Skip to main content

Periodic Solutions for Subquadratic Discrete Hamiltonian Systems

Abstract

Some existence conditions of periodic solutions are obtained for a class of nonautono mous subquadratic first-order discrete Hamiltonian systems by the minimax methods in the critical point theory.

[123456789101112131415161718192021]

References

  1. Daouas A, Timoumi M: Subharmonics for not uniformly coercive Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 2007,66(3):571–581. 10.1016/j.na.2005.12.002

    Article  MATH  MathSciNet  Google Scholar 

  2. Rabinowitz PH: On subharmonic solutions of Hamiltonian systems. Communications on Pure and Applied Mathematics 1980,33(5):609–633. 10.1002/cpa.3160330504

    Article  MATH  MathSciNet  Google Scholar 

  3. Silva EA: Subharmonic solutions for subquadratic Hamiltonian systems. Journal of Differential Equations 1995,115(1):120–145. 10.1006/jdeq.1995.1007

    Article  MATH  MathSciNet  Google Scholar 

  4. Jiang Q, Tang C-L: Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems. Journal of Mathematical Analysis and Applications 2007,328(1):380–389. 10.1016/j.jmaa.2006.05.064

    Article  MATH  MathSciNet  Google Scholar 

  5. Tang C-L: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proceedings of the American Mathematical Society 1998,126(11):3263–3270. 10.1090/S0002-9939-98-04706-6

    Article  MATH  MathSciNet  Google Scholar 

  6. Tang C-L, Wu X-P: Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems. Journal of Mathematical Analysis and Applications 2002,275(2):870–882. 10.1016/S0022-247X(02)00442-0

    Article  MATH  MathSciNet  Google Scholar 

  7. Tang C-L, Wu X-P: Notes on periodic solutions of subquadratic second order systems. Journal of Mathematical Analysis and Applications 2003,285(1):8–16. 10.1016/S0022-247X(02)00417-1

    Article  MATH  MathSciNet  Google Scholar 

  8. Tang C-L, Wu X-P: Subharmonic solutions for nonautonomous sublinear second order Hamiltonian systems. Journal of Mathematical Analysis and Applications 2005,304(1):383–393. 10.1016/j.jmaa.2004.09.032

    Article  MATH  MathSciNet  Google Scholar 

  9. Guo Z, Yu J: Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 2003,55(7–8):969–983. 10.1016/j.na.2003.07.019

    Article  MATH  MathSciNet  Google Scholar 

  10. Yu J, Bin H, Guo Z: Multiple periodic solutions for discrete Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 2007,66(7):1498–1512. 10.1016/j.na.2006.01.029

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo Z, Yu J: Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Science in China. Series A 2003,46(4):506–515.

    Article  MATH  MathSciNet  Google Scholar 

  12. Yu J, Deng X, Guo Z: Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential. Journal of Mathematical Analysis and Applications 2006,324(2):1140–1151. 10.1016/j.jmaa.2006.01.013

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhou Z, Yu J, Guo Z: The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems. The ANZIAM Journal 2005,47(1):89–102. 10.1017/S1446181100009792

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo Z, Yu J: The existence of periodic and subharmonic solutions of subquadratic second order difference equations. Journal of the London Mathematical Society 2003,68(2):419–430. 10.1112/S0024610703004563

    Article  MATH  MathSciNet  Google Scholar 

  15. Rodriguez J, Etheridge DL: Periodic solutions of nonlinear second-order difference equations. Advances in Difference Equations 2005,2005(2):173–192. 10.1155/ADE.2005.173

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhou Z, Yu J, Guo Z: Periodic solutions of higher-dimensional discrete systems. Proceedings of the Royal Society of Edinburgh. Section A 2004,134(5):1013–1022. 10.1017/S0308210500003607

    Article  MATH  MathSciNet  Google Scholar 

  17. Agarwal RP, Perera K, O'Regan D: Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Analysis: Theory, Methods & Applications 2004,58(1–2):69–73. 10.1016/j.na.2003.11.012

    Article  MATH  MathSciNet  Google Scholar 

  18. Agarwal RP, Perera K, O'Regan D: Multiple positive solutions of singular discrete p -Laplacian problems via variational methods. Advances in Difference Equations 2005,2005(2):93–99. 10.1155/ADE.2005.93

    Article  MATH  MathSciNet  Google Scholar 

  19. Xue Y-F, Tang C-L: Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system. Nonlinear Analysis: Theory, Methods & Applications 2007,67(7):2072–2080. 10.1016/j.na.2006.08.038

    Article  MATH  MathSciNet  Google Scholar 

  20. Mawhin J, Willem M: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences. Volume 74. Springer, New York, NY, USA; 1989:xiv+277.

    Book  Google Scholar 

  21. Cerami G: An existence criterion for the critical points on unbounded manifolds. Istituto Lombardo. Accademia di Scienze e Lettere. Rendiconti. A 1978,112(2):332–336.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Deng.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Deng, X. Periodic Solutions for Subquadratic Discrete Hamiltonian Systems. Adv Differ Equ 2007, 013916 (2007). https://doi.org/10.1155/2007/13916

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/13916

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Ordinary Differential Equation
  • Functional Analysis
  • Periodic Solution