Skip to content


  • Research Article
  • Open Access

Lyapunov functions for linear nonautonomous dynamical equations on time scales

Advances in Difference Equations20062006:069106

  • Received: 25 January 2006
  • Accepted: 13 April 2006
  • Published:


The existence of a Lyapunov function is established following a method of Yoshizawa for the uniform exponential asymptotic stability of the zero solution of a nonautonomous linear dynamical equation on a time scale with uniformly bounded graininess.


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation


Authors’ Affiliations

Institut für Mathematik, Johann Wolfgang Goethe Universität, Frankfurt am Main 60054, Germany
Institut für Mathematik, Technische Universität Berlin, Berlin, 10623, Germany


  1. Agarwal RP: Difference Equations and Inequalities, Monographs and Textbooks in Pure and Applied Mathematics. Volume 155. Marcel Dekker, New York; 1992:xiv+777.Google Scholar
  2. Agarwal RP, Bohner M, O'Regan D, Peterson A: Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics 2002,141(1–2):1–26. 10.1016/S0377-0427(01)00432-0MathSciNetView ArticleMATHGoogle Scholar
  3. Aulbach B, Hilger S: Linear dynamic processes with inhomogeneous time scale. In Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990), Math. Res.. Volume 59. Akademie, Berlin; 1990:9–20.Google Scholar
  4. Bohner M, Peterson A: Dynamic Equations on Time Scales. Birkhäuser Boston, Massachusetts; 2001:x+358.View ArticleMATHGoogle Scholar
  5. Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Massachusetts; 2003:xii+348.MATHGoogle Scholar
  6. Conway JB: Functions of One Complex Variable I, Graduate Texts in Mathematics. Volume 11. 2nd edition. Springer, New York; 1978:xiii+317.View ArticleGoogle Scholar
  7. Döffinger A: Theorie dynamischer Gleichungen—ein einheitlicher Zugang zur kontinuierlichen und diskreten Dynamik, Diplomarbeit. Universität Augsburg, Augsburg; 1995.Google Scholar
  8. Hilger S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Dissertation. Universität Würzburg, Würzburg; 1988.MATHGoogle Scholar
  9. Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(1–2):18–56.MathSciNetView ArticleMATHGoogle Scholar
  10. Hilger S: Special functions, Laplace and Fourier transform on measure chains. Dynamic Systems and Applications 1999,8(3–4):471–488.MathSciNetMATHGoogle Scholar
  11. Keller S: Asymptotisches Verhalten invarianter Faserbündel bei Diskretisierung und Mittelwertbildung im Rahmen der Analysis auf Zeitskalen, Dissertation. Universität Augsburg, Augsburg; 1999.Google Scholar
  12. Kloeden PE, Khilger S: The effect of time granularity on the asymptotic stability of dynamical systems. Automation and Remote Control 1994,55(9, part 1):1293–1298 (1995).MathSciNetGoogle Scholar
  13. Pötzsche C, Siegmund S, Wirth F: A spectral characterisation of exponential stability for linear time-invariant systems on time scales. Discrete and Continuous Dynamical Systems 2002, 9: 255–265.Google Scholar
  14. Remmert R: Funktionentheorie. Springer, Berlin; 1995.MATHGoogle Scholar
  15. Yoshizawa T: Stability Theory by Liapunov's Second Method, Publications of the Mathematical Society of Japan, no. 9. The Mathematical Society of Japan, Tokyo; 1966:viii+223.Google Scholar
  16. Zmorzynska A: Lyapunovfunktionen auf Zeitskalen, Diplomarbeit. J. W. Goethe Universität, Frankfurt am Main; 2004.Google Scholar


© P.E Kloeden and A. Zmorzynska. 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.