 Research Article
 Open Access
 Published:
Stabilization of DiscreteTime Control Systems with Multiple State Delays
Advances in Difference Equations volume 2009, Article number: 240707 (2009)
Abstract
We give sufficient conditions for the exponential stabilizability of a class of perturbed timevarying difference equations with multiple delays and slowly varying coefficients. Under appropiate growth conditions on the perturbations, combined with the "freezing" technique, we establish explicit conditions for global feedback exponential stabilizability.
1. Introduction
Let us consider a discretetime control system described by the following equationin:
where denotes the dimensional space of complex column vectors, is a given integer, is the state, () is the input, is the set of nonnegative integers. Hence forward, is the Euclidean norm; and are variable matrices of compatible dimensions, is a variable matrix such that
and is a given vectorvalued function, that is,
The stabilizability question consists on finding a feedback control law for keeping the closedloop system
asymptotically stable in the Lyapunov sense.
The stabilization of control systems is one of the most important properties of the systems and has been studied widely by many reseachers in control theory; (see, e.g., [1–11]) and the references therein. It is recognized that the Lyapunov function method serves as a main technique to reduce a given complicated system into a relatively simpler system and provides useful applications to control theory, but finding Lyapunov functions is still a difficult task (see, e.g., [1–3, 12, 13]). By contrast, many methods different from Lyapunov functions have been successfully applied to establish stabilizability results for discretetime equations. For example, to the linear system
if the evolution operator generated by is stable, then the delay control system (1.1)(1.2) is asymptotically stabilizable under appropiate conditions on (see [4, 8, 14]). For infinitedimensional control systems, the study of stabilizabilization is more complicated and requires sophisticated techniques from semigroup theory.
The concept of stabilizability has been developed and successfully applied in different settings (see, e.g., [9, 15, 16]). For example, finite and infinitedimensional discretetime control systems have been studied extensively (see, e.g., [2, 5, 6, 10, 17–20]).
The stabilizability conditions obtained in this paper are derived by using the "freezing" technique (see, e.g., [21–23]) for perturbed systems of difference equations with slowly varying coefficients and do not involve either Lyapunov functions or stability assumptions on the associated evolution operator . With more precision, the freezing technique can be described as follows. If is any fixed integer, then we can think of the autonomous system
as a particular case of the system (1.1), with its time dependence "frozen" at time Thus, in this paper it is shown that if each frozen system is exponentially stabilizable and the rate of change of the coefficients of system (1.1) is small enough, then the nonautonomous system (1.1)(1.2) is indeed exponentially stabilizable.
The purpose of this paper is to establish sufficient conditions for the global exponential feedback stabilizability of perturbed control systems with both timevarying and timedelayed states.
Our main contributions are as follows. By applying the "freezing" technique to the control system (1.1)(1.2), we derive explicit stabilizability conditions, provided that the coefficients are slowly varying. Applications of the main results to control systems with many delays and nonlinear perturbations will also be established in this paper. This technique will allow us to avoid constructing the Lyapunov functions in some situations. For instance, it is worth noting that Niamsup and Phat [2] established sufficient stabilizability conditions for the zero solution of a discretetime control system with many delays, under exponential growth assumptions on the corresponding transition matrix. By contrast, our approach does not involve any stability assumption on the transition matrix.
The paper is organized as follows. In Section 2 we introduce notations, definition, and some preliminary results. In Section 3, we give new sufficient conditions for the global exponential stabilizability of discretetime systems with timedelayed states. Finally, as an application, we consider the global stabilization of the nonlinear control systems.
2. Preliminaries
In this paper we will use the following control law:
where is a variable matrix.
To formulate our results, let us introduce the following notation. Let be a constant matrix and let denote the eigenvalues of , including their multiplicities. Put
where is the HilbertSchmidt (Frobenius) norm of ; that is,
The following relation
is true, and will be useful to obtain some estimates in this work.
Theorem 2 A (11,Theorem 3.7).
For any matrix , the inequality
holds for every nonnegative integer , where is the spectral radius of , and .
Remark 2.1.
In general, the problem of obtaining a precise estimate for the norm of matrixvalued and operatorvalued functions has been regularly discussed in the literature, for example, see Gel'fond and Shilov [24] and Daleckii and Krein [25].
The following concepts of stability will be used in formulating the main results of the paper (see, e.g., [26]).
Definition 2.2.
The zero solution of system (1.4)–(1.2) is stable if for every and every there is a number (depending on and ) such that every solution of the system with for all , satisfies the condition
Definition 2.3.
The zero solution of (1.4) is globally exponentially stable if there are constants and such that
for any solution of (1.4) with the initial conditions (1.2).
Definition 2.4.
The pair is said to be stabilizable for each if there is a matrix such that all the eigenvalues of the matrix are located inside the unit disk for every fixed Namely,
Remark 2.5.
The control is a feedback control of the system.
Definition 2.6.
System (1.1) is said to be globally exponentially stabilizable (at ) by means of the feedback law (2.1) if there is a variable matrix such that the zero solution of (1.4) is globally exponentially stable.
3. Main Results
Now, we are ready to establish the main results of the paper, which will be valid for the system (1.1)(1.2) with slowly varying coefficients.
Consider in the equation
subject to the initial conditions (1.2), where is a given integer and is a variable matrix.
Proposition 3.1.
Suppose that
 (a)

(b)
(3.2)
 (c)
Then the zero solution of system (3.1)–(1.2) is globally exponentially stable. Moreover, any solution of (3.1) satisfies the inequality
where
Proof.
Rewrite (3.1) in the form
with a fixed nonnegative integer . The variation of constants formula yields
Taking , we have
Hence,
Thus,
Hence,
From this inequality we obtain
But, the righthand side of this inequality does not depend on . Thus, it follows that
This proves the global stability of the zero solution of (3.1)–(1.2).
To establish the global exponential stability of (3.1)–(1.2), we take the function
with small enough, where is a solution of (3.1).
Substituting (3.13) in (3.1), we obtain
where
Applying the above reasoning to (3.14), according to inequality (3.3), it follows that is a bounded function. Consequently, relation (3.13) implies the global exponential stability of the zero solution of system (3.1)–(1.2).
Computing the quantities and , defined by
is not an easy task. However, in this section we will improve the estimates to these formulae.
Proposition 3.2.
Assume that (a) and (b) hold, and in addition
where is the spectral radius of for each If
then the zero solution of system (3.1)–(1.2) is globally exponentially stable.
Proof.
Let us turn now to inequality (3.3). Firstly we will prove the inequality
where
Consider
By Theorem A, we have
But
Hence,
Proceeding in a similar way, we obtain
These relations yield inequality (3.19). Consequently,
where
Relation (3.26) proves the global stability of the zero solution of system (3.1)–(1.2). Establishing the exponential stability of this equation is enough to apply the same arguments of the Proposition 3.1.
Theorem 3.3.
Under the assumption (a), let be stabilizable for each fixed with respect to a matrix function satisfying the following conditions:
 (i)

(ii)
and
 (iii)
If,
then system (1.1)(1.2) is globally exponentially stabilizable by means of the feedback law (2.1).
Proof.
Rewrite (1.4) in the form
where
According to (i), (ii), and (iii), the conditions (b) and (3.17) hold. Furthermore, condition (3.28) assures the existence of a matrix function such that condition (3.18) is fulfilled. Thus, from Proposition 3.2, the result follows.
Put
where the minimum is taken over all matrices satisfying (i), (ii), and (iii).
Corollary 3.4.
Suppose that (a) holds, and the pair is stabilizable for each fixed If
then the system (1.1)(1.2) is globally exponentially stabilizable by means of the feedback law (2.1).
Now, consider in the discretetime control system
subject to the same initial conditions (1.2), where and are constant matrices. In addition, one assumes that the pair is stabilizable, that is, there is a constant matrix such that all the eigenvalues of are located inside the unit disk. Hence, In this case, and Thus,
Hence, Theorem 3.3 implies the following corollary.
Corollary 3.5.
Let be a stabilizable pair of constant matrices, with respect to a constant matrix satisfying the condition
Then system (3.32)(1.2), under condition (a), is globally exponentially stabilizable by means of the feedback law (2.1).
Example 3.6.
Consider the control system in :
where and , subject to the initial conditions
where is a given function with values in , are positive scalarvalued bounded sequences with the property
and are positive scalarvalued sequences with
In the present case, the pair is controllable. Take
Then
where and
By inequality
it follows that
Assume that
Since and are constants, by (3.37) we have Hence, according to (3.28),
If and are small enough such that for some and we have then by Theorem 3.3, system (3.35)(3.36), under conditions (3.37) and (3.38), is globally exponentially stabilizable.
In the same way, Theorem 3.3 can be extended to the discretetime control system with multiple delays
where () are variable matrices,
Denote
Theorem 3.7.
Let be stabilizable for each with respect to a matrix function satisfying the conditions (i), (ii), and (iii). In addition, assume that
If
then system (3.45)(3.46) is globally exponentially stabilizable by means of the feedback law (2.1). Moreover, any solution of (3.45)(3.46) satisfies the inequality
As an application, one consider, the stabilization of the nonlinear discretetime control system
where is a given nonlinear function satisfying
for some positive numbers and
One recalls that nonlinear control system (3.51)(3.52) is stabilizable by a feedback control where is a matrix, if the closedloop system
is asymptotically stable.
Theorem 3.8.
Under (3.53), let be stabilizable for each with respect to a matrix function satisfying conditions (i), (ii), and (iii). In addition, assume that
If
then system (3.51)(3.52) is globally exponentially stabilizable by means of the feedback law (2.1).
Proof.
Rewrite (3.54) in the form
where
Thus, by reasoning as in Theorem 3.3, and using the estimates established in Proposition 3.2, the result follows.
References
 1.
Lakshmikantham V, Leela S, Martynyuk AA: Stability Analysis of Nonlinear Systems, Monographs and Textbooks in Pure and Applied Mathematics. Volume 125. Marcel Dekker, New York, NY, USA; 1989:xii+315.
 2.
Niamsup P, Phat VN: Asymptotic stability of nonlinear control systems described by difference equations with multiple delays. Electronic Journal of Differential Equations 2000,2000(11):1–17.
 3.
Sun YJ, Hsieh JG: Robust stabilization for a class of uncertain nonlinear systems with timevarying delay: Razumikhintype approach. Journal of Optimization Theory and Applications 1998,98(1):161–173. 10.1023/A:1022645116123
 4.
Phat VN, Kiet TT: On the Lyapunov equation in Banach spaces and applications to control problems. International Journal of Mathematics and Mathematical Sciences 2002,29(3):155–166. 10.1155/S0161171202010840
 5.
Recht B, D'Andrea R: Distributed control of systems over discrete groups. IEEE Transactions on Automatic Control 2004,49(9):1446–1452. 10.1109/TAC.2004.834122
 6.
Sasu B, Sasu AL: Stability and stabilizability for linear systems of difference equations. Journal of Difference Equations and Applications 2004,10(12):1085–1105. 10.1080/10236190412331314178
 7.
Feliachi A, Thowsen A: Memoryless stabilization of linear delaydifferential systems. IEEE Transactions on Automatic Control 1981,26(2):586–587. 10.1109/TAC.1981.1102653
 8.
Benabdallah A, Hammami MA: On the output feedback stability for nonlinear uncertain control systems. International Journal of Control 2001,74(6):547–551. 10.1080/00207170010017383
 9.
Alabau F, Komornik V: Boundary observability, controllability, and stabilization of linear elastodynamic systems. SIAM Journal on Control and Optimization 1999,37(2):521–542. 10.1137/S0363012996313835
 10.
Boukas EK: State feedback stabilization of nonlinear discretetime systems with timevarying time delay. Nonlinear Analysis: Theory, Methods & Applications 2007,66(6):1341–1350. 10.1016/j.na.2006.01.020
 11.
Bourlès H: Local stability and local small gain theorem for discretetime systems. IEEE Transactions on Automatic Control 1996,41(6):903–907. 10.1109/9.506248
 12.
Chukwu EN: Stability and TimeOptimal Control of Hereditary Systems, Mathematics in Science and Engineering. Volume 188. Academic Press, New York, NY, USA; 1992:xii+508.
 13.
Sontag ED: Asymptotic amplitudes and Cauchy gains: a smallgain principle and an application to inhibitory biological feedback. Systems & Control Letters 2002,47(2):167–179. 10.1016/S01676911(02)001913
 14.
Trinh H, Aldeen M: On robustness and stabilization of linear systems with delayed nonlinear perturbations. IEEE Transactions on Automatic Control 1997,42(7):1005–1007. 10.1109/9.599983
 15.
Gaĭshun IV: Controllability and stabilizability of discrete systems in a function space on a commutative semigroup. Difference Equations 2004,40(6):873–882.
 16.
Megan M, Sasu AL, Sasu B: Stabilizability and controllability of systems associated to linear skewproduct semiflows. Revista Matemática Complutense 2002,15(2):599–618.
 17.
Gil MI, Medina R: The freezing method for linear difference equations. Journal of Difference Equations and Applications 2002,8(5):485–494. 10.1080/10236190290017478
 18.
Jiang ZP, Lin Y, Wang Y: Nonlinear smallgain theorems for discretetime feedback systems and applications. Automatica 2004,40(12):2129–2136.
 19.
Karafyllis I: Nonuniform in time robust global asymptotic output stability for discretetime systems. International Journal of Robust and Nonlinear Control 2006,16(4):191–214. 10.1002/rnc.1037
 20.
Karafyllis I: Nonuniform robust global asymptotic stability for discretetime systems and applications to numerical analysis. IMA Journal of Mathematical Control and Information 2006,23(1):11–41.
 21.
Bylov BF, Grobman BM, Nemickii VV, Vinograd RE: The Theory of Lyapunov Exponents. Nauka, Moscow, Russia; 1966.
 22.
Shahruz SM, Schwartz AL: An approximate solution for linear boundaryvalue problems with slowly varying coefficients. Applied Mathematics and Computation 1994,60(2–3):285–298. 10.1016/00963003(94)901104
 23.
Vinograd RE: An improved estimate in the method of freezing. Proceedings of the American Mathematical Society 1983,89(1):125–129. 10.1090/S00029939198307065241
 24.
Gel'fand IM, Shilov GE: Some Questions of Differential Equations. Nauka, Moscow, Russia; 1958.
 25.
Daleckii Yul, Krein MG: Stability of Solutions of Differential Equations in Banach Spaces. American Mathematical Society, Providence, RI, USA; 1971.
 26.
Berezansky L, Braverman E: Exponential stability of difference equations with several delays: recursive approach. Advances in Difference Equations 2009, 2009:13.
Acknowledgment
This research was supported by Fondecyt Chile under Grant no. 1.070.980.
Author information
Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Rigoberto, M. Stabilization of DiscreteTime Control Systems with Multiple State Delays. Adv Differ Equ 2009, 240707 (2009). https://doi.org/10.1155/2009/240707
Received:
Accepted:
Published:
Keywords
 Lyapunov Function
 Exponential Stabilizability
 Nonlinear Control System
 Global Exponential Stability
 Multiple Delay