Skip to main content

Existence and nonexistence of positive solutions to a right-focal boundary value problem on time scales

Abstract

We are concerned with proving the existence of one or more than one positive solution of an n-point right-focal boundary value problem for the nonlinear dynamic equation . We will also obtain criteria which lead to nonexistence of positive solutions. Here the independent variable t is in a time scale. We will use fixed point theorems for operators on a Banach space.

[1234567891011121314]

References

  1. 1.

    Agarwal RP, Bohner M: Basic calculus on time scales and some of its applications. Results in Mathematics 1999,35(1–2):3–22.

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Anderson DR: Positivity of Green's function for an n -point right focal boundary value problem on measure chains. Mathematical and Computer Modelling 2000,31(6–7):29–50. 10.1016/S0895-7177(00)00044-3

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Anderson DR: Discrete third-order three-point right-focal boundary value problems. Computers & Mathematics with Applications 2003,45(6–9):861–871.

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Aulbach B: Analysis auf Zeitmengen, Lecture Notes. Universitat Augsburg, Augsburg; 1990.

    Google Scholar 

  5. 5.

    Boey KL, Wong PJY: Two-point right focal eigenvalue problems on time scales. Applied Mathematics and Computation 2005,167(2):1281–1303. 10.1016/j.amc.2004.09.007

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bohner M, Peterson A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston, Massachusetts; 2001:x+358.

    Google Scholar 

  7. 7.

    Deimling K: Nonlinear Functional Analysis. Springer, Berlin; 1985:xiv+450.

    Google Scholar 

  8. 8.

    Erbe L, Peterson A: Eigenvalue conditions and positive solutions. Journal of Difference Equations and Applications 2000,6(2):165–191. 10.1080/10236190008808220

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Erbe L, Peterson A: Positive solutions for a nonlinear differential equation on a measure chain. Mathematical and Computer Modelling 2000,32(5–6):571–585. 10.1016/S0895-7177(00)00154-0

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Erbe L, Peterson A, Mathsen R: Existence, multiplicity, and nonexistence of positive solutions to a differential equation on a measure chain. Journal of Computational and Applied Mathematics 2000,113(1–2):365–380. 10.1016/S0377-0427(99)00267-8

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(1–2):18–56.

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Krasnosel'skiĭ MA: Positive Solutions of Operator Equations. Groningen and P. Noordhoff, The Netherlands; 1964:381.

    Google Scholar 

  13. 13.

    Merdivenci Atici F, Cabada A, Otero-Espinar V: Criteria for existence and nonexistence of positive solutions to a discrete periodic boundary value problem. Journal of Difference Equations and Applications 2003,9(9):765–775. 10.1080/1023619021000053566

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Merdivenci Atici F, Guseinov GSh: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. Journal of Computational and Applied Mathematics 2001,132(2):341–356. 10.1016/S0377-0427(00)00438-6

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilkay Yaslan Karaca.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karaca, I.Y. Existence and nonexistence of positive solutions to a right-focal boundary value problem on time scales. Adv Differ Equ 2006, 043039 (2006). https://doi.org/10.1155/ADE/2006/43039

Download citation

Keywords

  • Differential Equation
  • Banach Space
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
\