Skip to content

Advertisement

  • Research Article
  • Open Access

Oscillation Criteria for Second-Order Delay Dynamic Equations on Time Scales

Advances in Difference Equations20072007:070730

https://doi.org/10.1155/2007/70730

  • Received: 4 September 2006
  • Accepted: 9 February 2007
  • Published:

Abstract

By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order nonlinear delay dynamic equations on a time scale , here is a quotient of odd positive integers with p and q real-valued positive rd-continuous functions defined on .

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Functional Equation

[1234567891011121314151617181920212223242526]

Authors’ Affiliations

(1)
Institute of Applied Mathematics, Naval Aeronautical Engineering Institute, Yantai, Shandong, 264001, China
(2)
School of Science, Jinan University, Jinan, Shandong, 250022, China

References

  1. Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(1–2):18–56.MATHMathSciNetView ArticleGoogle Scholar
  2. Agarwal RP, Bohner M, O'Regan D, Peterson A: Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics 2002,141(1–2):1–26. 10.1016/S0377-0427(01)00432-0MATHMathSciNetView ArticleGoogle Scholar
  3. Bohner M, Peterson A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Boston, Mass, USA; 2001:x+358.MATHView ArticleGoogle Scholar
  4. Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, Mass, USA; 2003:xii+348.MATHGoogle Scholar
  5. Bohner M, Saker SH: Oscillation of second order nonlinear dynamic equations on time scales. The Rocky Mountain Journal of Mathematics 2004,34(4):1239–1254. 10.1216/rmjm/1181069797MATHMathSciNetView ArticleGoogle Scholar
  6. Erbe L: Oscillation results for second-order linear equations on a time scale. Journal of Difference Equations and Applications 2002,8(11):1061–1071. 10.1080/10236190290015317MATHMathSciNetView ArticleGoogle Scholar
  7. Erbe L, Peterson A, Saker SH: Oscillation criteria for second-order nonlinear dynamic equations on time scales. Journal of the London Mathematical Society. Second Series 2003,67(3):701–714. 10.1112/S0024610703004228MATHMathSciNetView ArticleGoogle Scholar
  8. Saker SH: Oscillation criteria of second-order half-linear dynamic equations on time scales. Journal of Computational and Applied Mathematics 2005,177(2):375–387. 10.1016/j.cam.2004.09.028MATHMathSciNetView ArticleGoogle Scholar
  9. Saker SH: Oscillation of nonlinear dynamic equations on time scales. Applied Mathematics and Computation 2004,148(1):81–91. 10.1016/S0096-3003(02)00829-9MATHMathSciNetView ArticleGoogle Scholar
  10. Agarwal RP, Bohner M, Saker SH: Oscillation of second order delay dynamic equations. The Canadian Applied Mathematics Quarterly 2005,13(1):1–17.MATHMathSciNetGoogle Scholar
  11. Agarwal RP, O'Regan D, Saker SH: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. Journal of Mathematical Analysis and Applications 2004,300(1):203–217. 10.1016/j.jmaa.2004.06.041MATHMathSciNetView ArticleGoogle Scholar
  12. Bohner M: Some oscillation criteria for first order delay dynamic equations. Far East Journal of Applied Mathematics 2005,18(3):289–304.MATHMathSciNetGoogle Scholar
  13. Sahiner Y: Oscillation of second-order delay differential equations on time scales. Nonlinear Analysis: Theory, Methods & Applications 2005,63(5–7):e1073-e1080.MATHView ArticleGoogle Scholar
  14. Sahiner Y: Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales. Advances in Difference Equations 2006, 2006: 9 pages.MathSciNetView ArticleGoogle Scholar
  15. Saker SH: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. Journal of Computational and Applied Mathematics 2006,187(2):123–141. 10.1016/j.cam.2005.03.039MATHMathSciNetView ArticleGoogle Scholar
  16. Zhang BG, Deng X: Oscillation of delay differential equations on time scales. Mathematical and Computer Modelling 2002,36(11–13):1307–1318.MATHMathSciNetView ArticleGoogle Scholar
  17. Zhang BG, Zhu S: Oscillation of second-order nonlinear delay dynamic equations on time scales. Computers & Mathematics with Applications 2005,49(4):599–609. 10.1016/j.camwa.2004.04.038MATHMathSciNetView ArticleGoogle Scholar
  18. Erbe L, Peterson A, Saker SH: Hille-Kneser-type criteria for second-order dynamic equations on time scales. Advances in Difference Equations 2006, 2006: 18 pages.MathSciNetView ArticleGoogle Scholar
  19. Han Z, Sun S, Shi B: Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales. to appear in Journal of Mathematical Analysis and ApplicationsGoogle Scholar
  20. Agarwal RP, Shieh S-L, Yeh C-C: Oscillation criteria for second-order retarded differential equations. Mathematical and Computer Modelling 1997,26(4):1–11. 10.1016/S0895-7177(97)00141-6MathSciNetView ArticleGoogle Scholar
  21. Chen SZ, Erbe LH: Riccati techniques and discrete oscillations. Journal of Mathematical Analysis and Applications 1989,142(2):468–487. 10.1016/0022-247X(89)90015-2MATHMathSciNetView ArticleGoogle Scholar
  22. Chen SZ, Erbe LH: Oscillation and nonoscillation for systems of self-adjoint second-order difference equations. SIAM Journal on Mathematical Analysis 1989,20(4):939–949. 10.1137/0520063MATHMathSciNetView ArticleGoogle Scholar
  23. Erbe L: Oscillation criteria for second order nonlinear delay equations. Canadian Mathematical Bulletin 1973, 16: 49–56. 10.4153/CMB-1973-011-1MATHMathSciNetView ArticleGoogle Scholar
  24. Ohriska J: Oscillation of second order delay and ordinary differential equation. Czechoslovak Mathematical Journal 1984,34(109)(1):107–112.MathSciNetGoogle Scholar
  25. Thandapani E, Ravi K, Graef JR: Oscillation and comparison theorems for half-linear second-order difference equations. Computers & Mathematics with Applications 2001,42(6–7):953–960. 10.1016/S0898-1221(01)00211-5MATHMathSciNetView ArticleGoogle Scholar
  26. Zhang Z, Chen J, Zhang C: Oscillation of solutions for second-order nonlinear difference equations with nonlinear neutral term. Computers & Mathematics with Applications 2001,41(12):1487–1494. 10.1016/S0898-1221(01)00113-4MATHMathSciNetView ArticleGoogle Scholar

Copyright

Advertisement