# A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay

- Gisle M. Mophou
^{1}Email author and - Gaston M. N'Guérékata
^{2}

**2010**:674630

https://doi.org/10.1155/2010/674630

© G. M. Mophou and G. M. N'Guérékata. 2010

**Received: **28 November 2009

**Accepted: **21 January 2010

**Published: **26 January 2010

## Abstract

We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: , , , , with and . We prove the existence (and uniqueness) of solutions, assuming that is a linear closed operator which generates an analytic semigroup on a Banach space by means of the Banach's fixed point theorem. This generalizes some recent results.

## 1. Introduction

We investigate in this paper the existence and uniqueness of the mild solution for the fractional differential equation with infinite delay

where is a generator of an analytic semigroup on a Banach space such that for all and for every and . The function is continuous functions with additional assumptions.

The fractional derivative is understood here in the Caputo sense, that is,

where is called phase space to be defined in Section 2. For any function defined on and any , we denote by the element of defined by

The function represents the history of the state from up to the present time .

The theory of functional differential equations has emerged as an important branch of nonlinear analysis. It is worthwhile mentioning that several important problems of the theory of ordinary and delay differential equations lead to investigations of functional differential equations of various types (see the books by Hale and Verduyn Lunel [1], Wu [2], Liang et al. [3], Liang and Xiao [4–9], and the references therein). On the other hand the theory of fractional differential equations is also intensively studied and finds numerous applications in describing real world problems (see e.g., the monographs of Lakshmikantham et al. [10], Lakshmikantham [11], Lakshmikantham and Vatsala [12, 13], Podlubny [14], and the papers of Agarwal et al. [15], Benchohra et al. [16], Anguraj et al. [17], Mophou and N'Guérékata [18], Mophou et al. [19], Mophou and N'Guérékata [20], and the references therein).

Recently we studied in our paper [20] the existence of solutions to the fractional semilinear differential equation with nonlocal condition and delay-free

where is a positive real, is the generator of a -semigroup on a Banach space , with defined as above and

is a nonlinear function, is continuous, and . The derivative is understood here in the Riemann-Liouville sense.

In the present paper we deal with an infinite time delay. Note that in this case, the phase space plays a crucial role in the study of both qualitative and quantitative aspects of theory of functional equations. Its choice is determinant as can be seen in the important paper by Hale and Kato [21].

Similar works to the present paper include the paper by Benchohra et al. [16], where the authors studied an existence result related to the nonlinear functional differential equation

where is the standard Riemann-Liouville fractional derivative, in the phase space , with .

## 2. Preliminaries

From now on, we set . We denote by a Banach space with norm , the space of all -valued continuous functions on , and the Banach space of all linear and bounded operators on .

We assume that the phase space is a seminormed linear space of functions mapping into , and satisfying the following fundamental axioms due to Hale and Kato (see e.g., in [21]).

where is a constant, is continuous, is locally bounded, and , , are independent of .

For the function in , is a -valued continuous function on .

Remark.

Condition (ii) in is equivalent to for all .

Let us recall some examples of phase spaces.

Example.

(E1) the Banach space of all bounded and uniformly continuous functions endowed with the supnorm.

Note that the space is a uniform fading memory for .

Throughout this work will be a continuous function . Let be set defined by:

Remark.

([22, cf. Theorem 2.1]).

Following [22, 23] we will introduce now the definition of mild solution to (1.1).

Definition 2.4.

Remark 2.5.

since (cf. [23]).

## 3. Main Results

We present now our result.

Theorem 3.1.

Then (1.1) has a unique mild solution on .

Proof.

If verifies (2.7) then writing for , we have for and

Let

So using , (2.9) and (3.3), we obtain for all

Therefore

And since , we conclude by way of the Banach's contraction mapping principle that has a unique fixed point . This means that has a unique fixed point which is obviously a mild solution of (1.1) on .

## 4. Application

To illustrate our result, we consider the following Lotka-Volterra model with diffusion:

where and is a positive function on with .

Now let and consider the operator defined by

Define

We choose as in Example (E3) above. Put

Then we get

where is obviously Lipschitzian in uniformly in . Thus we can state what follows.

Theorem 4.1.

Under the above assumptions (4.1) has a unique mild solution.

## Authors’ Affiliations

## References

- Hale JK, Verduyn Lunel SM:
*Introduction to Functional-Differential Equations, Applied Mathematical Sciences*.*Volume 99*. Springer, New York, NY, USA; 1993:x+447.View ArticleGoogle Scholar - Wu J:
*Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences*.*Volume 119*. Springer, New York, NY, USA; 1996:x+429.View ArticleGoogle Scholar - Liang J, Huang F, Xiao T:
**Exponential stability for abstract linear autonomous functional-differential equations with infinite delay.***International Journal of Mathematics and Mathematical Sciences*1998,**21**(2):255-259. 10.1155/S0161171298000362MATHMathSciNetView ArticleGoogle Scholar - Liang J, Xiao TJ:
**Functional-differential equations with infinite delay in Banach spaces.***International Journal of Mathematics and Mathematical Sciences*1991,**14**(3):497-508. 10.1155/S0161171291000686MATHMathSciNetView ArticleGoogle Scholar - Liang J, Xiao T-J:
**The Cauchy problem for nonlinear abstract functional differential equations with infinite delay.***Computers & Mathematics with Applications*2000,**40**(6-7):693-703. 10.1016/S0898-1221(00)00188-7MATHMathSciNetView ArticleGoogle Scholar - Liang J, Xiao T-J:
**Solvability of the Cauchy problem for infinite delay equations.***Nonlinear Analysis: Theory, Methods & Applications*2004,**58**(3-4):271-297. 10.1016/j.na.2004.05.005MATHMathSciNetView ArticleGoogle Scholar - Liang J, Xiao T-J:
**Solutions to nonautonomous abstract functional equations with infinite delay.***Taiwanese Journal of Mathematics*2006,**10**(1):163-172.MATHMathSciNetGoogle Scholar - Liang J, Xiao T-J, van Casteren J:
**A note on semilinear abstract functional differential and integrodifferential equations with infinite delay.***Applied Mathematics Letters*2004,**17**(4):473-477. 10.1016/S0893-9659(04)90092-4MATHMathSciNetView ArticleGoogle Scholar - Xiao T-J, Liang J:
**Blow-up and global existence of solutions to integral equations with infinite delay in Banach spaces.***Nonlinear Analysis: Theory, Methods & Applications*2009,**71**(12):e1442-e1447. 10.1016/j.na.2009.01.204MATHMathSciNetView ArticleGoogle Scholar - Lakshmikantham V, Leela S, Vasundhara J:
*Theory of Fractional Dynamic Systems*. Cambridge Academic, Cambridge, UK; 2009.MATHGoogle Scholar - Lakshmikantham V:
**Theory of fractional functional differential equations.***Nonlinear Analysis: Theory, Methods & Applications*2008,**69**(10):3337-3343. 10.1016/j.na.2007.09.025MATHMathSciNetView ArticleGoogle Scholar - Lakshmikantham V, Vatsala AS:
**Basic theory of fractional differential equations.***Nonlinear Analysis: Theory, Methods & Applications*2008,**69**(8):2677-2682. 10.1016/j.na.2007.08.042MATHMathSciNetView ArticleGoogle Scholar - Lakshmikantham V, Vatsala AS:
**Theory of fractional differential inequalities and applications.***Communications in Applied Analysis*2007,**11**(3-4):395-402.MATHMathSciNetGoogle Scholar - Podlubny I:
*Fractional Differential Equations, Mathematics in Science and Engineering*.*Volume 198*. Academic Press, San Diego, Calif, USA; 1999:xxiv+340.Google Scholar - Agarwal RP, Benchohra M, Slimani BA:
**Existence results for differential equations with fractional order and impulses.***Memoirs on Differential Equations and Mathematical Physics*2008,**44:**1-21.MATHMathSciNetView ArticleGoogle Scholar - Benchohra M, Henderson J, Ntouyas SK, Ouahab A:
**Existence results for fractional order functional differential equations with infinite delay.***Journal of Mathematical Analysis and Applications*2008,**338**(2):1340-1350. 10.1016/j.jmaa.2007.06.021MATHMathSciNetView ArticleGoogle Scholar - Anguraj A, Karthikeyan P, N'Guérékata GM:
**Nonlocal Cauchy problem for some fractional abstract integro-differential equations in Banach spaces.***Communications in Mathematical Analysis*2009,**6**(1):31-35.MATHMathSciNetGoogle Scholar - Mophou GM, N'Guérékata GM:
**Mild solutions for semilinear fractional differential equations.***Electronic Journal of Differential Equations*2009,**2009**(21):1-9.Google Scholar - Mophou GM, Nakoulima O, N'Guérékata GM:
**Existence results for some fractional differential equations with nonlocal conditions.***Nonlinear Studies*2010,**17**(1):15-22.MATHMathSciNetGoogle Scholar - Mophou GM, N'Guérékata GM:
**Existence of the mild solution for some fractional differential equations with nonlocal conditions.***Semigroup Forum*2009,**79**(2):315-322. 10.1007/s00233-008-9117-xMATHMathSciNetView ArticleGoogle Scholar - Hale JK, Kato J:
**Phase space for retarded equations with infinite delay.***Funkcialaj Ekvacioj*1978,**21**(1):11-41.MATHMathSciNetGoogle Scholar - El-Borai MM:
**Some probability densities and fundamental solutions of fractional evolution equations.***Chaos, Solitons and Fractals*2002,**14**(3):433-440. 10.1016/S0960-0779(01)00208-9MATHMathSciNetView ArticleGoogle Scholar - El-Borai MM:
**On some stochastic fractional integro-differential equations.***Advances in Dynamical Systems and Applications*2006,**1**(1):49-57.MATHMathSciNetGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.