Skip to main content

On the Stability of Trigonometric Functional Equations

Abstract

The aim of this paper is to study the superstability related to the d'Alembert, the Wilson, the sine functional equations for the trigonometric functional equations as follows: .

[123456789]

References

  1. 1.

    Baker J, Lawrence J, Zorzitto F: The stability of the equation . Proceedings of the American Mathematical Society 1979,74(2):242–246.

    MATH  MathSciNet  Google Scholar 

  2. 2.

    Bourgin DG: Approximately isometric and multiplicative transformations on continuous function rings. Duke Mathematical Journal 1949,16(2):385–397. 10.1215/S0012-7094-49-01639-7

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Baker JA: The stability of the cosine equation. Proceedings of the American Mathematical Society 1980,80(3):411–416. 10.1090/S0002-9939-1980-0580995-3

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Cholewa PW: The stability of the sine equation. Proceedings of the American Mathematical Society 1983,88(4):631–634. 10.1090/S0002-9939-1983-0702289-8

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Badora R: On the stability of the cosine functional equation. Rocznik Naukowo-Dydaktyczny. Prace Matematyczne 1998, (15):5–14.

    Google Scholar 

  6. 6.

    Badora R, Ger R: On some trigonometric functional inequalities. In Functional Equations—Results and Advances, Advances in Mathematics. Volume 3. Kluwer Academy, Dordrecht, The Netherlands; 2002:3–15.

    Google Scholar 

  7. 7.

    Kannappan Pl, Kim GH: On the stability of the generalized cosine functional equations. Annales Acadedmiae Paedagogicae Cracoviensis - Studia Mathematica 2001, 1: 49–58.

    Google Scholar 

  8. 8.

    Kim GH: The stability of d'Alembert and Jensen type functional equations. Journal of Mathematical Analysis and Applications 2007,325(1):237–248. 10.1016/j.jmaa.2006.01.062

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Kim GH: A stability of the generalized sine functional equations. Journal of Mathematical Analysis and Applications 2007,331(2):886–894. 10.1016/j.jmaa.2006.09.037

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gwang Hui Kim.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Kim, G.H. On the Stability of Trigonometric Functional Equations. Adv Differ Equ 2007, 090405 (2008). https://doi.org/10.1155/2007/90405

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation