Skip to main content

Monotone finite difference domain decomposition algorithms and applications to nonlinear singularly perturbed reaction-diffusion problems

Abstract

This paper deals with monotone finite difference iterative algorithms for solving nonlinear singularly perturbed reaction-diffusion problems of elliptic and parabolic types. Monotone domain decomposition algorithms based on a Schwarz alternating method and on box-domain decomposition are constructed. These monotone algorithms solve only linear discrete systems at each iterative step and converge monotonically to the exact solution of the nonlinear discrete problems. The rate of convergence of the monotone domain decomposition algorithms are estimated. Numerical experiments are presented.

[12345678910111234567891011]

References

  1. 1.

    Boglaev I: A numerical method for a quasilinear singular perturbation problem of elliptic type. USSR Computational Mathematics and Mathematical Physics 1988, 28: 492–502.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Boglaev I: Numerical solution of a quasilinear parabolic equation with a boundary layer. USSR Computational Mathematics and Mathematical Physics 1990,30(3):55–63. 10.1016/0041-5553(90)90190-4

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Boglaev I: Monotone iterative algorithms for a nonlinear singularly perturbed parabolic problem. Journal of Computational and Applied Mathematics 2004,172(2):313–335. 10.1016/j.cam.2004.02.010

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Boglaev I: On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion problem. Journal of Computational and Applied Mathematics 2004,162(2):445–466. 10.1016/j.cam.2003.08.035

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Ladyženskaja OA, Solonnikov VA, Ural'ceva NN: Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs. Volume 23. Izdat. "Nauka", Moscow; 1968:xi+648.

    Google Scholar 

  6. 6.

    Ladyženskaja OA, Ural'ceva NN: Linear and Quasi-Linear Elliptic Equations. Academic Press, New York; 1968.

    Google Scholar 

  7. 7.

    Miller JJH, O'Riordan E, Shishkin GI: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, New Jersey; 1996:xiv+166.

    Google Scholar 

  8. 8.

    Pao CV: Monotone iterative methods for finite difference system of reaction-diffusion equations. Numerische Mathematik 1985,46(4):571–586. 10.1007/BF01389659

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Pao CV: Finite difference reaction diffusion equations with nonlinear boundary conditions. Numerical Methods for Partial Differential Equations. An International Journal 1995,11(4):355–374. 10.1002/num.1690110405

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Saad Y, Schultz MH: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 1986,7(3):856–869. 10.1137/0907058

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Samarskii AA: The Theory of Difference Schemes, Monographs and Textbooks in Pure and Applied Mathematics. Volume 240. Marcel Dekker, New York; 2001:xviii+761.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Igor Boglaev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boglaev, I., Hardy, M. Monotone finite difference domain decomposition algorithms and applications to nonlinear singularly perturbed reaction-diffusion problems. Adv Differ Equ 2006, 070325 (2006). https://doi.org/10.1155/ADE/2006/70325

Download citation

Keywords

  • Differential Equation
  • Exact Solution
  • Partial Differential Equation
  • Numerical Experiment
  • Ordinary Differential Equation
\