). Gordon and Breach, Switzerland 1993.

3. Kilbas AA, Trujillo JJ: Differential equations of fractional order: methods, results and problems II. Appl Anal 2002, 81: 435–493. doi:10.1080/0003681021000022032 10.1080/0003681021000022032

4. Kilbas AA, Trujillo JJ: Differential equations of fractional order: methods, results and problems I. Appl Anal 2001, 78: 153–192. doi:10.1080/00036810108840931 10.1080/00036810108840931

5. Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.

6. Podlubny I: Fractional Differential Equations, Mathematics in science and Engineering. Academic Press, New York 1999.

7. Bai ZB, Lu HS: Positive solutions for boundary value problem of nonlinear fractional differential equation. J Math Anal Appl 2005, 311: 495–505. doi:10.1016/j.jmaa.2005.02.052 10.1016/j.jmaa.2005.02.052

8. Bai ZB: On positive solutions of 495a nonlocal fractional boundary value problem. Non-linear Anal 2010, 72: 916–924. doi:10.1016/j.na.2009.07.033

9. Jiang DQ, Yuan CY: The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal 2010, 72: 710–719. doi:10.1016/j.na.2009.07.012 10.1016/j.na.2009.07.012

10. Wang YQ, Liu LS, Wu YH: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal 2011, 74: 3599–3605. doi:10.1016/j.na.2011.02.043 10.1016/j.na.2011.02.043

11. Wang YQ, Liu LS, Wu YH: Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity. Nonlinear Anal 2011, 74: 6434–6441. doi:10.1016/j.na.2011.06.026 10.1016/j.na.2011.06.026

12. Zhang SQ: The existence of a positive solution for a nonlinear fractional differential equation. J Math Anal Appl 2000, 252: 804–812. doi:10.1006/jmaa.2000.7123 10.1006/jmaa.2000.7123

13. Zhang SQ: Existence of positive solution for some class of nonlinear fractional differential equations. J Math Anal Appl 2003, 278: 136–148. doi:10.1016/S0022–247X(02)00583–8 10.1016/S0022-247X(02)00583-8

14. Liang SH, Zhang JH: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal 2009, 71: 5545–5550. doi:10.1016/j.na.2009.04.045 10.1016/j.na.2009.04.045

15. Zhao YG, Sun SR, Han ZL, Li QP: The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun N S N Simulat 2011, 16: 2086–2097.

16. Zhao YG, Sun SR, Han ZL, Zhang M: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl Math Comput 2011, 217: 6950–6958. doi:10.1016/j.amc.2011.01.103 10.1016/j.amc.2011.01.103

17. Yang X, Wei ZL, Dong W: Existence of positive solutions for the boundary value problems of nonlinear fractional differential equations. Commun N S N Simulat 2012, 17: 85–92.

18. Henderson J, Wang HY: Positive solutions for nonlinear eigenvalue problems. J Math Anal Appl 1997, 208: 252–259. 10.1006/jmaa.1997.5334

19. Chang YK, Kavitha V, Arjunan MM: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order. Nonlinear Anal 2009, 71: 5551–5559. doi:10.1016/j.na.2009.04.058 10.1016/j.na.2009.04.058

20. Chang YK, Li WS: Solvability for impulsive neutral integro-differential equations with state-dependent delay via fractional operators. J Optim Theory Appl 2010, 144: 445–459. 10.1007/s10957-009-9612-6

21. Chang YK, Arjunan MM, Kavitha V: Existence results for neutral functional integrodifferential equations with infinite delay via fractional operators. J Appl Math Comput 2011, 36: 201–218. doi:10.1007/s12190–010–0397–4 10.1007/s12190-010-0397-4

22. Gao HL, Han XL: Existence of positive solutions for fractional differential equation with nonlocal boundary condition. Inter Diff Equ 2011., 2011: Art ID 328394. doi:10.1155/2011/328394

Acknowledgements

The authors are grateful to the anonymous referee for their valuable suggestions. X. Han was supported by the NSFC (No. 11101335), the Gansu Provincial Department of Education Fund (No. 1101-02), and the Project of Science and Technology Bureau of Lanzhou (2011-2-72).

Author information

Authors

Corresponding author

Correspondence to Xiaoling Han.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.

Rights and permissions

Reprints and Permissions

Han, X., Gao, H. Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations. Adv Differ Equ 2012, 66 (2012). https://doi.org/10.1186/1687-1847-2012-66