- Research Article
- Open Access

# Impulsive Stabilization for a Class of Neural Networks with Both Time-Varying and Distributed Delays

- Lizi Yin
^{1}Email author and - Xiaodi Li
^{2}

**2009**:859832

https://doi.org/10.1155/2009/859832

© L. Yin and X. Li. 2009

**Received:**16 January 2009**Accepted:**4 March 2009**Published:**8 March 2009

## Abstract

The impulsive control method is developed to stabilize a class of neural networks with both time-varying and distributed delays. Some exponential stability criteria are obtained by using Lyapunov functionals, stability theory, and control by impulses. A numerical example is also provided to show the effectiveness and feasibility of the impulsive control method.

## Keywords

- Neural Network
- Equilibrium Point
- Cellular Neural Network
- Impulsive Control
- Hopfield Neural Network

## 1. Introduction

During the last decades, neural networks such as Hopfield neural networks, cellular neural networks, Cohen-Grossberg neural networks, and bidirectional associative memory neural networks have been extensively studied. There have appeared a number of important results; see [1–13] and references therein. It is well known that the properties of stability and convergence are important in design and application of neural networks, for example, when designing a neural network to solve linear programming problems and pattern recognition problems, we foremost guarantee that the models of neural network are stable. However, it may become unstable or even divergent because the model of a system is highly uncertain or the nature of the problem itself. So it is necessary to investigate stability and convergence of neural networks from the control point of view. It is known that impulses can make unstable systems stable or, otherwise, stable systems can become unstable after impulse effects; see [14–18]. The problem of stabilizing the solutions by imposing proper impulse controls has been used in many fields such as neural network, engineering, pharmacokinetics, biotechnology, and population dynamics [19–25]. Recently, several good impulsive control approaches for real world systems have been proposed; see [22–32]. In [26], Yang and Xu investigate the global exponential stability of Cohen-Grossberg neural networks with variable delays by establishing some impulsive differential inequalities. The criteria not only present an approach to stabilize the unstable neural networks by utilizing impulsive effects but also show that the stability still remains under certain impulsive perturbations for some continuous stable neural networks. In [27], Li et al. consider the impulsive control of Lotka-Volterra predator-prey system by employing the method of Lyapunov functions. In [28], Wang and Liu investigate the impulsive stabilization of delay differential systems via the Lyapunov-Razumikhin method. However, there are few results considering the impulsive stabilization of neural networks with both time-varying and distributed delays, which is very important in theories and applications and also is a very challenging problem.

Motivated by the above discussion, in this paper, we will investigate the impulsive stabilization for a class of neural networks with both time-varying and distributed delays. Some exponential stability criteria are obtained by using Lyapunov functionals, stability theory, and control by impulses. The organization of this paper is as follows. In the next section, the problems investigated in this paper are formulated, and some preliminaries are presented. We state and prove our main results in Section 3. Then, an illustrative example is given to show the effectiveness of the obtained impulsive control method in Section 4. Finally, concluding remarks are made in Section 5.

## 2. Model Description and Preliminaries

Let denote the set of real numbers, the -dimensional real space equipped with the Euclidean norm and the set of positive integral numbers.

where , denotes piecewise continuous functions defined on . For , , let ,

where are some undetermined constants.

Throughout this paper, we assume the following.

() are bounded and satisfy the following property:

() The delay kernels , are piecewise continuous and satisfy for all , , where is continuous and integrable.

()The impulse times satisfy , .

Since and hold, by employing the well-known Brouwer's fixed point theorem, one can easily prove that there exists a unique equilibrium point for system (2.1).

Assume that is an equilibrium solution of system (2.1), then the transformation , puts system (2.1) and (2.2) into the following form:

## 3. Impulsive Stabilization of the Equilibrium Solution

Theorem 3.1.

Assume that ( )–( ) hold, then the equilibrium point of the system (2.1) can be exponentially stabilized by impulses if one of the following conditions hold.

Proof.

Next we will consider conditions ( ) and ( ), respectively.

Case 1.

which implies that the equilibrium point of the system (2.1) is exponentially stable without impulses. So the conclusion of Theorem 3.1 holds obviously.

Case 2.

It is obvious that since (3.6) holds.

This completes our proof of Case 2.

The proof of Theorem 3.1 is complete.

Corollary 3.2.

Corollary 3.3.

Assume that conditions in Theorem 3.1 hold, then the equilibrium point of the system (2.1) can be exponentially stabilized by periodic impulses.

Proof.

As a special case of system (2.1), we consider the following neural network model:

we can obtain theorem as follows.

Theorem 3.4.

Assume that hold, then the equilibrium point of the system (3.19) can be exponentially stabilized by impulses if one of the following conditions holds

Proof.

Corollary 3.5.

Assume that conditions in Theorem 3.4 hold, then the equilibrium point of the system (3.19) can be exponentially stabilized by periodic impulses.

Proof.

## 4. A Numerical Example

In this section, we give an example to demonstrate the effectiveness of our method.

Example 4.1.

Remark 4.2.

Note that , by Corollary 3.3, system (4.1) can be exponentially stabilized by periodic impulses.

Remark 4.3.

As we see from Figures 1(a) and 1(d), the equilibrium point of system (4.1) without impulses is unstable. However, it becomes exponentially stable by explicit impulsive control (see Figures 1(b) and 1(e)). This implies that impulses may be used to exponentially stabilize some unable neural networks by our proposed control method. Furthermore, in the same impulse interval, if , then our control method in (3.6) and (3.7) is not satisfied. The equilibrium point of system (4.1) cannot be exponentially stabilized by impulses, which is shown in Figures 1(c) and 1(f). However, one may observe that every solution of system (4.1) becomes a quasiperiodic solution because of the effects of impulses. Figures 1(a)–1(f) show the dynamic behavior of the system (4.1) with the initial condition , , ,

## 5. Conclusions

In this paper, we have investigated impulsive control for neural networks with both time-varying and distributed delays. By using Lyapunov functionals, stability theory, and control by impulses, some sufficient conditions are derived to exponentially stabilize neural networks with both time-varying and distributed delays. Simulation results of a neural network under impulsive control verify the effectiveness of the proposed control method.

## Declarations

### Acknowledgment

The work is supported by the Science and Technology Programs of Shandong Province (2008GG30009008).

## Authors’ Affiliations

## References

- Park JH, Park CH, Kwon OM, Lee SM:
**A new stability criterion for bidirectional associative memory neural networks of neutral-type.***Applied Mathematics and Computation*2008,**199**(2):716-722. 10.1016/j.amc.2007.10.032MathSciNetView ArticleMATHGoogle Scholar - Cao J, Liang J, Lam J:
**Exponential stability of high-order bidirectional associative memory neural networks with time delays.***Physica D*2004,**199**(3-4):425-436. 10.1016/j.physd.2004.09.012MathSciNetView ArticleMATHGoogle Scholar - Gopalsamy K:
**Stability of artificial neural networks with impulses.***Applied Mathematics and Computation*2004,**154**(3):783-813. 10.1016/S0096-3003(03)00750-1MathSciNetView ArticleMATHGoogle Scholar - Hopfield J:
**Neurons with graded response have collective computational properties like those of two-state neurons.***Proceedings of the National Academy of Sciences of the United States of America*1984,**81**(10):3088-3092. 10.1073/pnas.81.10.3088View ArticleGoogle Scholar - Liu M:
**Global asymptotic stability analysis of discrete-time Cohen-Grossberg neural networks based on interval systems.***Nonlinear Analysis: Theory, Methods & Applications*2008,**69**(8):2403-2411. 10.1016/j.na.2007.08.019MathSciNetView ArticleMATHGoogle Scholar - Huang Z, Xia Y:
**Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses.***Chaos, Solitons & Fractals*2008,**38**(2):489-498. 10.1016/j.chaos.2006.11.032MathSciNetView ArticleMATHGoogle Scholar - Zhang J, Jin Z, Yan J, Sun G:
**Stability and Hopf bifurcation in a delayed competition system.***Nonlinear Analysis: Theory, Methods & Applications*2009,**70**(2):658-670. 10.1016/j.na.2008.01.002MathSciNetView ArticleMATHGoogle Scholar - Lou X-Y, Cui B-T:
**Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays.***Journal of Mathematical Analysis and Applications*2007,**330**(1):144-158. 10.1016/j.jmaa.2006.07.058MathSciNetView ArticleMATHGoogle Scholar - Yang Z, Xu D:
**Global exponential stability of Hopfield neural networks with variable delays and impulsive effects.***Applied Mathematics and Mechanics*2006,**27**(11):1517-1522. 10.1007/s10483-006-1109-1MathSciNetView ArticleMATHGoogle Scholar - Zhang Y, Sun J:
**Stability of impulsive neural networks with time delays.***Physics Letters A*2005,**348**(1-2):44-50. 10.1016/j.physleta.2005.08.030View ArticleMATHGoogle Scholar - Syed Ali M, Balasubramaniam P:
**Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays.***Physics Letters A*2008,**372**(31):5159-5166. 10.1016/j.physleta.2008.05.067MathSciNetView ArticleMATHGoogle Scholar - Li X, Chen Z:
**Stability properties for Hopfield neural networks with delays and impulsive perturbations.***Nonlinear Analysis: Theory, Methods & Applications*2009,**10:**3253-3265.View ArticleMATHGoogle Scholar - Xu D, Yang Z:
**Impulsive delay differential inequality and stability of neural networks.***Journal of Mathematical Analysis and Applications*2005,**305**(1):107-120. 10.1016/j.jmaa.2004.10.040MathSciNetView ArticleMATHGoogle Scholar - Baĭnov DD, Simeonov PS:
*Systems with Impulse Effect: Stability, Theory and Applications, Ellis Horwood Series: Mathematics and Its Applications*. Ellis Horwood, Chichester, UK; 1989:255.Google Scholar - Fu X, Yan B, Liu Y:
*Introduction of Impulsive Differential Systems*. Science Press, Beijing, China; 2005.Google Scholar - Fu X, Li X:
**-stability theorems of nonlinear impulsive functional differential systems.***Journal of Computational and Applied Mathematics*2008,**221**(1):33-46. 10.1016/j.cam.2007.10.020MathSciNetView ArticleMATHGoogle Scholar - Li X:
**Oscillation properties of higher order impulsive delay differential equations.***International Journal of Difference Equations*2007,**2**(2):209-219.MathSciNetGoogle Scholar - Fu X, Li X:
**Oscillation of higher order impulsive differential equations of mixed type with constant argument at fixed time.***Mathematical and Computer Modelling*2008,**48**(5-6):776-786. 10.1016/j.mcm.2007.11.006MathSciNetView ArticleMATHGoogle Scholar - Liu X:
**Stability results for impulsive differential systems with applications to population growth models.***Dynamics and Stability of Systems*1994,**9**(2):163-174. 10.1080/02681119408806175MathSciNetView ArticleMATHGoogle Scholar - Ballinger G, Liu X:
**Practical stability of impulsive delay differential equations and applications to control problems.**In*Optimization Methods and Applications, Applied Optimization*.*Volume 52*. Kluwer Academic Publishers, Dordrecht, The Netherlands; 2001:3-21.View ArticleGoogle Scholar - Stamova IM, Stamov GT:
**Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics.***Journal of Computational and Applied Mathematics*2001,**130**(1-2):163-171. 10.1016/S0377-0427(99)00385-4MathSciNetView ArticleMATHGoogle Scholar - Sun J, Zhang Y:
**Impulsive control of Rössler systems.***Physics Letters A*2003,**306**(5-6):306-312. 10.1016/S0375-9601(02)01499-8MathSciNetView ArticleMATHGoogle Scholar - Li Y, Liao X, Li C, Huang T, Yang D:
**Impulsive synchronization and parameter mismatch of the three-variable autocatalator model.***Physics Letters A*2007,**366**(1-2):52-60. 10.1016/j.physleta.2006.12.073View ArticleGoogle Scholar - Zhang Y, Sun J:
**Controlling chaotic Lu systems using impulsive control.***Physics Letters A*2005,**342**(3):256-262. 10.1016/j.physleta.2005.05.059MathSciNetView ArticleMATHGoogle Scholar - Liu B, Teo KL, Liu X:
**Robust exponential stabilization for large-scale uncertain impulsive systems with coupling time-delays.***Nonlinear Analysis: Theory, Methods & Applications*2008,**68**(5):1169-1183. 10.1016/j.na.2006.12.025MathSciNetView ArticleMATHGoogle Scholar - Yang Z, Xu D:
**Impulsive effects on stability of Cohen-Grossberg neural networks with variable delays.***Applied Mathematics and Computation*2006,**177**(1):63-78. 10.1016/j.amc.2005.10.032MathSciNetView ArticleMATHGoogle Scholar - Li D, Wang S, Zhang X, Yang D: Impulsive control of uncertain Lotka-Volterra predator-prey system. Chaos, Solitons & Fractals. In pressGoogle Scholar
- Wang Q, Liu X:
**Impulsive stabilization of delay differential systems via the Lyapunov-Razumikhin method.***Applied Mathematics Letters*2007,**20**(8):839-845. 10.1016/j.aml.2006.08.016MathSciNetView ArticleMATHGoogle Scholar - Weng A, Sun J:
**Impulsive stabilization of second-order delay differential equations.***Nonlinear Analysis: Real World Applications*2007,**8**(5):1410-1420. 10.1016/j.nonrwa.2006.07.008MathSciNetView ArticleMATHGoogle Scholar - Luo Z, Shen J:
**Impulsive stabilization of functional differential equations with infinite delays.***Applied Mathematics Letters*2003,**16**(5):695-701. 10.1016/S0893-9659(03)00069-7MathSciNetView ArticleMATHGoogle Scholar - Luo Z, Shen J:
**New Razumikhin type theorems for impulsive functional differential equations.***Applied Mathematics and Computation*2002,**125**(2-3):375-386. 10.1016/S0096-3003(00)00139-9MathSciNetView ArticleMATHGoogle Scholar - Liu X:
**Impulsive stabilization of nonlinear systems.***IMA Journal of Mathematical Control and Information*1993,**10**(1):11-19. 10.1093/imamci/10.1.11MathSciNetView ArticleMATHGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.