Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

A note on discrete maximal regularity for functional difference equations with infinite delay

Abstract

Using exponential dichotomies, we get maximal regularity for retarded functional difference equations. Applications on Volterra difference equations with infinite delay are shown.

[12345678910111213141516171819201234567891011121314151617181920]

References

  1. 1.

    Arendt W, Bu S: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Mathematische Zeitschrift 2002,240(2):311–343. 10.1007/s002090100384

  2. 2.

    Beyn W-J, Lorenz J: Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals. Numerical Functional Analysis and Optimization 1999,20(3–4):201–244. 10.1080/01630569908816889

  3. 3.

    Beyn W-J, Lorenz J: Stability of viscous profiles: proofs via dichotomies. preprint, 2004

  4. 4.

    Blunck S: Analyticity and discrete maximal regularity on L p -spaces. Journal of Functional Analysis 2001,183(1):211–230. 10.1006/jfan.2001.3740

  5. 5.

    Blunck S: Maximal regularity of discrete and continuous time evolution equations. Studia Mathematica 2001,146(2):157–176. 10.4064/sm146-2-3

  6. 6.

    Cuevas C: Weighted convergent and bounded solutions of Volterra difference systems with infinite delay. Journal of Difference Equations and Applications 2000,6(4):461–480. 10.1080/10236190008808241

  7. 7.

    Cuevas C, Del Campo L: An asymptotic theory for retarded functional difference equations. Computers & Mathematics with Applications 2005,49(5–6):841–855. 10.1016/j.camwa.2004.06.032

  8. 8.

    Cuevas C, Pinto M: Asymptotic behavior in Volterra difference systems with unbounded delay. Journal of Computational and Applied Mathematics 2000,113(1–2):217–225. 10.1016/S0377-0427(99)00257-5

  9. 9.

    Cuevas C, Pinto M: Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay. Computers & Mathematics with Applications 2001,42(3–5):671–685.

  10. 10.

    Cuevas C, Pinto M: Convergent solutions of linear functional difference equations in phase space. Journal of Mathematical Analysis and Applications 2003,277(1):324–341. 10.1016/S0022-247X(02)00570-X

  11. 11.

    Cuevas C, Vidal C: Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space. Journal of Difference Equations and Applications 2002,8(7):603–640. 10.1080/10236190290032499

  12. 12.

    Elaydi S, Murakami S, Kamiyama E: Asymptotic equivalence for difference equations with infinite delay. Journal of Difference Equations and Applications 1999,5(1):1–23. 10.1080/10236199908808167

  13. 13.

    Hale JK, Kato J: Phase space for retarded equations with infinite delay. Funkcialaj Ekvacioj 1978,21(1):11–41.

  14. 14.

    Hino Y, Murakami S, Naito T: Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics. Volume 1473. Springer, Berlin; 1991:x+317.

  15. 15.

    Kolmanovskii VB, Castellanos-Velasco E, Torres-Muñoz JA: A survey: stability and boundedness of Volterra difference equations. Nonlinear Analysis 2003,53(7–8):861–928. 10.1016/S0362-546X(03)00021-X

  16. 16.

    Matsunaga H, Murakami S: Some invariant manifolds for functional difference equations with infinite delay. Journal of Difference Equations and Applications 2004,10(7):661–689. 10.1080/10236190410001685021

  17. 17.

    Murakami S: Representation of solutions of linear functional difference equations in phase space. Nonlinear Analysis. Theory, Methods & Applications 1997,30(2):1153–1164. 10.1016/S0362-546X(97)00296-4

  18. 18.

    Murakami S: Some spectral properties of the solution operator for linear Volterra difference systems. In New Developments in Difference Equations and Applications (Taipei, 1997). Gordon and Breach, Amsterdam; 1999:301–311.

  19. 19.

    Weis L: A new approach to maximal L p -regularity. In Evolution Equations and Their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math.. Volume 215. Marcel Dekker, New York; 2001:195–214.

  20. 20.

    Weis L: Operator-valued Fourier multiplier theorems and maximal L p -regularity. Mathematische Annalen 2001,319(4):735–758. 10.1007/PL00004457

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudio Cuevas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuevas, C., vidal, C. A note on discrete maximal regularity for functional difference equations with infinite delay. Adv Differ Equ 2006, 097614 (2006). https://doi.org/10.1155/ADE/2006/97614

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation