Skip to main content

Oscillation and nonoscillation for impulsive dynamic equations on certain time scales

Abstract

We discuss the existence of oscillatory and nonoscillatory solutions for first-order impulsive dynamic equations on time scales with certain restrictions on the points of impulse. We will rely on the nonlinear alternative of Leray-Schauder type combined with a lower and upper solutions method.

[1234567891011121314151617181920212223242512345678910111213141516171819202122232425]

References

  1. 1.

    Agarwal RP, Benchohra M, O'Regan D, Ouahab A: Second order impulsive dynamic equations on time scales. Functional Differential Equations 2004,11(3–4):223–234.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Agarwal RP, Bohner M, Saker SH: Oscillation of second order delay dynamic equations. to appear in The Canadian Applied Mathematics Quarterly

  3. 3.

    Agarwal RP, Grace SR, O'Regan D: Oscillation Theory for Second Order Dynamic Equations, Series in Mathematical Analysis and Applications. Volume 5. Taylor & Francis, London; 2003:viii+404.

    Google Scholar 

  4. 4.

    Aulbach B, Hilger S: Linear dynamic processes with inhomogeneous time scale. In Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990), Math. Res.. Volume 59. Akademie, Berlin; 1990:9–20.

    Google Scholar 

  5. 5.

    Bainov DD, Simeonov PS: Systems with Impulse Effect, Ellis Horwood Series: Mathematics and Its Applications. Ellis Horwood, Chichester; 1989:255.

    Google Scholar 

  6. 6.

    Bainov DD, Simeonov PS: Oscillation Theory of Impulsive Differential Equations. International Publications, Florida; 1998:ii+284.

    Google Scholar 

  7. 7.

    Benchohra M, Henderson J, Ntouyas SK, Ouahab A: On first order impulsive dynamic equations on time scales. Journal of Difference Equations and Applications 2004,10(6):541–548. 10.1080/10236190410001667986

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Benchohra M, Ntouyas SK, Ouahab A: Existence results for second order boundary value problem of impulsive dynamic equations on time scales. Journal of Mathematical Analysis and Applications 2004,296(1):65–73. 10.1016/j.jmaa.2004.02.057

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bohner EA, Bohner M, Saker SH: Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. to appear in Electronic Transactions on Numerical Analysis

  10. 10.

    Bohner M, Peterson A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston, Massachusetts; 2001:x+358.

    Google Scholar 

  11. 11.

    Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Massachusetts; 2003:xii+348.

    Google Scholar 

  12. 12.

    Bohner M, Saker SH: Oscillation of second order nonlinear dynamic equations on time scales. The Rocky Mountain Journal of Mathematics 2004,34(4):1239–1254. 10.1216/rmjm/1181069797

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Chang YK, Li WT: Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions. Mathematical and Computer Modelling 2006,43(3–4):377–384. 10.1016/j.mcm.2005.12.015

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Erbe L: Oscillation criteria for second order linear equations on a time scale. The Canadian Applied Mathematics Quarterly 2001,9(4):345–375 (2002).

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Erbe L, Peterson A, Saker SH: Oscillation criteria for second-order nonlinear dynamic equations on time scales. Journal of the London Mathematical Society. Second Series 2003,67(3):701–714. 10.1112/S0024610703004228

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Graef JR, Karsai J: On the oscillation of impulsively damped halflinear oscillators. In Proceedings of the 6th Colloquium on the Qualitative Theory of Differential Equations (Szeged, 1999), 2000, Szeged, Proc. Colloq. Qual. Theory Differ. Equ.. Electron. J. Qual. Theory Differ. Equ.; 12.

  17. 17.

    Graef JR, Karsai J: Oscillation and nonoscillation in nonlinear implusive system with increasing energy. Discrete and Continuous Dynamical Systems 2000, 7: 161–173. Proceeding of the 3rd International Conference on Dynamical systems and Differential Equations

    Google Scholar 

  18. 18.

    Granas A, Dugundji J: Fixed Point Theory, Springer Monographs in Mathematics. Springer, New York; 2003:xvi+690.

    Google Scholar 

  19. 19.

    Henderson J: Double solutions of impulsive dynamic boundary value problems on a time scale. Journal of Difference Equations and Applications 2002,8(4):345–356. 10.1080/1026190290017405

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Henderson J: Nontrivial solutions to a nonlinear boundary value problem on a time scale. Communications on Applied Nonlinear Analysis 2004,11(1):65–71.

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Henderson J, Tisdell CC: Topological transversality and boundary value problems on time scales. Journal of Mathematical Analysis and Applications 2004,289(1):110–125. 10.1016/j.jmaa.2003.08.030

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Lakshmikantham V, Bainov DD, Simeonov PS: Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics. Volume 6. World Scientific, New Jersey; 1989:xii+273.

    Google Scholar 

  23. 23.

    Lakshmikantham V, Sivasundaram S, Kaymakcalan B: Dynamic Systems on Measure Chains, Mathematics and Its Applications. Volume 370. Kluwer Academic, Dordrecht; 1996:x+285.

    Google Scholar 

  24. 24.

    Saker SH: Oscillation of nonlinear dynamic equations on time scales. Applied Mathematics and Computation 2004,148(1):81–91. 10.1016/S0096-3003(02)00829-9

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Samoĭlenko AM, Perestyuk NA: Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. Volume 14. World Scientific, New Jersey; 1995:x+462.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mouffak Benchohra or Johnny Henderson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benchohra, M., Hamani, S. & Henderson, J. Oscillation and nonoscillation for impulsive dynamic equations on certain time scales. Adv Differ Equ 2006, 060860 (2006). https://doi.org/10.1155/ADE/2006/60860

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation
\