Skip to main content

A note on discrete maximal regularity for functional difference equations with infinite delay

Abstract

Using exponential dichotomies, we get maximal regularity for retarded functional difference equations. Applications on Volterra difference equations with infinite delay are shown.

[12345678910111213141516171819201234567891011121314151617181920]

References

  1. 1.

    Arendt W, Bu S: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Mathematische Zeitschrift 2002,240(2):311–343. 10.1007/s002090100384

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Beyn W-J, Lorenz J: Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals. Numerical Functional Analysis and Optimization 1999,20(3–4):201–244. 10.1080/01630569908816889

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Beyn W-J, Lorenz J: Stability of viscous profiles: proofs via dichotomies. preprint, 2004

  4. 4.

    Blunck S: Analyticity and discrete maximal regularity on L p -spaces. Journal of Functional Analysis 2001,183(1):211–230. 10.1006/jfan.2001.3740

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Blunck S: Maximal regularity of discrete and continuous time evolution equations. Studia Mathematica 2001,146(2):157–176. 10.4064/sm146-2-3

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cuevas C: Weighted convergent and bounded solutions of Volterra difference systems with infinite delay. Journal of Difference Equations and Applications 2000,6(4):461–480. 10.1080/10236190008808241

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Cuevas C, Del Campo L: An asymptotic theory for retarded functional difference equations. Computers & Mathematics with Applications 2005,49(5–6):841–855. 10.1016/j.camwa.2004.06.032

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Cuevas C, Pinto M: Asymptotic behavior in Volterra difference systems with unbounded delay. Journal of Computational and Applied Mathematics 2000,113(1–2):217–225. 10.1016/S0377-0427(99)00257-5

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Cuevas C, Pinto M: Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay. Computers & Mathematics with Applications 2001,42(3–5):671–685.

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Cuevas C, Pinto M: Convergent solutions of linear functional difference equations in phase space. Journal of Mathematical Analysis and Applications 2003,277(1):324–341. 10.1016/S0022-247X(02)00570-X

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Cuevas C, Vidal C: Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space. Journal of Difference Equations and Applications 2002,8(7):603–640. 10.1080/10236190290032499

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Elaydi S, Murakami S, Kamiyama E: Asymptotic equivalence for difference equations with infinite delay. Journal of Difference Equations and Applications 1999,5(1):1–23. 10.1080/10236199908808167

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Hale JK, Kato J: Phase space for retarded equations with infinite delay. Funkcialaj Ekvacioj 1978,21(1):11–41.

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Hino Y, Murakami S, Naito T: Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics. Volume 1473. Springer, Berlin; 1991:x+317.

    MATH  Google Scholar 

  15. 15.

    Kolmanovskii VB, Castellanos-Velasco E, Torres-Muñoz JA: A survey: stability and boundedness of Volterra difference equations. Nonlinear Analysis 2003,53(7–8):861–928. 10.1016/S0362-546X(03)00021-X

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Matsunaga H, Murakami S: Some invariant manifolds for functional difference equations with infinite delay. Journal of Difference Equations and Applications 2004,10(7):661–689. 10.1080/10236190410001685021

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Murakami S: Representation of solutions of linear functional difference equations in phase space. Nonlinear Analysis. Theory, Methods & Applications 1997,30(2):1153–1164. 10.1016/S0362-546X(97)00296-4

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Murakami S: Some spectral properties of the solution operator for linear Volterra difference systems. In New Developments in Difference Equations and Applications (Taipei, 1997). Gordon and Breach, Amsterdam; 1999:301–311.

    Google Scholar 

  19. 19.

    Weis L: A new approach to maximal L p -regularity. In Evolution Equations and Their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math.. Volume 215. Marcel Dekker, New York; 2001:195–214.

    Google Scholar 

  20. 20.

    Weis L: Operator-valued Fourier multiplier theorems and maximal L p -regularity. Mathematische Annalen 2001,319(4):735–758. 10.1007/PL00004457

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudio Cuevas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuevas, C., vidal, C. A note on discrete maximal regularity for functional difference equations with infinite delay. Adv Differ Equ 2006, 097614 (2006). https://doi.org/10.1155/ADE/2006/97614

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation
\