Skip to main content

Theory and Modern Applications

Some identities on Bernoulli and Euler polynomials arising from the orthogonality of Laguerre polynomials

Abstract

In this paper, we derive some interesting identities on Bernoulli and Euler polynomials by using the orthogonal property of Laguerre polynomials.

1 Introduction

The generalized Laguerre polynomials are defined by

exp ( − x t 1 − t ) ( 1 − t ) α + 1 = ∑ n = 0 ∞ L n α (x) t n (α∈Q with Î±>−1).
(1.1)

From (1.1), we note that

L n α (x)= ∑ r = 0 n ( − 1 ) r ( n + α n − r ) x r r ! ( see [1–3] ) .
(1.2)

By (1.2), we see that L n α (x) is a polynomial with degree n. It is well known that Rodrigues’ formula for L n α (x) is given by

L n α (x)= x − α e x n ! ( d n d x n ( e − x x n + α ) ) ( see [1–3] ) .
(1.3)

From (1.3) and a part of integration, we note that

∫ 0 ∞ x α e − x L m α (x) L n α (x)dx= Γ ( α + n + 1 ) n ! δ m , n ,
(1.4)

where δ m , n is a Kronecker symbol. As is well known, Bernoulli polynomials are defined by the generating function to be

t e t − 1 e x t = e B ( x ) t = ∑ n = 0 ∞ B n (x) t n n ! ( see [1–29] ) ,
(1.5)

with the usual convention about replacing B n (x) by B n (x).

In the special case, x=0, B n (0)= B n are called the n th Bernoulli numbers. By (1.5), we get

B n (x)= ∑ l = 0 n ( n l ) B n − l x l ( see [1–29] ) .
(1.6)

The Euler numbers are defined by

E 0 =1, ( E + 1 ) n + E n =2 δ 0 , n ( see [27, 28] ) ,
(1.7)

with the usual convention about replacing E n by E n .

In the viewpoint of (1.6), the Euler polynomials are also defined by

E n (x)= ( E + x ) n = ∑ l = 0 n ( n l ) E n − l x l ( see [11–24] ) .
(1.8)

From (1.7) and (1.8), we note that the generating function of the Euler polynomial is given by

2 e t + 1 e x t = e E ( x ) t = ∑ n = 0 ∞ E n (x) t n n ! ( see [15–29] ) .
(1.9)

By (1.5) and (1.9), we get

2 e t + 1 e x t = 1 t ( 2 − 2 2 e t + 1 ) ( t e x t e t − 1 ) =−2 ∑ n = 0 ∞ ( ∑ l = 0 n E l + 1 l + 1 ( n l ) B n − l ( x ) ) t n n ! .
(1.10)

Thus, by (1.10), we see that

E n (x)=−2 ∑ l = 0 n ( n l ) E l + 1 l + 1 B n − l (x).
(1.11)

By (1.7) and (1.8), we easily get

t e t − 1 e x t = t 2 ( 2 e x t e t + 1 ) + ( t e t − 1 ) ( 2 e x t e t + 1 ) .
(1.12)

Thus, by (1.12), we see that

B n (x)= ∑ k = 0 , k ≠ 1 n ( n k ) B k E n − k (x).
(1.13)

Throughout this paper, we assume that α∈Q with α>−1. Let P n ={p(x)∈Q[x]|degp(x)≤n} be the inner product space with the inner product

〈 p ( x ) , q ( x ) 〉 = ∫ 0 ∞ x α e − x p(x)q(x)dx,

where p(x),q(x)∈ P n . From (1.4), we note that { L 0 α (x), L 1 α (x),…, L n α (x)} is an orthogonal basis for P n .

In this paper, we give some interesting identities on Bernoulli and Euler polynomials which can be derived by an orthogonal basis { L 0 α (x), L 1 α (x),…, L n α (x)} for P n .

2 Some identities on Bernoulli and Euler polynomials

Let p(x)∈ P n . Then p(x) can be generated by { L 0 α (x), L 1 α (x),…, L n α (x)} in P n to be

p(x)= ∑ k = 0 n C k L k α (x),
(2.1)

where

〈 p ( x ) , L k α ( x ) 〉 = C k 〈 L k α ( x ) , L k α ( x ) 〉 = C k ∫ 0 ∞ x α e − x L k α ( x ) L k α ( x ) d x = C k Γ ( α + k + 1 ) k ! .
(2.2)

From (2.2), we note that

C k = k ! Γ ( α + k + 1 ) 〈 p ( x ) , L k α ( x ) 〉 = k ! Γ ( α + k + 1 ) 1 k ! ∫ 0 ∞ ( d k d x k x k + α e − x ) p ( x ) d x = 1 Γ ( α + k + 1 ) ∫ 0 ∞ ( d k d x k x k + α e − x ) p ( x ) d x .
(2.3)

Let us take p(x)= ∑ m = 0 , m ≠ 1 n ( n m ) B m E n −m(x)∈ P n . Then, from (2.3), we have

C k = 1 Γ ( α + k + 1 ) ∫ 0 ∞ ( d k d x k x k + α e − x ) ∑ m = 0 , m ≠ 1 n ( n m ) B n E n − m ( x ) d x = ( − 1 ) k Γ ( α + k + 1 ) ∑ m = 0 , m ≠ 1 n − k ∑ l = k n − m ( n m ) ( n − m l ) B m E n − m − l l ! ( l − k ) ! ∫ 0 ∞ x l + α e − x d x = ( − 1 ) k Γ ( α + k + 1 ) ∑ m = 0 , m ≠ 1 n − k ∑ l = k n − m ( n m ) ( n − m l ) B m E n − m − l l ! ( l − k ) ! Γ ( l + α + 1 ) = ( − 1 ) k ∑ m = 0 , m ≠ 1 n − k ∑ l = k n − m ( n m ) ( n − m l ) B m E n − m − l l ! ( l − k ) ! ( l + α ) ( l + α − 1 ) ⋯ α ( α + k ) ( α + k − 1 ) ⋯ α = ( − 1 ) k n ! ∑ m = 0 , m ≠ 1 n − k ∑ l = k n − m B m m ! E n − m − l ( n − m − l ) ! ( l + α l − k ) .
(2.4)

Therefore, by (2.1) and (2.4), we obtain the following theorem.

Theorem 2.1 For n∈ Z + , we have

From (1.13), we can derive the following corollary.

Corollary 2.2 For n∈ Z + , we have

B n (x)=n! ∑ k = 0 n ( − 1 ) k ( ∑ m = 0 , m ≠ 1 n − k ∑ l = k n − m B m m ! E n − m − l ( n − m − l ) ! ( l + α l − k ) ) L k α (x).

Let us take p(x)= ∑ l = 0 n ( n l ) E l + 1 l + 1 B n − l (x). By the same method, we get

C k = 1 Γ ( α + k + 1 ) ∫ 0 ∞ ( d k d x k x k + α e − x ) ∑ l = 0 n ( n l ) E l + 1 l + 1 B n − l ( x ) d x = 1 Γ ( α + k + 1 ) ∑ l = 0 n − k ∑ m = 0 n − l ( n l ) ( n − l m ) E l + 1 l + 1 B n − l − m ∫ 0 ∞ ( d k d x k x k + α e − x ) x m d x = ( − 1 ) k Γ ( α + k + 1 ) ∑ l = 0 n − k ∑ m = k n − l ( n l ) ( n − l m ) E l + 1 l + 1 B n − l − m m ! ( m − k ) ! Γ ( m + α + 1 ) = ( − 1 ) k ∑ l = 0 n − k ∑ m = k n − l ( n l ) ( n − l m ) m ! ( m − k ) ! E l + 1 ( l + 1 ) B n − l − m ( α + m ) ( α + m − 1 ) ⋯ α ( α + k ) ( α + k − 1 ) ⋯ α = ( − 1 ) k n ! ∑ l = 0 n − k ∑ m = k n − l ( α + m m − k ) E l + 1 ( l + 1 ) ! B n − l − m ( n − l − m ) ! .
(2.5)

Therefore, by (1.11), (2.1), and (2.5), we obtain the following theorem.

Theorem 2.3 For n∈ Z + , we have

− E n ( x ) 2 =n! ∑ k = 0 n ( − 1 ) k ( ∑ l = 0 n − k ∑ m = k n − l ( α + m m − k ) E m + 1 ( m + 1 ) ! B n − m − l ( n − m − l ) ! ) L k α (x).

For n∈N with n≥2 and m∈ Z + with n−m≥0, we have

B n − m ( x ) B m ( x ) = ∑ r { ( n − m 2 r ) m + ( m 2 r ) ( n − m ) } B 2 r B n − 2 r ( x ) n − 2 r + ( − 1 ) m + 1 ( n − m ) ! m ! n ! B n ∈ P n ( see [8] ) .
(2.6)

Let us take p(x)= B n − m (x) B m (x)∈ P n . Then p(x) can be generated by an orthogonal basis { L 0 α (x), L 1 α (x),…, L n α (x)} in P n to be

p(x)= ∑ k = 0 n C k L k α (x).
(2.7)

From (2.3), (2.6), and (2.7), we note that

C k = 1 Γ ( α + k + 1 ) ∫ 0 ∞ ( d k d x k x k + α e − x ) p ( x ) d x = 1 Γ ( α + k + 1 ) ∑ r = 0 [ n 2 ] { ( n − m 2 r ) m + ( m 2 r ) ( n − m ) } × B 2 r n − 2 r ∫ 0 ∞ ( d k d x k x k + α e − x ) B n − 2 r ( x ) d x = 1 Γ ( α + k + 1 ) ∑ r = 0 [ n 2 ] { ( n − m 2 r ) m + ( m 2 r ) ( n − m ) } B 2 r n − 2 r × ∑ l = 0 n − 2 r ( n − 2 r l ) B n − 2 r − l ∫ 0 ∞ ( d k d x k x k + α e − x ) x l d x = 1 Γ ( α + k + 1 ) ∑ r = 0 [ n 2 ] ∑ l = 0 n − 2 r { ( n − m 2 r ) m + ( m 2 r ) ( n − m ) } ( n − 2 r l ) × B 2 r B n − 2 r − l n − 2 r ∫ 0 ∞ ( d k d x k x k + α e − x ) x l d x = ( − 1 ) k Γ ( α + k + 1 ) ∑ r = 0 [ n − k 2 ] ∑ l = k n − 2 r { ( n − m 2 r ) m + ( m 2 r ) ( n − m ) } ( n − 2 r l ) × B 2 r B n − 2 r − l l ! ( n − 2 r ) ( l − k ) ! Γ ( α + l + 1 ) .
(2.8)

It is easy to show that

Γ ( α + l + 1 ) Γ ( α + k + 1 ) ( l − k ) ! = ( α + l ) ( α + l − 1 ) ⋯ α Γ ( α ) ( α + k ) ( α + k − 1 ) ⋯ α Γ ( α ) ( l − k ) ! = ( α + l ) ( α + l − 1 ) ⋯ ( α + k + 1 ) ( α − k ) ! = ( α + l l − k ) .
(2.9)

By (2.8) and (2.9), we get

C k = ( − 1 ) k ∑ r = 0 [ n − k 2 ] ∑ l = k n − 2 r { ( n − m 2 r ) m + ( m 2 r ) ( n − m ) } × ( n − 2 r l ) ( α + l l − k ) l ! B 2 r B n − 2 r − l ( n − 2 r ) .
(2.10)

Therefore, by (2.7) and (2.10), we obtain the following theorem.

Theorem 2.4 For n∈N with n≥2 and m∈ Z + with n−m≥0, we have

B n − m ( x ) B m ( x ) = ∑ k = 0 n ( − 1 ) k { ∑ r = 0 [ n − k 2 ] ∑ l = k n − 2 r ( ( n − m 2 r ) m + ( m 2 r ) ( n − m ) ) × ( n − 2 r l ) ( α + l l − k ) l ! B 2 r B n − 2 r − l ( n − 2 r ) } L k α ( x ) .

It is easy to show that

t 2 e t ( x + y ) ( e t − 1 ) 2 =(x+y−1) t 2 e t ( x + y − 1 ) e t − 1 − t 2 d d t ( e t ( x + y − 1 ) e t − 1 ) .
(2.11)

From (2.11), we have

∑ k = 0 n ( n k ) B k (x) B n − k (y)=(1−n) B n (x+y)+(x+y−1)n B n − 1 (x+y) ( see [11] ) .
(2.12)

Let x=y. Then by (2.12), we get

∑ k = 0 n ( n k ) B k (x) B n − k (x)=(1−n) B n (2x)+(2x−1) B n − 1 (2x).
(2.13)

Let us take p(x)= ∑ k = 0 n ( n k ) B k (x) B n − k (x)∈ P n . Then p(x) can be generated by an orthogonal basis { L 0 α (x), L 1 α (x),…, L n α (x)} in P n to be

p(x)= ∑ k = 0 n ( n k ) B k (x) B n − k (x)= ∑ k = 0 n C k L k α (x).
(2.14)

From (2.3), (2.13), and (2.14), we can determine the coefficients C k ’s to be

C k = 1 Γ ( α + k + 1 ) ∫ 0 ∞ ( d k d x k x k + α e − x ) p ( x ) d x = 1 Γ ( α + k + 1 ) { ( 1 − n ) ∫ 0 ∞ ( d k d x k x k + α e − x ) B n ( 2 x ) d x + n ∫ 0 ∞ ( d k d x k x k + α e − x ) ( 2 x − 1 ) B n − 1 ( 2 x ) d x } .
(2.15)

By simple calculation, we get

(2.16)

and

(2.17)

Therefore, by (2.13), (2.14), (2.15), (2.16), and (2.17), we obtain the following theorem.

Theorem 2.5 For n∈ Z + , we get

References

  1. Carlitz L: An integral for the product of two Laguerre polynomials. Boll. Unione Mat. Ital. 1962, 17(17):25–28.

    MATH  Google Scholar 

  2. Carlitz L: On the product of two Laguerre polynomials. J. Lond. Math. Soc. 1961, 36: 399–402. 10.1112/jlms/s1-36.1.399

    Article  MATH  Google Scholar 

  3. Cangul N, Kurt V, Ozden H, Simsek Y: On the higher-order w - q -Genocchi numbers. Adv. Stud. Contemp. Math. 2009, 19(1):39–57.

    MathSciNet  Google Scholar 

  4. Akemann G, Kieburg M, Phillips MJ: Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices. J. Phys. A 2010., 43(37): Article ID 375207

    Google Scholar 

  5. Bayad A, Kim T: Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 2010, 20(2):247–253.

    MathSciNet  MATH  Google Scholar 

  6. Bayad A: Modular properties of elliptic Bernoulli and Euler functions. Adv. Stud. Contemp. Math. 2010, 20(3):389–401.

    MathSciNet  MATH  Google Scholar 

  7. Carlitz L: Note on the integral of the product of several Bernoulli polynomials. J. Lond. Math. Soc. 1959, 34: 361–363. 10.1112/jlms/s1-34.3.361

    Article  MATH  Google Scholar 

  8. Carlitz L: Some generating functions for Laguerre polynomials. Duke Math. J. 1968, 35: 825–827. 10.1215/S0012-7094-68-03587-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Costin RD: Orthogonality of Jacobi and Laguerre polynomials for general parameters via the Hadamard finite part. J. Approx. Theory 2010, 162(1):141–152. 10.1016/j.jat.2009.04.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding D, Yang J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. 2010, 20(1):7–21.

    MathSciNet  MATH  Google Scholar 

  11. Hansen ER: A Table of Series and Products. Prentice Hall, Englewood Cliffs; 1975.

    MATH  Google Scholar 

  12. Kudo A: A congruence of generalized Bernoulli number for the character of the first kind. Adv. Stud. Contemp. Math. 2000, 2: 1–8.

    MathSciNet  MATH  Google Scholar 

  13. Kim T, Choi J, Kim YH, Ryoo CS: On q -Bernstein and q -Hermite polynomials. Proc. Jangjeon Math. Soc. 2011, 14(2):215–221.

    MathSciNet  MATH  Google Scholar 

  14. Kim T: A note on q -Bernstein polynomials. Russ. J. Math. Phys. 2011, 18(1):73–82. 10.1134/S1061920811010080

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim T: Some identities on the q -Euler polynomials of higher order and q -Stirling numbers by the fermionic p -adic integral on Z p . Russ. J. Math. Phys. 2009, 16(4):484–491. 10.1134/S1061920809040037

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim T: Symmetry of power sum polynomials and multivariate fermionic p -adic invariant integral on Z p . Russ. J. Math. Phys. 2009, 16(1):93–96. 10.1134/S1061920809010063

    Article  MathSciNet  MATH  Google Scholar 

  17. Ozden H, Cangul IN, Simsek Y: Multivariate interpolation functions of higher-order q -Euler numbers and their applications. Abstr. Appl. Anal. 2008., 2008: Article ID 390857

    Google Scholar 

  18. Choi J, Kim DS, Kim T, Kim YH: Some arithmetic identities on Bernoulli and Euler numbers arising from the p -adic integrals on Z p . Adv. Stud. Contemp. Math. 2012, 22(2):239–247.

    MathSciNet  MATH  Google Scholar 

  19. Ozden H, Cangul IN, Simsek Y: Remarks on q -Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 2009, 18(1):41–48.

    MathSciNet  Google Scholar 

  20. Rim SH, Lee SJ: Some identities on the twisted (h,q) -Genocchi numbers and polynomials associated with q -Bernstein polynomials. Int. J. Math. Math. Sci. 2011., 2011: Article ID 482840

    Google Scholar 

  21. Rim SH, Bayad A, Moon EJ, Jin JH, Lee SJ: A new construction on the q -Bernoulli polynomials. Adv. Differ. Equ. 2011., 2011: Article ID 34

    Google Scholar 

  22. Rim SH, Jin JH, Moon EJ, Lee SJ: Some identities on the q -Genocchi polynomials of higher-order and q -Stirling numbers by the fermionic p -adic integral on Z p . Int. J. Math. Math. Sci. 2010., 2010: Article ID 860280

    Google Scholar 

  23. Ryoo CS: On the generalized Barnes type multiple q -Euler polynomials twisted by ramified roots of unity. Proc. Jangjeon Math. Soc. 2010, 13(2):255–263.

    MathSciNet  MATH  Google Scholar 

  24. Ryoo CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 2011, 14(4):495–501.

    MathSciNet  MATH  Google Scholar 

  25. Ryoo CS: Some relations between twisted q -Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math. 2011, 21(2):217–223.

    MathSciNet  MATH  Google Scholar 

  26. Ryoo CS: Some identities of the twisted q -Euler numbers and polynomials associated with q -Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14(2):239–248.

    MathSciNet  MATH  Google Scholar 

  27. Simsek Y: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. (Kyungshang) 2008, 16(2):251–278.

    MathSciNet  MATH  Google Scholar 

  28. Simsek Y: Special functions related to Dedekind-type DC-sums and their applications. Russ. J. Math. Phys. 2010, 17(4):495–508. 10.1134/S1061920810040114

    Article  MathSciNet  MATH  Google Scholar 

  29. Simsek Y: On p -adic twisted q - L -functions related to generalized twisted Bernoulli numbers. Russ. J. Math. Phys. 2006, 13(3):340–348. 10.1134/S1061920806030095

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kim, T., Rim, SH., Dolgy, D. et al. Some identities on Bernoulli and Euler polynomials arising from the orthogonality of Laguerre polynomials. Adv Differ Equ 2012, 201 (2012). https://doi.org/10.1186/1687-1847-2012-201

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2012-201

Keywords