Skip to content


  • Research Article
  • Open Access

An Ultradiscrete Matrix Version of the Fourth Painlevé Equation

Advances in Difference Equations20072007:096752

  • Received: 27 February 2007
  • Accepted: 1 May 2007
  • Published:


This paper is concerned with the matrix generalization of ultradiscrete systems. Specifically, we establish a matrix generalization of the ultradiscrete fourth Painlevé equation (ud- ). Well-defined multicomponent systems that permit ultradiscretization are obtained using an approach that relies on a group defined by constraints imposed by the requirement of a consistent evolution of the systems. The ultradiscrete limit of these systems yields coupled multicomponent ultradiscrete systems that generalize ud- . The dynamics, irreducibility, and integrability of the matrix-valued ultradiscrete systems are studied.


  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation


Authors’ Affiliations

School of Mathematics and Statistics F07, The University of Sydney, Sydney, NSW, 2006, Australia


  1. Painlevé P: Mémoire sur les équations différentielles dont l'intégrale générale est uniforme. Bulletin de la Société Mathématique de France 1900, 28: 201–261.MATHGoogle Scholar
  2. Grammaticos B, Ramani A: Discrete Painlevé equations: a review. In Discrete Integrable Systems, Lecture Notes in Phys.. Volume 644. Springer, Berlin, Germany; 2004:245–321.View ArticleGoogle Scholar
  3. Tokihiro T, Takahashi D, Matsukidaira J, Satsuma J: From soliton equations to integrable cellular automata through a limiting procedure. Physical Review Letters 1996,76(18):3247–3250. 10.1103/PhysRevLett.76.3247View ArticleGoogle Scholar
  4. Isojima S, Grammaticos B, Ramani A, Satsuma J: Ultradiscretization without positivity. Journal of Physics A 2006,39(14):3663–3672. 10.1088/0305-4470/39/14/011MATHMathSciNetView ArticleGoogle Scholar
  5. Quispel GRW, Capel HW, Scully J: Piecewise-linear soliton equations and piecewise-linear integrable maps. Journal of Physics A 2001,34(11):2491–2503. 10.1088/0305-4470/34/11/337MATHMathSciNetView ArticleGoogle Scholar
  6. Joshi N, Lafortune S: How to detect integrability in cellular automata. Journal of Physics A 2005,38(28):L499-L504. 10.1088/0305-4470/38/28/L03MATHMathSciNetView ArticleGoogle Scholar
  7. Ormerod CM: Hypergeometric solutions to ultradiscrete Painlevé equations. preprint, 2006, Scholar
  8. Olver PJ, Sokolov VV: Integrable evolution equations on associative algebras. Communications in Mathematical Physics 1998,193(2):245–268. 10.1007/s002200050328MATHMathSciNetView ArticleGoogle Scholar
  9. Kajiwara K, Noumi M, Yamada Y: A study on the fourth q -Painlevé equation. Journal of Physics A 2001,34(41):8563–8581. 10.1088/0305-4470/34/41/312MATHMathSciNetView ArticleGoogle Scholar
  10. Sakai H: Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Communications in Mathematical Physics 2001,220(1):165–229. 10.1007/s002200100446MATHMathSciNetView ArticleGoogle Scholar
  11. Grammaticos B, Ohta Y, Ramani A, Takahashi D, Tamizhmani KM: Cellular automata and ultra-discrete Painlevé equations. Physics Letters A 1997,226(1–2):53–58. 10.1016/S0375-9601(96)00934-6MathSciNetView ArticleGoogle Scholar
  12. Mikhailov AV, Sokolov VV: Integrable ODEs on associative algebras. Communications in Mathematical Physics 2000,211(1):231–251. 10.1007/s002200050810MATHMathSciNetView ArticleGoogle Scholar
  13. Balandin SP, Sokolov VV: On the Painlevé test for non-abelian equations. Physics Letters A 1998,246(3–4):267–272. 10.1016/S0375-9601(98)00336-3MATHMathSciNetView ArticleGoogle Scholar
  14. Bobenko AI, Suris YuB: Integrable noncommutative equations on quad-graphs. The consistency approach. Letters in Mathematical Physics 2002,61(3):241–254. 10.1023/A:1021249131979MATHMathSciNetView ArticleGoogle Scholar
  15. Field CM, Nijhoff FW, Capel HW: Exact solutions of quantum mappings from the lattice KdV as multi-dimensional operator difference equations. Journal of Physics A 2005,38(43):9503–9527. 10.1088/0305-4470/38/43/007MATHMathSciNetView ArticleGoogle Scholar
  16. Joshi N, Ormerod CM: The general theory of linear difference equations over the invertible max-plus algebra. Stud. Appl. Math. 118 2007, (1):85–97.MathSciNetView ArticleGoogle Scholar
  17. Bunina EI, Mikhalëv AV: Automorphisms of the semigroup of invertible matrices with nonnegative elements. Fundamental'naya i Prikladnaya Matematika 2005,11(2):3–23.MATHGoogle Scholar
  18. Ramani A, Grammaticos B, Tamizhmani T, Tamizhmani KM: Special function solutions of the discrete Painlevé equations. Computers & Mathematics with Applications 2001,42(3–5):603–614.MATHMathSciNetView ArticleGoogle Scholar
  19. Grammaticos B, Ramani A, Takenawa T: On the identity of two q -discrete Painlevé equations and their geometrical derivation. Advances in Difference Equations 2006, 2006: 11 pages.MathSciNetView ArticleGoogle Scholar
  20. Kajiwara K, Noumi M, Yamada Y: Discrete dynamical systems with symmetry. Letters in Mathematical Physics 2002,60(3):211–219. 10.1023/A:1016298925276MATHMathSciNetView ArticleGoogle Scholar
  21. Kajiwara K, Noumi M, Yamada Y: q -Painlevé systems arising from q -KP hierarchy. Letters in Mathematical Physics 2002,62(3):259–268. 10.1023/A:1022216308475MATHMathSciNetView ArticleGoogle Scholar