Skip to main content

Exponential dichotomy of difference equations in l p -phase spaces on the half-line

Abstract

For a sequence of bounded linear operators on a Banach space X, we investigate the characterization of exponential dichotomy of the difference equations vn+1 = A n v n . We characterize the exponential dichotomy of difference equations in terms of the existence of solutions to the equations vn+1 = A n v n + f n in l p spaces (1 ≤ p < ∞). Then we apply the results to study the robustness of exponential dichotomy of difference equations.

[12345678910111213141516171819201234567891011121314151617181920]

References

  1. 1.

    Aulbach B, Minh NV: The concept of spectral dichotomy for linear difference equations. II. Journal of Difference Equations and Applications 1996,2(3):251–262. 10.1080/10236199608808060

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bainov DD, Kostadinov SI, Zabreiko PP: Stability of the notion of dichotomy of linear impulsive differential equations in a Banach space. Italian Journal of Pure and Applied Mathematics 1997, 1: 43–50 (1998).

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Baskakov AG: Semigroups of difference operators in the spectral analysis of linear differential operators. Functional Analysis and Its Applications 1996,30(3):149–157 (1997). 10.1007/BF02509501

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chow S-N, Leiva H: Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. Journal of Differential Equations 1995,120(2):429–477. 10.1006/jdeq.1995.1117

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Coffman CV, Schäffer JJ: Dichotomies for linear difference equations. Mathematische Annalen 1967,172(2):139–166. 10.1007/BF01350095

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Dalec'kiĭ JuL, Kreĭn MG: Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs. Volume 43. American Mathematical Society, Rhode Island; 1974:vi+386.

    Google Scholar 

  7. 7.

    Henry D: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics. Volume 840. Springer, Berlin; 1981:iv+348.

    Google Scholar 

  8. 8.

    Huy NT: Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. Journal of Functional Analysis 2006,235(1):330–354. 10.1016/j.jfa.2005.11.002

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Huy NT, Minh NV: Exponential dichotomy of difference equations and applications to evolution equations on the half-line. Computers & Mathematics with Applications 2001,42(3–5):301–311.

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Kato T: Perturbation Theory for Linear Operators. Springer, New York; 1980.

    Google Scholar 

  11. 11.

    Latushkin Y, Tomilov Y: Fredholm differential operators with unbounded coefficients. Journal of Differential Equations 2005,208(2):388–429. 10.1016/j.jde.2003.10.018

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Li T: Die Stabilitatsfrage bei Differenzengleichungen. Acta Mathematica 1934, 63: 99–141. 10.1007/BF02547352

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Minh NV, Huy NT: Characterizations of dichotomies of evolution equations on the half-line. Journal of Mathematical Analysis and Applications 2001,261(1):28–44. 10.1006/jmaa.2001.7450

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Minh NV, Räbiger F, Schnaubelt R: Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line. Integral Equations and Operator Theory 1998,32(3):332–353. 10.1007/BF01203774

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Ngoc PHA, Naito T: New characterizations of exponential dichotomy and exponential stability of linear difference equations. Journal of Difference Equations and Applications 2005,11(10):909–918. 10.1080/00423110500211947

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Peterson AC, Raffoul YN: Exponential stability of dynamic equations on time scales. Advances in Difference Equations 2005,2005(2):133–144. 10.1155/ADE.2005.133

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Rodkina A, Schurz H: Global asymptotic stability of solutions of cubic stochastic difference equations. Advances in Difference Equations 2004,2004(3):249–260. 10.1155/S1687183904309015

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Sell GR, You Y: Dynamics of Evolutionary Equations, Applied Mathematical Sciences. Volume 143. Springer, New York; 2002:xiv+670.

    Google Scholar 

  19. 19.

    Slyusarchuk VE: Exponential dichotomy of solutions of discrete systems. Ukrainskiı Matematicheskiĭ Zhurnal 1983,35(1):109–115, 137.

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Stefanidou G, Papaschinopoulos G: Trichotomy, stability, and oscillation of a fuzzy difference equation. Advances in Difference Equations 2004,2004(4):337–357. 10.1155/S1687183904311015

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thieu Huy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huy, N.T., Ngoc Ha, V.T. Exponential dichotomy of difference equations in l p -phase spaces on the half-line. Adv Differ Equ 2006, 058453 (2006). https://doi.org/10.1155/ADE/2006/58453

Download citation

Keywords

  • Differential Equation
  • Banach Space
  • Phase Space
  • Partial Differential Equation
  • Ordinary Differential Equation