Skip to main content


Weighted -Asymptotically -Periodic Solutions of a Class of Fractional Differential Equations

  • 1381 Accesses

  • 19 Citations


We study the existence of weighted -asymptotically -periodic mild solutions for a class of abstract fractional differential equations of the form , where is a linear sectorial operator of negative type.

1. Introduction

-asymptotically -periodic functions have applications to several problems, for example in the theory of functional differential equations, fractional differential equations, integral equations and partial differential equations. The concept of -asymptotic -periodicity was introduced in the literature by Henríquez et al. [1, 2]. Since then, it attracted the attention of many researchers (see [110]). In Pierri [10] a new -asymptotically -periodic space was introduced. It is called the space of weighted -asymptotically -periodic (or -asymptotically -periodic) functions. In particular, the author has established conditions under which a -asymptotically -periodic function is asymptotically -periodic and also discusses the existence of -asymptotically -periodic solutions for an integral abstract Cauchy problem. The author has applied the results to partial integrodifferential equations.

We study in this paper sufficient conditions for the existence and uniqueness of a weighted -asymptotically -periodic (mild) solution to the following semi-linear integrodifferential equation of fractional order


where , is a linear densely defined operator of sectorial type on a complex Banach space and is an appropriate function. Note that the convolution integral in (1.1) is known as the Riemann-Liouville fractional integral [11]. We remark that there is much interest in developing theoretical analysis and numerical methods for fractional integrodifferential equations because they have recently proved to be valuable in various fields of sciences and engineering. For details, including some applications and recent results, see the monographs of Ahn and MacVinish [12], Gorenflo and Mainardi [13] and Trujillo et al. [1416] and the papers of Agarwal et al. [1723], Cuesta [11, 24], Cuevas et al. [5, 6], dos Santos and Cuevas [25], Eidelman and Kochubei [26], Lakshmikantham et al. [2730], Mophou and N'Guérékata [31], Ahmed and Nieto [32], and N'Guérékata [33]. In particular equations of type (1.1) are attracting increasing interest (cf. [5, 11, 24, 34]).

The existence of weighted -asymptotically -periodic (mild) solutions for integrodifferential equation of fractional order of type (1.1) remains an untreated topic in the literature. Anticipating a wide interest in the subject, this paper contributes in filling this important gap. In particular, to illustrate our main results, we examine sufficient conditions for the existence and uniqueness of a weighted -asymptotically -periodic mild solution to a fractional oscillation equation.

2. Preliminaries and Basic Results

In this section, we introduce notations, definitions and preliminary facts which are used throughout this paper. Let and be Banach spaces. The notation stands for the space of bounded linear operators from into endowed with the uniform operator topology denoted , and we abbreviate to and whenever . In this paper denotes the Banach space consisting of all continuous and bounded functions from into with the norm of the uniform convergence. For a closed linear operator we denote by the resolvent set and by the spectrum of (that is, the complement of in the complex plane). Set the resolvent of for .

2.1. Sectorial Linear Operators and the Solution Operator for Fractional Equations

A closed and linear operator is said sectorial of type μ if there are and such that the spectrum of is contained in the sector and , for all .

In order to give an operator theoretical approach for the study of the abstract system we recall the following definition.

Definition 2.1 (see [17]).

Let be a closed linear operator with domain in a Banach space . One calls the generator of a solution operator for (1.1)-(1.2) if there are and a strongly continuous function such that and , for all . In this case, is called the solution operator generated by . By [35, Proposition 2.6], . We observe that the power function is uniquely defined as , with .

We note that if is a sectorial of type μ with , then is the generator of a solution operator given by , , where is a suitable path lying outside the sector (cf. [11]). Recently, Cuesta [11, Theorem 1] proved that if is a sectorial operator of type for some and , then there exists such that


Remark 2.2.

In the remainder of this paper, we always assume that is a a sectorial of type and , are the constants introduced above.

2.2. Weighted -Asymptotically -Periodic Functions

We recall the following definitions.

Definition 2.3 (see [1]).

A function is called -asymptotically -periodic if there exists such that . In this case, we say that is an asymptotic period of .

Throughout this paper, represents the space formed for all the -valued -asymptotically -periodic functions endowed with the uniform convergence norm denoted . It is clear that is a Banach space (see [1, Proposition 3.5]).

Definition 2.4 (see [10]).

Let . A function is called weighted -asymptotically -periodic (or -asymptotically -periodic) if .

In this paper, represents the space formed by all the -asymptotically -periodic functions endowed with the norm


Proposition 2.5.

The space is a Banach space.


Let be a Cauchy sequence in . From the definition of , there exists such that in . Next, we prove that in .

By noting that is a Cauchy sequence, for given there exists such that , for all , which implies


Under the above conditions, for and we see that


which implies that for and as .

To conclude the proof we need to show that . Let as above. Since , there exits such that for all . Now, by using that , for we get


which implies that . This completes the proof.

Definition 2.6.

A function is called uniformly -asymptotically -periodic on bounded sets if for every bounded subset , the set is bounded and , uniformly for . If we say that is uniformly -asymptotically -periodic on bounded sets (see [1]).

To prove some of our results, we need the following lemma.

Lemma 2.7.

Let . Assume is uniformly -asymptotically -periodic on bounded sets and there is such that


If , then the function belongs to .


Using the fact that is bounded, it follows that . For be given, we select such that


for all and . Then, for we see that


which proves the assertion.

Lemma 2.8.

Let . Let and be the function defined by


If as and , then .


From the estimate , it follows that . For be given we select such that


for all . Under these conditions, for we have that


which completes the proof.

3. Existence of Weighted -Asymptotically -Periodic Solutions

In this section we discuss the existence of weighted -asymptotically -periodic solutions for the abstract system (1.1)-(1.2). To begin, we recall the definition of mild solution for (1.1)-(1.2).

Definition 3.1 (see [5]).

A function is called a mild solution of the abstract Cauchy problem (1.1)-(1.2) if


Now, we can establish our first existence result.

Theorem 3.2.

Assume is a uniformly -asymptotically -periodic on bounded sets function and there is a mesurable bounded function such that


If , then there exits a unique -asymptotically -periodic mild solution of (1.1)-(1.2). Suppose, there is a function such that and , for every and all . If is such that as , then is weighted -asymptotically -periodic.


Let be the operator defined by


We show initially that is -valued. Since , as , it is sufficient to show that the function is -valued. Let . Using the fact that is a bounded function, it follows that . For be given, we select a constant such that


Then, for we see that


which implies that as , and hence . Moreover, from the above estimate it is easy to infer that , for all , is a contraction and there exists a unique -asymptotically -periodic mild solution of (1.1)-(1.2).

Next, we prove that last assertion. Let be the function defined by . For , we get


Concerning the quantities and , we note that


Using the estimates (3.7) in (3.6), we see that


where is a positive constant independent of . Finally, by using the Gronwall-Bellman inequality we infer that


which shows that . This completes the proof.

Example 3.3.

We set , with . Let be a function such that , for all and let be defined by , . We observe that


whence is -asymptotically -periodic on bounded sets. By Theorem 3.2 we conclude that if , then there is a unique -asymptotically -periodic mild solution of (1.1)-(1.2). Moreover .

Theorem 3.4.

Let . Assume , as and


where is the constant introduced in Lemma 2.8.Then there is a unique weighted -asymptotically -periodic mild solution of



The proof is based in Lemmas 2.7 and 2.8. Let be the map defined by


We show initially that is -valued. From the estimate


we have that .

Let . From Lemma 2.7, we have that is a weighted -asymptotically -periodic function and by Lemma 2.8 we obtain that . Thus, the map is -valued. In order to prove that is a contraction, we note that for and ,


so that,


On the another hand, for we see that


from which we obtain that


By noting that is a linear operator for all and combining (3.16) and (3.18) we obtain that


for all , which shows that is a contraction on and hence there is a unique -asymptotically -periodic mild solution. The proof is complete.

To complete this paper, we examine the existence and uniqueness of weighted -asymptotically -periodic mild solutions for the following fractional differential equation


with boundary conditions


where and . In what follows we consider the space and let be the operator given by with domain , . It is well known that is sectorial of type negative.

Proposition 3.5.

Let satisfying conditions of Lemma 2.8 and let . If is small enough, then the problems (3.20)–(3.22) has a unique -asymptotically -periodic mild solution.


Problem (3.20)–(3.22) can be expressed as an abstract fractional differential equation of the form (3.12), where , for . We define


We have the following estimates:


estimate (3.25), we get


Since we obtain that . Moreover, we have the inequality


If we choose small enough, we have that condition (3.11) is fulfilled. By Theorem 3.4, the problems (3.20)–(3.22) has a unique -asymptotically -periodic (mild) solution. This finishes the proof.


  1. 1.

    Henríquez HR, Pierri M, Táboas P:On -asymptotically -periodic functions on Banach spaces and applications. Journal of Mathematical Analysis and Applications 2008,343(2):1119-1130. 10.1016/j.jmaa.2008.02.023

  2. 2.

    Henríquez HR, Pierri M, Táboas P:Existence of -asymptotically -periodic solutions for abstract neutral equations. Bulletin of the Australian Mathematical Society 2008,78(3):365-382. 10.1017/S0004972708000713

  3. 3.

    Agarwal RP, de Andrade B, Cuevas C: On type of periodicity and ergodicity to a class of integral equations with infinite delay. Journal of Nonlinear and Convex Analysis 2010,11(2):309-333.

  4. 4.

    Caicedo A, Cuevas C: -asymptotically -periodic solutions of abstract partial neutral integro-differentail equations. Functional Differential Equations 2010,17(1-2):387-405.

  5. 5.

    Cuevas C, de Souza JC: -asymptotically -periodic solutions of semilinear fractional integro-differential equations. Applied Mathematics Letters 2009,22(6):865-870. 10.1016/j.aml.2008.07.013

  6. 6.

    Cuevas C, César de Souza J:Existence of -asymptotically -periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Analysis: Theory, Methods & Applications 2010,72(3-4):1683-1689. 10.1016/

  7. 7.

    Cuevas C, Lizama C: -asymptotically -periodic solutions for semilinear Volterra equations. Mathematical Methods in the Applied Sciences 2010,33(13):1628-1636.

  8. 8.

    de Andrade B, Cuevas C: -asymptotically -periodic and asymptotically -periodic solutions to semi-linear Cauchy problems with non-dense domain. Nonlinear Analysis: Theory, Methods & Applications 2010,72(6):3190-3208. 10.1016/

  9. 9.

    Nicola SHJ, Pierri M:A note on -asymptotically periodic functions. Nonlinear Analysis: Real World Applications 2009,10(5):2937-2938. 10.1016/j.nonrwa.2008.09.011

  10. 10.

    Pierri M:On -asymptotically -periodic functions and applications. submitted

  11. 11.

    Cuesta E: Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Discrete and Continuous Dynamical Systems. Series A 2007, 2007: 277-285.

  12. 12.

    Anh VV, Mcvinish R: Fractional differential equations driven by Lévy noise. Journal of Applied Mathematics and Stochastic Analysis 2003,16(2):97-119. 10.1155/S1048953303000078

  13. 13.

    Gorenflo R, Mainardi F: Fractional calculus: integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), CISM Courses and Lectures. Volume 378. Edited by: Carpinteri A, Mainardi F. Springer, Vienna, Austria; 1997:223-276.

  14. 14.

    Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Volume 204. Elsevier Science B.V., Amsterdam, The Netherlands; 2006:xvi+523.

  15. 15.

    Nigmatullin RR, Trujillo JJ: Mesoscopic fractional kinetic equations versus a Riemann-Liouville integral type. In Advances in Fractional Calculus. Springer, Dordrecht, The Netherlands; 2007:155-167.

  16. 16.

    Rivero M, Trujillo JJ, Velasco MP: On deterministic fractional models. In New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York, NY, USA; 2010:123-150.

  17. 17.

    Agarwal RP, de Andrade B, Cuevas C: Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Analysis: Real World Applications 2010, 11: 3532-3554. 10.1016/j.nonrwa.2010.01.002

  18. 18.

    Agarwal RP, de Andrade B, Cuevas C: On type of periodicity and ergodicity to a class of fractional order differential equations. Advances in Difference Equations 2010, 2010:-25.

  19. 19.

    Agarwal RP, Belmekki M, Benchohra M: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Advances in Difference Equations 2009, 2009:-47.

  20. 20.

    Agarwal RP, Benchohra M, Hamani S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Applicandae Mathematicae 2010,109(3):973-1033. 10.1007/s10440-008-9356-6

  21. 21.

    Agarwal RP, Lakshmikantham V, Nieto JJ: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications 2010,72(6):2859-2862. 10.1016/

  22. 22.

    Agarwal RP, Zhou Y, He Y: Existence of fractional neutral functional differential equations. Computers & Mathematics with Applications 2010,59(3):1095-1100.

  23. 23.

    Agarwal RP, Cuevas C, Soto H, El-Gebeily M: Asymptotic periodicity for some evolution equations in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications. In press

  24. 24.

    Cuesta E, Lubich C, Palencia C: Convolution quadrature time discretization of fractional diffusion-wave equations. Mathematics of Computation 2006,75(254):673-696. 10.1090/S0025-5718-06-01788-1

  25. 25.

    dos Santos JPC, Cuevas C: Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations. Applied Mathematics Letters 2010,23(9):960-965. 10.1016/j.aml.2010.04.016

  26. 26.

    Eidelman SD, Kochubei AN: Cauchy problem for fractional diffusion equations. Journal of Differential Equations 2004,199(2):211-255. 10.1016/j.jde.2003.12.002

  27. 27.

    Lakshmikantham V: Theory of fractional functional differential equations. Nonlinear Analysis: Theory, Methods & Applications 2008,69(10):3337-3343. 10.1016/

  28. 28.

    Lakshmikantham V, Devi JV: Theory of fractional differential equations in a Banach space. European Journal of Pure and Applied Mathematics 2008,1(1):38-45.

  29. 29.

    Lakshmikantham V, Vatsala AS: Basic theory of fractional differential equations. Nonlinear Analysis: Theory, Methods & Applications 2008,69(8):2677-2682. 10.1016/

  30. 30.

    Lakshmikantham V, Vatsala AS: Theory of fractional differential inequalities and applications. Communications in Applied Analysis 2007,11(3-4):395-402.

  31. 31.

    Mophou GM, N'Guérékata GM: Existence of the mild solution for some fractional differential equations with nonlocal conditions. Semigroup Forum 2009,79(2):315-322. 10.1007/s00233-008-9117-x

  32. 32.

    Ahmad B, Nieto JJ: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Boundary Value Problems 2009, 2009:-11.

  33. 33.

    N'Guérékata GM: A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlinear Analysis: Theory, Methods & Applications 2009,70(5):1873-1876. 10.1016/

  34. 34.

    Hilfe R (Ed): Applications of Fractional Calculus in Physics. World Scientific, River Edge, NJ, USA; 2000:viii+463.

  35. 35.

    Keyantuo V, Lizama C: On a connection between powers of operators and fractional Cauchy problems. submitted

Download references


C. Cuevas thanks the Department of Mathematics of Universidad de La Frontera, where this project was started. The authors are grateful to the referees for their valuable comments and suggestions. C. Cuevas is partially supported by CNPQ/Brazil under Grant 300365/2008-0.

Author information

Correspondence to Claudio Cuevas.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Cuevas, C., Pierri, M. & Sepulveda, A. Weighted -Asymptotically -Periodic Solutions of a Class of Fractional Differential Equations. Adv Differ Equ 2011, 584874 (2011) doi:10.1155/2011/584874

Download citation


  • Banach Space
  • Periodic Function
  • Fractional Order
  • Bounded Function
  • Mild Solution