Skip to main content

Advertisement

Lyapunov functions for linear nonautonomous dynamical equations on time scales

Article metrics

  • 844 Accesses

  • 7 Citations

Abstract

The existence of a Lyapunov function is established following a method of Yoshizawa for the uniform exponential asymptotic stability of the zero solution of a nonautonomous linear dynamical equation on a time scale with uniformly bounded graininess.

[1234567891011121314151612345678910111213141516]

References

  1. 1.

    Agarwal RP: Difference Equations and Inequalities, Monographs and Textbooks in Pure and Applied Mathematics. Volume 155. Marcel Dekker, New York; 1992:xiv+777.

  2. 2.

    Agarwal RP, Bohner M, O'Regan D, Peterson A: Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics 2002,141(1–2):1–26. 10.1016/S0377-0427(01)00432-0

  3. 3.

    Aulbach B, Hilger S: Linear dynamic processes with inhomogeneous time scale. In Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990), Math. Res.. Volume 59. Akademie, Berlin; 1990:9–20.

  4. 4.

    Bohner M, Peterson A: Dynamic Equations on Time Scales. Birkhäuser Boston, Massachusetts; 2001:x+358.

  5. 5.

    Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Massachusetts; 2003:xii+348.

  6. 6.

    Conway JB: Functions of One Complex Variable I, Graduate Texts in Mathematics. Volume 11. 2nd edition. Springer, New York; 1978:xiii+317.

  7. 7.

    Döffinger A: Theorie dynamischer Gleichungen—ein einheitlicher Zugang zur kontinuierlichen und diskreten Dynamik, Diplomarbeit. Universität Augsburg, Augsburg; 1995.

  8. 8.

    Hilger S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Dissertation. Universität Würzburg, Würzburg; 1988.

  9. 9.

    Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(1–2):18–56.

  10. 10.

    Hilger S: Special functions, Laplace and Fourier transform on measure chains. Dynamic Systems and Applications 1999,8(3–4):471–488.

  11. 11.

    Keller S: Asymptotisches Verhalten invarianter Faserbündel bei Diskretisierung und Mittelwertbildung im Rahmen der Analysis auf Zeitskalen, Dissertation. Universität Augsburg, Augsburg; 1999.

  12. 12.

    Kloeden PE, Khilger S: The effect of time granularity on the asymptotic stability of dynamical systems. Automation and Remote Control 1994,55(9, part 1):1293–1298 (1995).

  13. 13.

    Pötzsche C, Siegmund S, Wirth F: A spectral characterisation of exponential stability for linear time-invariant systems on time scales. Discrete and Continuous Dynamical Systems 2002, 9: 255–265.

  14. 14.

    Remmert R: Funktionentheorie. Springer, Berlin; 1995.

  15. 15.

    Yoshizawa T: Stability Theory by Liapunov's Second Method, Publications of the Mathematical Society of Japan, no. 9. The Mathematical Society of Japan, Tokyo; 1966:viii+223.

  16. 16.

    Zmorzynska A: Lyapunovfunktionen auf Zeitskalen, Diplomarbeit. J. W. Goethe Universität, Frankfurt am Main; 2004.

Download references

Author information

Correspondence to Peter E Kloeden.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation