Skip to content


  • Research Article
  • Open Access

On the identity of two q-discrete Painlevé equations and their geometrical derivation

Advances in Difference Equations20062006:036397

  • Received: 9 October 2005
  • Accepted: 5 January 2006
  • Published:


We show that two recently discovered q-discrete Painlevé equations are one and the same system. Moreover we provide a novel derivation of this q-discrete system based on transformations obtained with the help of affine Weyl groups.


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation

[1 2 3 4 5 6 7 8 9 10 11 12 13]

Authors’ Affiliations

GMPIB, Université Paris VII, Tour 24-14, 5e étage, Paris, 75251, France
CPT, Ecole Polytechnique, CNRS, UMR 7644, Palaiseau, 91128, France
Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchu-jima, Koto-ku Tokyo, 135-8533, Japan


  1. Grammaticos B, Ramani A: On a novel q -discrete analogue of the Painlevé VI equation. Physics Letters. A 1999,257(5–6):288–292. 10.1016/S0375-9601(99)00296-0MathSciNetView ArticleMATHGoogle Scholar
  2. Grammaticos B, Ramani A: Generating discrete Painlevé equations from affine Weyl groups. Regular & Chaotic Dynamics 2005,10(2):145–152. 10.1070/RD2005v010n02ABEH000308MathSciNetView ArticleMATHGoogle Scholar
  3. Grammaticos B, Ramani A, Papageorgiou V: Do integrable mappings have the Painlevé property? Physical Review Letters 1991,67(14):1825–1828. 10.1103/PhysRevLett.67.1825MathSciNetView ArticleMATHGoogle Scholar
  4. Hietarinta J, Viallet C: Singularity confinement and chaos in discrete systems. Physical Review Letters 1998,81(2):325–328. 10.1103/PhysRevLett.81.325View ArticleGoogle Scholar
  5. Jimbo M, Sakai H: A q -analog of the sixth Painlevé equation. Letters in Mathematical Physics 1996,38(2):145–154. 10.1007/BF00398316MathSciNetView ArticleMATHGoogle Scholar
  6. Kajiwara K, Noumi M, Yamada Y: Discrete dynamical systems with symmetry. Letters in Mathematical Physics 2002,60(3):211–219. 10.1023/A:1016298925276MathSciNetView ArticleMATHGoogle Scholar
  7. Masuda T: On the rational solutions of q -Painlevé V equation. Nagoya Mathematical Journal 2003, 169: 119–143.MathSciNetMATHGoogle Scholar
  8. Okamoto K: Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé. Japanese Journal of Mathematics. New Series 1979,5(1):1–79.MathSciNetMATHGoogle Scholar
  9. Quispel GRW, Roberts JAG, Thompson CJ: Integrable mappings and soliton equations. II. Physica D. Nonlinear Phenomena 1989,34(1–2):183–192. 10.1016/0167-2789(89)90233-9MathSciNetView ArticleMATHGoogle Scholar
  10. Ramani A, Ohta Y, Satsuma J, Grammaticos B: Self-duality and Schlesinger chains for the asymmetric d - P II and q - P III equations. Communications in Mathematical Physics 1998,192(1):67–76. 10.1007/s002200050291MathSciNetView ArticleMATHGoogle Scholar
  11. Ramani A, Willox R, Grammaticos B, Carstea AS, Satsuma J: Limits and degeneracies of discrete Painlevé equations: a sequel. Physica A: Statistical and Theoretical Physics 2005,347(1–4):1–16.MathSciNetView ArticleGoogle Scholar
  12. Sakai H: Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Communications in Mathematical Physics 2001,220(1):165–229. 10.1007/s002200100446MathSciNetView ArticleMATHGoogle Scholar
  13. Takenawa T: Weyl group symmetry of type in the q -Painlevé V equation. Funkcialaj Ekvacioj. Serio Internacia 2003,46(1):173–186. 10.1619/fesi.46.173MathSciNetView ArticleMATHGoogle Scholar