Skip to main content

Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order

Abstract

By using Schauder’s fixed point theorem and the contraction mapping principle, we discuss the existence of solutions for nonlinear fractional differential equations with fractional anti-periodic boundary conditions. Some examples are given to illustrate the main results.

1 Introduction

Fractional calculus has been recognized as an effective modeling methodology by researchers. Fractional differential equations are generalizations of classical differential equations to an arbitrary order. They have broad application in engineering and sciences such as physics, mechanics, chemistry, economics and biology, etc.[14]. For some recent development on the topic, see [513] and the references therein.

In [14], Ahmad et al. considered the following anti-periodic fractional boundary value problems:

{ D q c x ( t ) = f ( t , x ( t ) ) , t [ 0 , T ] , T > 0 , 1 < q 2 , x ( 0 ) = x ( T ) , c D p x ( 0 ) = c D p x ( T ) , 0 < p < 1 ,
(1)

where D q c denotes the Caputo fractional derivative of order q, and f is a given continuous function. The results are based on some standard fixed point principles.

In recent years, there has been a great deal of research into the questions of existence and uniqueness of solutions to anti-periodic boundary value problems for differential equations. First, second and higher-order differential equations with anti-periodic boundary value conditions have been considered in papers [1421]. The existence of solutions for anti-periodic boundary value problems for fractional differential equations was studied in [1827].

In this paper, we investigate the existence and uniqueness of solutions for an anti-periodic fractional boundary value problem given by

{ D α c x ( t ) = f ( t , x ( t ) , c D q x ( t ) ) , t [ 0 , T ] , x ( 0 ) = x ( T ) , c D p x ( 0 ) = c D p x ( T ) ,
(2)

where D α c denotes the Caputo fractional derivative of order α, T is a positive constant, 1<α2, 0<p,q<1, αq1 and f is a given continuous function.

2 Preliminaries

Theorem 2.1 ([28])

Let E be a closed, convex and nonempty subset of a Banach space X, letF:EEbe a continuous mapping such that FE is a relatively compact subset of X. Then F has at least one fixed point in E.

Theorem 2.2 ([29])

Let p and q be two positive numbers such that 1 p + 1 q =1. If | f ( x ) | p and | g ( x ) | q are Riemann integrable on[a,b], then

| a b f ( x ) g ( x ) d x | [ a b | f ( x ) | p d x ] 1 p [ a b | g ( x ) | q d x ] 1 q .

Lemma 2.1 ([14])

For anyyC[0,T], a unique solution of the linear fractional boundary value problem

{ D α c x ( t ) = y ( t ) , t [ 0 , T ] , T > 0 , 1 < α 2 , x ( 0 ) = x ( T ) , c D p x ( 0 ) = c D p x ( T ) ,
(3)

is

x(t)= 0 T G(t,s)y(s)ds,
(4)

where G(t,s) is the Green’s function given by

G(t,s)={ ( t s ) α 1 1 2 ( T s ) α 1 Γ ( α ) + Γ ( 2 p ) ( T 2 t ) ( T s ) α p 1 2 Γ ( α p ) T 1 p , s t , ( T s ) α 1 2 Γ ( α ) + Γ ( 2 p ) ( T 2 t ) ( T s ) α p 1 2 Γ ( α p ) T 1 p , t s .
(5)

Remark 2.1 For p 1 the solution of the classical anti-periodic problem ( D α c x(t)=f(t,x(t) , c D q x(t)), x(0)=x(T), x (0)= x (T), 0tT, 1<α2, 0<q<1, αq1) is given in [30].

3 Main results

Let J=[0,T] and C(J) be the space of all continuous real functions defined on J. Define the space X={x(t)C(J)  and  c D q x(t)C(J),0<q<1} endowed with the norm x= max t J |x(t) | + max t J | c D q x(t)|. Obviously, (X,) is a Banach space.

Theorem 3.1 Letf:J×R×RRbe a continuous function. Assume that

( H 1 ) There exist a constantl(0,α1)and a real-valued functionm(t) L 1 l ([0,T],(0,))such that

| f ( t , x , y ) | m(t)+ d 1 | x | ρ 1 + d 2 | y | ρ 2 ,

where d 1 , d 2 0, 0 ρ 1 , ρ 2 <1. Then the problem (2) has at least a solution on[0,T].

Proof Let the condition ( H 1 ) be valid. According to Lemma 2.1, the problem (2) is equivalent to the following integral equation:

x ( t ) = 0 t ( t s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s 1 2 0 T ( T s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s + Γ ( 2 p ) ( T 2 t ) 2 T 1 p 0 T ( T s ) α p 1 Γ ( α p ) f ( s , x ( s ) , c D q x ( s ) ) d s .

Define

( F x ) ( t ) = 0 t ( t s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s 1 2 0 T ( T s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s ( F x ) ( t ) = + Γ ( 2 p ) ( T 2 t ) 2 T 1 p 0 T ( T s ) α p 1 Γ ( α p ) f ( s , x ( s ) , c D q x ( s ) ) d s , B r = { x ( t ) X , x r , t J } ,

where

r max { ( 3 A d 1 ) 1 1 ρ 1 , ( 3 A d 2 ) 1 1 ρ 2 , 3 K } , K = 3 M T α l 2 Γ ( α ) ( 1 l α l ) 1 l + Γ ( 2 p ) M T α l 2 Γ ( α p ) ( 1 l α p l ) 1 l + M Γ ( α l ) T α q l Γ ( α 1 ) Γ ( α q l + 1 ) K = × ( 1 l α l 1 ) 1 l + M Γ ( 2 p ) T α q l Γ ( α p ) Γ ( 2 q ) ( 1 l α p l ) 1 l , A = T α q Γ ( α q + 1 ) + Γ ( 2 p ) T α q Γ ( 2 q ) Γ ( α p + 1 ) + 3 T α 2 Γ ( α + 1 ) + Γ ( 2 p ) T α 2 Γ ( α p + 1 ) ,

and M= ( 0 T ( m ( s ) ) 1 l d s ) l . Observe that B r is a closed, bounded and convex subset of Banach space X. Now, we prove that F: B r B r . For any x B r , by Theorem 2.2 (Hölder inequality), we have

| ( F x ) ( t ) | = | 0 t ( t s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s 1 2 0 T ( T s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s + Γ ( 2 p ) ( T 2 t ) 2 T 1 p 0 T ( T s ) α p 1 Γ ( α p ) f ( s , x ( s ) , c D q x ( s ) ) d s | 0 t ( t s ) α 1 Γ ( α ) | f ( s , x ( s ) , c D q x ( s ) ) | d s + 1 2 0 T ( T s ) α 1 Γ ( α ) | f ( s , x ( s ) , c D q x ( s ) ) | d s + Γ ( 2 p ) T p 2 0 T ( T s ) α p 1 Γ ( α p ) | f ( s , x ( s ) , c D q x ( s ) ) | d s 0 t ( t s ) α 1 Γ ( α ) m ( s ) d s + d 1 r ρ 1 + d 2 r ρ 2 Γ ( α ) 0 t ( t s ) α 1 d s + 0 T ( T s ) α 1 2 Γ ( α ) m ( s ) d s + d 1 r ρ 1 + d 2 r ρ 2 2 Γ ( α ) 0 T ( T s ) α 1 d s + Γ ( 2 p ) T p 2 Γ ( α p ) 0 T ( T s ) α p 1 m ( s ) d s + Γ ( 2 p ) T p ( d 1 r ρ 1 + d 2 r ρ 2 ) 2 Γ ( α p ) 0 T ( T s ) α p 1 d s 1 Γ ( α ) ( 0 t ( ( t s ) α 1 ) 1 1 l d s ) 1 l ( 0 t ( m ( s ) ) 1 l d s ) l + 1 2 Γ ( α ) ( 0 T ( ( T s ) α 1 ) 1 1 l d s ) 1 l ( 0 T ( m ( s ) ) 1 l d s ) l + Γ ( 2 p ) T p 2 Γ ( α p ) ( 0 T ( ( T s ) α p 1 ) 1 1 l d s ) 1 l ( 0 T ( m ( s ) ) 1 l d s ) l + ( 3 T α 2 Γ ( α + 1 ) + Γ ( 2 p ) T α 2 Γ ( α p + 1 ) ) ( d 1 r ρ 1 + d 2 r ρ 2 ) 3 M T α l 2 Γ ( α ) ( 1 l α l ) 1 l + Γ ( 2 p ) M T α l 2 Γ ( α p ) ( 1 l α p l ) 1 l + ( 3 T α 2 Γ ( α + 1 ) + Γ ( 2 p ) T α 2 Γ ( α p + 1 ) ) ( d 1 r ρ 1 + d 2 r ρ 2 )

and

| c D q ( F x ) ( t ) | = | 0 t ( t s ) q Γ ( 1 q ) ( F x ) ( s ) d s | = | 0 t ( t s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ ) d s | 0 t ( t s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) | f ( τ , x ( τ ) , c D q x ( τ ) ) | d τ ) d s + Γ ( 2 p ) T 1 p 0 t ( t s ) q Γ ( 1 q ) ( 0 T ( T τ ) α p 1 Γ ( α p ) | f ( τ , x ( τ ) , c D q x ( τ ) ) | d τ ) d s 1 Γ ( 1 q ) Γ ( α 1 ) 0 t ( t s ) q ( 0 s ( s τ ) α 2 m ( τ ) d τ ) d s + d 1 r ρ 1 + d 2 r ρ 2 Γ ( 1 q ) Γ ( α 1 ) 0 t ( t s ) q 0 s ( s τ ) α 2 d τ d s + Γ ( 2 p ) Γ ( 1 q ) Γ ( α p ) T 1 p 0 t ( t s ) q ( 0 T ( T τ ) α p 1 m ( τ ) d τ ) d s + ( d 1 r ρ 1 + d 2 r ρ 2 ) Γ ( 2 p ) Γ ( 1 q ) Γ ( α p ) T 1 p 0 t ( t s ) q 0 T ( T τ ) α p 1 d τ d s 1 Γ ( 1 q ) Γ ( α 1 ) 0 t ( t s ) q × [ ( 0 s ( ( s τ ) α 2 ) 1 1 l d τ ) 1 l ( 0 s ( m ( τ ) ) 1 l d τ ) l ] d s + Γ ( 2 p ) Γ ( 1 q ) Γ ( α p ) T 1 p 0 t ( t s ) q × [ ( 0 T ( ( T τ ) α p 1 ) 1 1 l d τ ) 1 l ( 0 T ( m ( τ ) ) 1 l d τ ) l ] d s + d 1 r ρ 1 + d 2 r ρ 2 Γ ( 1 q ) Γ ( α ) 0 t ( t s ) q s α 1 d s + ( d 1 r ρ 1 + d 2 r ρ 2 ) Γ ( 2 p ) T α q Γ ( 2 q ) Γ ( α p + 1 ) × M Γ ( α 1 ) Γ ( 1 q ) ( 1 l α l 1 ) 1 l 0 t ( t s ) q s α l 1 d s + M Γ ( 2 p ) T α l 1 Γ ( α p ) Γ ( 1 q ) ( 1 l α p l ) 1 l 0 t ( t s ) q d s + ( d 1 r ρ 1 + d 2 r ρ 2 ) T α q Γ ( α q + 1 ) + ( d 1 r ρ 1 + d 2 r ρ 2 ) Γ ( 2 p ) T α q Γ ( 2 q ) Γ ( α p + 1 ) M Γ ( α l ) T α q l Γ ( α 1 ) Γ ( α q l + 1 ) ( 1 l α l 1 ) 1 l + M Γ ( 2 p ) T α q l Γ ( α p ) Γ ( 2 q ) ( 1 l α p l ) 1 l + [ T α q Γ ( α q + 1 ) + Γ ( 2 p ) T α q Γ ( 2 q ) Γ ( α p + 1 ) ] ( d 1 r ρ 1 + d 2 r ρ 2 ) .

Thus,

( F x ) ( t ) = max t J | ( F x ) ( t ) | + max t J | c D q ( F x ) ( t ) | 3 M T α l 2 Γ ( α ) ( 1 l α l ) 1 l + Γ ( 2 p ) M T α l 2 Γ ( α p ) ( 1 l α p l ) 1 l + M Γ ( α l ) T α q l Γ ( α 1 ) Γ ( α q l + 1 ) × ( 1 l α l 1 ) 1 l + M Γ ( 2 p ) T α q l Γ ( α p ) Γ ( 2 q ) ( 1 l α p l ) 1 l + [ T α q Γ ( α q + 1 ) + Γ ( 2 p ) T α q Γ ( 2 q ) Γ ( α p + 1 ) + 3 T α 2 Γ ( α + 1 ) + Γ ( 2 p ) T α 2 Γ ( α p + 1 ) ] ( d 1 r ρ 1 + d 2 r ρ 2 ) = K + ( d 1 r ρ 1 + d 2 r ρ 2 ) A r 3 + r 3 + r 3 = r .

Notice that (Fx)(t), D q (Fx)(t) are continuous on J; therefore, F: B r B r . In view of the continuity of f, it is easy to know that the operator F is continuous. Now, we show that F is a completely continuous operator. For each x B r , we fix N= max t J |f(t,x(t) , c D q x(t))|, for any ε>0, setting

δ = min { Γ ( α ) Γ ( α p + 1 ) ε N T α 1 ( Γ ( α p + 1 ) + Γ ( 2 p ) Γ ( α ) ) , 1 2 [ Γ ( α ) Γ ( α p + 1 ) ε 6 N T α 1 ( Γ ( α p + 1 ) + Γ ( 2 p ) Γ ( α ) ) ] 1 1 q } .

For each x B r , we will prove that if t 1 , t 2 J and 0< t 2 t 1 <δ, then

( F x ) ( t 2 ) ( F x ) ( t 1 ) <ε.

In fact,

| ( F x ) ( t 2 ) ( F x ) ( t 1 ) | = | 0 t 2 ( t 2 s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s 0 t 1 ( t 1 s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s + ( t 1 t 2 ) Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 f ( s , x ( s ) , c D q x ( s ) ) d s | 0 t 1 ( t 2 s ) α 1 ( t 1 s ) α 1 Γ ( α ) | f ( s , x ( s ) , c D q x ( s ) ) | d s + t 1 t 2 ( t 1 s ) α 1 Γ ( α ) | f ( s , x ( s ) , c D q x ( s ) ) | d s + ( t 2 t 1 ) Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 | f ( s , x ( s ) , c D q x ( s ) ) | d s N 0 t 1 ( t 2 s ) α 1 ( t 1 s ) α 1 Γ ( α ) d s + N t 1 t 2 ( t 1 s ) α 1 Γ ( α ) d s + N ( t 2 t 1 ) Γ ( 2 p ) Γ ( α p ) T 1 p 0 T ( T s ) α p 1 d s = N Γ ( α + 1 ) ( t 2 α t 1 α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ( t 2 t 1 ) .

By mean value theorem, we have

| ( F x ) ( t 2 ) ( F x ) ( t 1 ) | N Γ ( α + 1 ) ( t 2 α t 1 α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ( t 2 t 1 ) N Γ ( α + 1 ) α T α 1 ( t 2 t 1 ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ( t 2 t 1 ) ( N Γ ( α ) T α 1 + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) δ < ε

and

| c D q ( F x ) ( t 2 ) c D q ( F x ) ( t 1 ) | = | 0 t 2 ( t 2 s ) q Γ ( 1 q ) ( F x ) ( s ) d s 0 t 1 ( t 1 s ) q Γ ( 1 q ) ( F x ) ( s ) d s | = | 0 t 1 ( t 2 s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ ) d s + t 1 t 2 ( t 2 s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ ) d s 0 t 1 ( t 1 s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ ) d s | = | 0 t 1 ( t 2 s ) q ( t 1 s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ ) d s + t 1 t 2 ( t 2 s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ ) d s | 0 t 1 ( t 2 s ) q ( t 1 s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) | f ( τ , x ( τ ) , c D q x ( τ ) ) | d τ ) d s + Γ ( 2 p ) T 1 p 0 t 1 ( t 2 s ) q ( t 1 s ) q Γ ( 1 q ) × ( 0 T ( T τ ) α p 1 Γ ( α p ) | f ( τ , x ( τ ) , c D q x ( τ ) ) | d τ ) d s + t 1 t 2 ( t 2 s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) | f ( τ , x ( τ ) , c D q x ( τ ) ) | d τ ) d s + Γ ( 2 p ) T 1 p t 1 t 2 ( t 2 s ) q Γ ( 1 q ) ( 0 T ( T τ ) α p 1 Γ ( α p ) | f ( τ , x ( τ ) , c D q x ( τ ) ) | d τ ) d s N Γ ( α ) 0 t 1 ( t 2 s ) q ( t 1 s ) q Γ ( 1 q ) s α 1 d s + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) 0 t 1 ( t 2 s ) q ( t 1 s ) q Γ ( 1 q ) s α 1 d s + N Γ ( α ) t 1 t 2 ( t 2 s ) q Γ ( 1 q ) s α 1 d s + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) t 1 t 2 ( t 2 s ) q Γ ( 1 q ) d s ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) 0 t 1 ( t 2 s ) q ( t 1 s ) q Γ ( 1 q ) d s + ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) t 1 t 2 ( t 2 s ) q Γ ( 1 q ) d s ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) [ 2 ( t 2 t 1 ) 1 q + ( t 2 1 q t 1 1 q ) ] .

In the following, we will divide the proof into two cases.

Case 1. For δ t 1 < t 2 <T, by mean value theorem, we have

| c D q ( F x ) ( t 2 ) c D q ( F x ) ( t 1 ) | ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) [ 2 ( t 2 t 1 ) 1 q + ( t 2 1 q t 1 1 q ) ] ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) [ 2 δ 1 q + ( 1 q ) δ q ( t 2 t 1 ) ] < ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) ( 3 q ) δ 1 q < ( 1 2 ) 1 q ε 2 < ε 2 .

Case 2. For 0 t 1 <δ, t 2 <2δ, we have

| c D q ( F x ) ( t 2 ) c D q ( F x ) ( t 1 ) | ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) [ 2 ( t 2 t 1 ) 1 q + ( t 2 1 q t 1 1 q ) ] ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) 3 t 2 1 q < ( N T α 1 Γ ( α ) + N Γ ( 2 p ) T α 1 Γ ( α p + 1 ) ) 3 ( 2 δ ) 1 q < ε 2 .

Hence,

( F x ) ( t 2 ) ( F x ) ( t 1 ) <ε.

Therefore, F is equicontinuous and uniformly bounded. The Arzela-Ascoli theorem implies that F is compact on B r , so the operator F is completely continuous. Thus the conclusion of Theorem 2.1 implies that the anti-periodic boundary value problem (2) has at least one solution on [0,T]. This completes the proof. □

Corollary 3.1 Letf:J×R×RRbe a continuous function. Assume that

( H 2 ) There exist a constantl(0,α1)and a real-valued functionm(t) L 1 l ([0,T],(0,))such that

| f ( t , x , y ) | m(t)+ d 1 |x|+ d 2 |y|,

and( d 1 + d 2 )A<1, where d 1 , d 2 0, A is defined in the proof of Theorem  3.1. Then the problem (2) has at least a solution on[0,T].

The proof of Corollary 3.1 is similar to Theorem 3.1.

Theorem 3.2 Assume that

( H 3 ) There exist a constantr(0,α1)and a real-valued functionμ(t) L 1 r ([0,T],(0,))such that

| f ( t , x , y ) f ( t , u , v ) | μ(t) ( | x u | + | y v | ) ,

for anyt[0,T], x,y,u,vR, and if

(6)

where μ = ( 0 T ( μ ( s ) ) 1 r d s ) r . Then the problem (2) has a unique solution.

Proof Define the mapping F:XX by

( F x ) ( t ) = 0 t ( t s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s 1 2 0 T ( T s ) α 1 Γ ( α ) f ( s , x ( s ) , c D q x ( s ) ) d s + Γ ( 2 p ) ( T 2 t ) 2 T 1 p 0 T ( T s ) α p 1 Γ ( α p ) f ( s , x ( s ) , c D q x ( s ) ) d s .

For x,yX and for each t[0,T], by Theorem 2.2 (Hölder inequality), we obtain

| ( F x ) ( t ) ( F y ) ( t ) | 0 t ( t s ) α 1 Γ ( α ) μ ( s ) ( | x ( s ) y ( s ) | + | c D q x ( s ) c D q y ( s ) | ) d s + 1 2 0 T ( T s ) α 1 Γ ( α ) μ ( s ) ( | x ( s ) y ( s ) | + | c D q x ( s ) c D q y ( s ) | ) d s + Γ ( 2 p ) ( T 2 t ) 2 T 1 p 0 T ( T s ) α p 1 Γ ( α p ) μ ( s ) ( | x ( s ) y ( s ) | + | c D q x ( s ) c D q y ( s ) | ) d s x y Γ ( α ) 0 t ( t s ) α 1 μ ( s ) d s + x y 2 Γ ( α ) 0 T ( T s ) α 1 μ ( s ) d s + x y Γ ( 2 p ) T p 2 Γ ( α p ) 0 T ( T s ) α p 1 μ ( s ) d s x y Γ ( α ) ( 0 t ( ( t s ) α 1 ) 1 1 r d s ) 1 r ( 0 t ( μ ( s ) ) 1 r d s ) r + x y 2 Γ ( α ) ( 0 T ( ( T s ) α 1 ) 1 1 r d s ) 1 r ( 0 T ( μ ( s ) ) 1 r d s ) r + x y Γ ( 2 p ) T p 2 Γ ( α p ) ( 0 T ( ( T s ) α p 1 ) 1 1 r d s ) 1 r ( 0 T ( μ ( s ) ) 1 r d s ) r [ 3 μ T α r 2 Γ ( α ) ( 1 r α r ) 1 r + μ Γ ( 2 p ) T α r 2 Γ ( α p ) ( 1 r α p r ) 1 r ] x y

and

| c D q ( F x ) ( t ) c D q ( F y ) ( t ) | = | 0 t ( t s ) q Γ ( 1 q ) ( F x ) ( s ) d s 0 t ( t s ) q Γ ( 1 q ) ( F y ) ( s ) d s | = | 0 t ( t s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , x ( τ ) , c D q x ( τ ) ) d τ ) 0 t ( t s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) f ( τ , y ( τ ) , c D q y ( τ ) ) d τ Γ ( 2 p ) T 1 p 0 T ( T τ ) α p 1 Γ ( α p ) f ( τ , y ( τ ) , c D q y ( τ ) ) d τ ) | 0 t ( t s ) q Γ ( 1 q ) ( 0 s ( s τ ) α 2 Γ ( α 1 ) | f ( τ , x ( τ ) , c D q x ( τ ) ) f ( τ , y ( τ ) , c D q y ( τ ) ) | d τ ) d s + Γ ( 2 p ) T 1 p 0 t ( t s ) q Γ ( 1 q ) × ( 0 T ( T τ ) α p 1 Γ ( α p ) | f ( τ , x ( τ ) , c D q x ( τ ) ) f ( τ , y ( τ ) , c D q y ( τ ) ) | d τ ) d s x y Γ ( α 1 ) Γ ( 1 q ) 0 t ( t s ) q ( 0 s ( s τ ) α 2 μ ( τ ) d τ ) d s + x y Γ ( 2 p ) T 1 p Γ ( 1 q ) Γ ( α p ) 0 t ( t s ) q ( 0 T ( s τ ) α p 1 μ ( τ ) d τ ) d s x y μ Γ ( α 1 ) Γ ( 1 q ) ( 1 r α r 1 ) 1 r 0 t ( t s ) q s a r 1 d s + x y μ Γ ( 2 p ) T α r 1 Γ ( 1 q ) Γ ( α p ) ( 1 r α r p ) 1 r 0 t ( t s ) q d s x y μ T α q r Γ ( α r ) Γ ( α 1 ) Γ ( α q r + 1 ) ( 1 r α r 1 ) 1 r + x y μ Γ ( 2 p ) T α q r Γ ( 2 q ) Γ ( α p ) ( 1 r α r p ) 1 r [ μ T α q r Γ ( α r ) Γ ( α 1 ) Γ ( α q r + 1 ) ( 1 r α r 1 ) 1 r + μ Γ ( 2 p ) T α q r Γ ( 2 q ) Γ ( α p ) ( 1 r α r p ) 1 r ] x y .

Hence, we obtain

F x F y [ 3 μ T α r 2 Γ ( α ) ( 1 r α r ) 1 r + Γ ( 2 p ) μ T α r 2 Γ ( α p ) ( 1 r α p r ) 1 r + Γ ( α r ) μ T α q r Γ ( α 1 ) Γ ( α q r + 1 ) × ( 1 r α r 1 ) 1 r + Γ ( 2 p ) μ T α q r Γ ( 2 q ) Γ ( α p ) ( 1 r α r p ) 1 r ] x y .

From the assumption (6), it follows that F is a contraction mapping. Therefore, the Banach fixed point theorem yields that F has a unique fixed point which is the unique solution of the problem (2). □

4 Examples

Example 4.1 Let α= 3 2 , p=q= 1 2 , T=1. Consider the following anti-periodic fractional boundary value problem:

{ D 3 2 c x ( t ) = f ( t , x ( t ) , c D 1 2 x ( t ) ) , t [ 0 , 1 ] , x ( 0 ) = x ( 1 ) , c D 1 2 x ( 0 ) = c D 1 2 x ( 1 ) .
(7)

We have

f ( t , x ( t ) , c D 1 2 x ( t ) ) =m(t)+ ( t 1 2 ) 4 [ ( x ( t ) ) ρ 1 + ( c D 1 2 x ( t ) ) ρ 2 ] ,

m(t) L 4 ([0,1],(0,)), 0 ρ 1 , ρ 2 1.

Since

| f ( t , x ( t ) , c D 1 2 x ( t ) ) | | m ( t ) | + ( t 1 2 ) 4 | x ( t ) | ρ 1 + ( t 1 2 ) 4 | D 1 2 x ( t ) | ρ 2 | m ( t ) | + 1 16 | x ( t ) | ρ 1 + 1 16 | c D 1 2 x ( t ) | ρ 2 ,

therefore, by Theorem 3.1, the problem (7) has at least a solution on [0,1].

Example 4.2 Consider the following anti-periodic fractional boundary value problem:

{ D 3 2 c x ( t ) = 1 ( t + 4 ) 2 ( | x + c D 1 2 x | 1 + | x + c D 1 2 x | + 5 t 2 ) , x ( 0 ) = x ( 1 ) , c D 1 2 x ( 0 ) = c D 1 2 x ( 1 ) .
(8)

We have

| f ( t , x , c D 1 2 x ) f ( t , y , c D 1 2 y ) | 1 16 ( | x y | + | c D 1 2 x c D 1 2 y | ) .

Obviously, μ(t) 1 16 L 4 ([0,1],(0,)), r= 1 4 and μ = ( 0 T ( μ ( s ) ) 1 r d s ) r = ( 0 1 ( 1 16 ) 4 d s ) 1 4 = 1 16 . Note that Γ( 3 2 )0.8862, Γ( 7 4 )0.9191, Γ( 5 4 )0.9064, we have

3 μ T α r 2 Γ ( α ) ( 1 r α r ) 1 r + Γ ( 2 p ) μ T α r 2 Γ ( α p ) ( 1 r α p r ) 1 r + Γ ( α r ) μ T α q r Γ ( α 1 ) Γ ( α q r + 1 ) × ( 1 r α r 1 ) 1 r + Γ ( 2 p ) μ T α q r Γ ( 2 q ) Γ ( α p ) ( 1 r α r p ) 1 r = 3 ( 3 5 ) 3 4 32 Γ ( 3 2 ) + Γ ( 3 2 ) 32 + Γ ( 5 4 ) 3 3 4 16 Γ ( 1 2 ) Γ ( 7 4 ) + 1 16 0.7212 + 0.0277 + 0.0793 + 0.0625 = 0.8907 < 1 .

Therefore, (8) has a unique solution on [0,1] by Theorem 3.2.

References

  1. 1.

    Samko SG, Kilbas AA, Marichev OI: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Yverdon; 1993.

    Google Scholar 

  2. 2.

    Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.

    Google Scholar 

  3. 3.

    Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  4. 4.

    Lakshmikantham V, Leela S, Vasundhara Devi J: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge; 2009.

    Google Scholar 

  5. 5.

    Laksmikantham V, Leela S: Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal. 2009, 8: 2886–2889.

    Article  Google Scholar 

  6. 6.

    Agarwal RP, Belmekki M, Benchohra M: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009., 47: Article ID 981728

    Google Scholar 

  7. 7.

    Ahmad B, Nieto JJ: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58: 1838–1843. 10.1016/j.camwa.2009.07.091

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bai ZB, Lü HS: Positive solutions of boundary value problems of nonlinear fractional differential equation. J. Math. Anal. Appl. 2005, 311: 495–505. 10.1016/j.jmaa.2005.02.052

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chang YK, Nieto JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 2009, 49: 605–609. 10.1016/j.mcm.2008.03.014

    MathSciNet  Article  Google Scholar 

  10. 10.

    Li CF, Luo XN, Zhou Y: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 2010, 59: 1363–1375. 10.1016/j.camwa.2009.06.029

    MathSciNet  Article  Google Scholar 

  11. 11.

    Zhou Y, Jiao F: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. 2010, 11: 4465–4475. 10.1016/j.nonrwa.2010.05.029

    MathSciNet  Article  Google Scholar 

  12. 12.

    Henderson J, Ouahab A: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 2010, 59: 1191–1226. 10.1016/j.camwa.2009.05.011

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ahmad B, Alsaedi A, Ntouyas SK: A study of second-order q -difference equations with boundary conditions. Adv. Differ. Equ. 2012., 2012: Article ID 35. doi:10.1186/1687–1847–2012–35

    Google Scholar 

  14. 14.

    Ahmad B, Nieto JJ: Anti-periodic fractional boundary value problems. Comput. Math. Appl. 2011, 62: 1150–1156. 10.1016/j.camwa.2011.02.034

    MathSciNet  Article  Google Scholar 

  15. 15.

    Jankowski T: Ordinary differential equations with nonlinear boundary conditions of antiperiodic type. Comput. Math. Appl. 2004, 47: 1419–1428. 10.1016/S0898-1221(04)90134-4

    MathSciNet  Article  Google Scholar 

  16. 16.

    Franco D, Nieto JJ, O’Regan D: Anti-periodic boundary value problem for nonlinear first order ordinary differential equations. Math. Inequal. Appl. 2003, 6: 477–485.

    MathSciNet  Google Scholar 

  17. 17.

    Ahmad B, Nieto JJ: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 2008, 69: 3291–3298. 10.1016/j.na.2007.09.018

    MathSciNet  Article  Google Scholar 

  18. 18.

    Luo ZG, Shen JH, Nieto JJ: Antiperiodic boundary value problem for first-order impulsive ordinary differential equations. Comput. Math. Appl. 2005, 49: 253–261. 10.1016/j.camwa.2004.08.010

    MathSciNet  Article  Google Scholar 

  19. 19.

    Luo ZG, Wang WB: Existence of solutions to anti-periodic boundary value problems for second order differential equations. Acta Math. Appl. Sin. 2006, 29: 1111–1117.

    MathSciNet  Google Scholar 

  20. 20.

    Wang KZ, Li Y: A note on existence of (anti)-periodic and heteroclinic solutions for a class of second-order odes. Nonlinear Anal. 2009, 70: 1711–1724. 10.1016/j.na.2008.02.054

    MathSciNet  Article  Google Scholar 

  21. 21.

    Aftabizadeh AR, Aizicovici S, Pavel NH: Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces. Nonlinear Anal. 1992, 18: 253–267. 10.1016/0362-546X(92)90063-K

    MathSciNet  Article  Google Scholar 

  22. 22.

    Ahmad B, Otero-Espinar V: Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. Bound. Value Probl. 2009., 2009: Article ID 625347

    Google Scholar 

  23. 23.

    Ahmad B, Nieto JJ: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 2010, 35: 295–304.

    MathSciNet  Google Scholar 

  24. 24.

    Ahmad, B, Nieto, JJ: Anti-periodic fractional boundary value problem with nonlinear term depending on lower order derivative. Fract. Calc. Appl. Anal. 15(3) (2012, in press)

  25. 25.

    Agarwal RP, Ahmad B: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 2011, 62: 1200–1214. 10.1016/j.camwa.2011.03.001

    MathSciNet  Article  Google Scholar 

  26. 26.

    Wang GT, Ahmad B, Zhang LH: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74: 792–804. 10.1016/j.na.2010.09.030

    MathSciNet  Article  Google Scholar 

  27. 27.

    Cernea A: On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. J. Appl. Math. Comput. 2012, 38: 133–143. 10.1007/s12190-010-0468-6

    MathSciNet  Article  Google Scholar 

  28. 28.

    Smart DR: Fixed Point Theorems. Cambridge University Press, Cambridge; 1980.

    Google Scholar 

  29. 29.

    Khuri AI: Advanced Calculus with Applications in Statistics. Wiley, New York; 1993.

    Google Scholar 

  30. 30.

    Chen AP, Chen Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations. Differ. Equ. Dyn. Syst. 2011., 2011: Article ID 915689

    Google Scholar 

Download references

Acknowledgement

The authors are highly grateful for the referee’s careful reading and comments on this note.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The author Zhenhai Liu contributed to each part of this study equally and read and approved the final version of the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wang, F., Liu, Z. Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order. Adv Differ Equ 2012, 116 (2012). https://doi.org/10.1186/1687-1847-2012-116

Download citation

Keywords

  • fractional differential equations
  • boundary value problem
  • anti-periodic
  • fixed point theorem