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Abstract
In this paper, we examine an application of Ornstein-Uhlenbeck process to
commodity pricing in Thailand. Prices of Tapioca Starch, Ribbed Smoke Sheet no. 3,
and Thai Hom Mali Rice are investigated. We use three parameter estimation
methods: least squares estimation, maximum likelihood estimation, and jackknife
estimation in order to find the best estimation for the model. Jackknife technique is
the most appropriate estimation for our commodity pricing model, which provides
the least sum-squared error of commodity prices.
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1 Introduction
In the economics, agricultural commodity prices have an important role due to the cost
of production and services. Bayramoglu [] studied the relationship between agricultural
prices and agricultural employment in Turkey by using the VAR method. Results show that
there is a relationship between agricultural prices and agricultural employment. Qiangand
and Ying [] investigated the relationship between China’s oil markets and other commod-
ity markets. The results show that China’s fuel oil market is influenced by international oil
market and has effect on China’s other commodity markets. Price of given commodity
can represent the supply and demand for that commodity, for example, the demand of
rice will be low when the price is high. Thus the mathematical model used to analyze the
relationship should reflect this difference [].

In recent years, the commodity markets are rapidly expanding and more interesting to
many investors in the financial world. The variety of the future constructs and underlying
commodities are alternative choices for investors. There are some important characteris-
tics of commodity price; for example, spot and future prices are mean reverting []. Some
behaviors of economic variables may be described by mean-reversion process. Since the
process suggests that the price or returns usually moves back toward the mean or average
in the long run.

The most popular stochastic process that describes the characteristic of the process to
drift toward the mean is the Ornstein-Uhlenbeck process []. Here, we pay attention to
study the Ornstein-Uhlenbeck process and its applications. Many researchers study this
area. Ribeiro and Hodges [] introduced a new model by adding two factors, spot price
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and convenience yield. Paschke and Prokopczuk [] constructed the continuous-time au-
toregressive moving-average (CARMA) model in which the convenience yield follows an
Ornstein-Uhlenbeck-type process of pricing the crude oil future market. In this paper, we
investigate the Ornstein-Uhlenbeck process behaviors affecting commodity pricing and
applying the Ornstein-Uhlenbeck model to pricing the Thai commodity market. There
are three types of agricultural future contracts that we are investigating: Tapioca Starch
(TS), Ribbed Smoke Sheet no.  (RSS), and Thai Hom Mali Rice % grade B (BHMR).

In this research, the analysis of parameters of the Ornstein-Uhlenbeck process are fo-
cused upon. The parameter estimation methods we are applying are least squares estima-
tion, maximum likelihood estimation, and maximum likelihood with jackknife estimation.

In this research paper, the content is organized as follows: in the next section, we de-
scribe the Ornstein-Uhlenbeck process. Then we apply the parameter estimation tech-
nique. After that, we discuss the simulation results of the Ornstein-Uhlenbeck process
and parameter estimations. The last section includes conclusion and discussion of the fu-
ture work.

2 The Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process is the stochastic process that is stationary and continu-
ous in probability [, ]. Moreover, it is a process that describes the characteristics of the
process that drifts toward the mean, a mean-reverting process. The stochastic differential
equation (SDE) for the Ornstein-Uhlenbeck process [, ] is given by

dSt = λ(μ – St) dt + σ dWt , ()

where λ is the rate of mean reversion, μ is the long-run mean, σ is the volatility of the
process, which all are strictly positive, and Wt denotes the Wiener process.

The stochastic differential equation () can be discretized and approximated by

St+ = e–λ�tSt +
(
 – e–λ�t)μ + σ

√
( – e–λ�t)

λ
�Wt , ()

where �t is acceptably small, and �Wt are independent identically distributed Wiener
process. We can use this formula to simulate the long-term expected value or commodity
prices; see Smith [].

3 Parameter estimations
To estimate the parameters of an observed Ornstein-Uhlenbeck process, we use three
techniques: least squares estimation, maximum likelihood estimation, and jackknife tech-
nique, which may be described as follows.

3.1 Least squares estimation
Smith [] suggested that () may be compared to the regression

St+ = aSt + b + ε,

where ε is an iid random term. These yields are related as follows:

a = e–λ�t , b = μ
(
 – e–λ�t), sd(εt) = σ

√
( – e–λ�t)

λ
,
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where sd(ε) is the standard deviation of ε. By rearranging these equations we have

λ = –
ln a
�t

, μ =
a

 – b
,

and

σ = sd(εt)

√
λ

( – e–λ�t)
.

3.2 Maximum likelihood estimation
Van den Berg [] stated that the conditional probability density function of St+ is given
by

P(N, = x) =
√

πσ 
e– 

 x ,

and the conditional probability density of an observation Si+ given the previous observa-
tion Si, with δ being time step, is given by

f (St+ | St ;μ,λ, σ̂ ) =
√

πσ̂
exp

[
–

(St – St–e–λδ – μ( – e–λδ)

σ̂ 

]
,

where

σ̂  = σ   – e–λδ

λ
.

The log-likelihood function of an observation (S, S, . . . , Sn) is

L(μ,λ, σ̂ ) =
n∑

t=

ln
(
f (StSt–;μ,λ,σ )

)

= –
n


ln(π ) – n ln(σ̂ ) –


σ̂ 

n∑

t=

[
St – St–e–λδ – μ

(
 – e–λδ

)].

The first-order conditions for maximum likelihood estimation are required and set equal
to zero:

∂L(μ,λ, σ̂ )
∂μ

∣
∣∣
∣
μ

= ,

∂L(μ,λ, σ̂ )
∂λ

∣
∣∣∣
λ

= ,

∂L(μ,λ, σ̂ )
∂σ̂

∣
∣∣
∣
σ̂

= .

By solving these equations Van den Berg [] showed that

μ =
SySxx – SxSxy

n(Sxx – Sxy) – (S
x – SxSy)

, λ = –

δ

ln
Sxy – μSx – μSy + nμ

Sxx – μSx + nμ ,

σ  = σ̂  λ

 – α ,
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(a) (b)

(c)

Figure 1 Actual data: (a) Actual data of BHMR. (b) Actual data of RSS3. (c) Actual data of TS.

Table 1 Value of parameters used in simulation

λ μ σ

BHMR 3.00 29.39 1.8565
RSS3 0.60 66.95 14.8473
TS 4.05 8.4639 1.0381

where

σ̂  =

n

[
Syy – αSxy + αSxx – μ( – α)(Sy – αSx) + nμ( – α)]

and

Sx =
n∑

i=

Si–, Sy =
n∑

i=

Si, Sxx =
n∑

i=

S
i–, Sxy =

n∑

i=

Si–Si, Syy =
n∑

i=

S
i .

3.3 Jackknife technique
Jackknife estimation was proposed to reduce the bias by Phillips and Yu []. Given the
total number T of the whole sample of observations, the observations may be divided into
m subsamples. The estimation can be simulated by

λjack =
m

m – 
λT –

∑m
t= λt

m – m
,

μ̂ =
m

m – 
μT –

∑m
t= μt

m – m
,
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(a) (b)

(c)

Figure 2 Results of simulation with Ornstein-Uhlenbeck process: (a) Results of simulation with
Ornstein-Uhlenbeck process for BHMR. (b) Results of simulation with Ornstein-Uhlenbeck process for RSS3.
(c) Results of simulation with Ornstein-Uhlenbeck process for TS.

Table 2 Parameter estimation for BHMR

Known parameters

λ μ σ

Actual 3.00 29.3900 1.8565

Estimation

λ̂ μ̂ σ̂

Least squares regression 3.6724 29.7853 4.6176
Maximum likelihood 3.6724 29.7853 4.6128
Jackknife technique 3.0107 29.5938 4.6865

and

σ̂ =
m

m – 
σT –

∑m
t= σt

m – m
.

4 Simulation result and discussion
This section presents the simulation results of the preceding methodology by using the
entire samples that are collected from the real market data from the Agricultural Futures
Exchange of Thailand (AFET) consisting of daily end prices (�t = /) from years -
, -, and - for Tapioca Starch (TS), Ribbed Smoke Sheet no. 
(RSS), and grade B Thai Hom Mali Rice % (BHMR), respectively. See Figure .

We use the statistics tools to obtain λ, μ, and σ given in Table .
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Table 3 Parameter estimation for RSS3

Known parameters

λ μ σ

Actual 0.60 66.9500 14.8473

Estimation

λ̂ μ̂ σ̂

Least squares regression 0.7434 75.1161 16.7193
Maximum likelihood 0.7434 75.1161 16.6971
Jackknife technique 0.5772 78.6778 17.5704

Table 4 Parameter estimation for TS

Known parameters

λ μ σ

Actual 4.05 8.4639 1.0381

Estimation

λ̂ μ̂ σ̂

Least squares regression 3.5025 8.0599 1.0948
Maximum likelihood 3.5025 8.0599 1.0926
Jackknife technique 5.1518 8.7526 1.1069

(a) (b)

(c)

Figure 3 Results of simulation with Ornstein-Uhlenbeck process with λ = 1: (a) Results of simulation
with Ornstein-Uhlenbeck process of BHMR with λ = 1. (b) Results of simulation with Ornstein-Uhlenbeck
process of RSS3 with λ = 1. (c) Results of simulation with Ornstein-Uhlenbeck process of TS with λ = 1.

Then we simulate the future price with the Ornstein-Uhlenbeck process by using a Mat-
lab code written by Smith []. The results are shown in the figures below.
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(a) (b)

(c)

Figure 4 Results of simulation with Ornstein-Uhlenbeck process of BHMR: (a) Results of simulation with
Ornstein-Uhlenbeck process of BHMR with least squares regression λ = 3.6724. (b) Results of simulation with
Ornstein-Uhlenbeck process of BHMR with maximum likelihood estimation λ = 3.6724. (c) Results of
simulation with Ornstein-Uhlenbeck process of BHMR with jackknife technique λ = 3.0107.

Figures (a)-(c) show the simulation results for the daily price for BHMR, RSS, and
TS, respectively. Figure (a) and Figure (c) show the BHMR future prices with mean
. and TS future prices with mean ., exhibiting mean reversion with λ = .
and ., respectively. Since RSS has the mean of . and λ = ., Figure (b) shows
high volatility, giving lower λ. So, the future prices of RSS follow a slow mean-reversion
process. However, the graphs of simulation with Ornstein-Uhlenbeck process show that
the mean reversion is faster than the empirical graphs above. Next, we need to estimate
the parameters in Ornstein-Uhlenbeck process by three techniques. The outputs of the pa-
rameter estimations compared with known parameters are shown in the following tables.

From the results shown in Table , Table  and Table , the jackknife technique is ac-
curate for λ̂ and μ̂ in BHMR. Estimations of σ̂ are very poor in BHMR and RSS, but the
maximum likelihood estimation of σ̂ in TS is close to the actual σ . To estimate λ̂ and μ̂ in
RSS, the least squares regression and maximum likelihood techniques are suggested, but
they are not the best techniques since they give the estimates quite far from the actual val-
ues. For TS product, estimates of λ̂ are relatively poor. However, the parameter estimation
techniques may depend on the behavior of the commodity prices.

4.1 Behavior with weak mean reversion
We have simulated the stochastic behavior of commodity price with mean reversion equal
to  (λ = ) to observe the behavior of weak mean reversion. The result is shown below.

In Figure , the simulation results show that tendency of BHMR future price; in Fig-
ure (a), we see reversion to the mean (μ = .). However, the future prices of RSS, Fig-
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(a) (b)

(c)

Figure 5 Results of simulation with Ornstein-Uhlenbeck process of RSS3: (a) Results of simulation with
Ornstein-Uhlenbeck process of RSS3 with least squares regression λ = 0.7434. (b) Results of simulation with
Ornstein-Uhlenbeck process of RSS3 with maximum likelihood estimation λ = 0.7434. (c) Results of simulation
with Ornstein-Uhlenbeck process of RSS3 with jackknife technique λ = 0.5772.

ure (b), and TS, Figure (c), are oscillatory and may not revert to their respective means
μ = . and μ = .. The weakness test shows that mean-reversion parameters in
RSS and TS have weaknesses when we use λ = .

4.2 Simulation results with the parameter estimations of λ

.. BHMR
In Figure , the predictions of BHMR show that future prices become more mean-
reverting as the value of λ increases. Least squares regression and maximum likelihood
estimation give the same results in mean reversion parameter, so they both give the same
simulation results as that of Ornstein-Uhlenbeck process, seen in Figure (a) and Fig-
ure (b).

.. RSS
The RSS future price oscillates. Figure  shows that prices are slightly mean reverting
with low λ.

.. TS
From the simulation results in Figure (c) we observe that the TS future prices tend to
revert to the mean (μ = .) when we use the jackknife technique to estimate mean
reversion (λ).

For parameter estimation, least squares regression and maximum likelihood estimation
give the same mean reversion value up to  decimal places (λ). The tendency of mean
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(a) (b)

(c)

Figure 6 Results of simulation with Ornstein-Uhlenbeck process of TS: (a) Results of simulation with
Ornstein-Uhlenbeck process of TS with least squares regression λ = 3.5025. (b) Results of simulation with
Ornstein-Uhlenbeck process of TS with maximum likelihood estimation λ = 3.5025. (c) Results of simulation
with Ornstein-Uhlenbeck process of TS with jackknife technique λ = 5.1518.

Table 5 Sum squared error

Parameters Least squares regression Maximum likelihood estimation Jackknife technique

BHMR 1,345.9561 1,345.9561 1,255.5176
RSS3 277,508.3873 277,508.3873 70,589.1459
TS 1,143.7425 1,143.7425 1,522.6408

reversion process depends on the value of λ. When the value of λ is high, the prices show
higher tendency to revert the drift toward the mean.

In this work, we used the sum squared error to test our model when we used the three
techniques to estimate λ. In Table , we can see that the jackknife technique is appropriate
to estimate λ for BHMR and RSS pricing, whereas TS pricing has a good fit when either
least squares regression or maximum likelihood is used to find the parameter estimation
of λ.

5 Conclusion
We have presented the use of Ornstein-Uhlenbeck process in pricing Thai commodity and
the parameter estimations with least squares estimation, maximum likelihood estimation,
and jackknife technique. The pricing models simulated by Matlab shows the trend of the
commodity prices toward the mean. So, we can predict the commodity price in the fu-
ture market by using the method of the Ornstein-Uhlenbeck process. In the parameter
estimation, the jackknife technique can be used to reduce the bias of λ estimation. We
discover that, in TS product, parameter estimations are close to the real values, but pa-
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rameter estimation in other products are not very good. For future studies, to improve the
methodology, we will consider the influence of economic factors, such as inflation rate,
and develop the Ornstein-Uhlenbeck process that incorporates these factors.
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